PROBABILISTIC METHOD
 Fall 2007, Set 1

$[n]$ denotes $\{1,2, \ldots, n\}$.

1. Determine the probability that 1 and 2 are in the same cycle of a random permutation π of $[n]$.
2. We toss a fair coin n times. What is the expected number of "runs"? (Runs are maximal sequences of consecutive tosses with the same result. For instance, the toss sequence HHHTTHTH has 5 runs, the first one containing the three H's.)
3. Show that for m large and $n>m(\ln m+5)$, a random mapping $f:[n] \rightarrow$ $[m]$ is surjective with probability at least 0.99 .
4. Prove that if there is a real $p \in(0,1)$ such that

$$
\binom{n}{k} p^{\binom{k}{2}}+\binom{n}{l}(1-p)^{\binom{l}{2}}<1,
$$

then the Ramsey number $R(k, l)$ satisfies $R(k, l)>n$.
Using this, show

$$
R(4, t) \geq \Omega\left(t^{3 / 2} /(\ln t)^{3 / 2}\right)
$$

5. Let $G_{n, p}$ be a random graph on n vertices with edge probability p. Show that if $p \in(0,1)$ is independent of n then $G_{n, p}$ is connected almost surely. What is the smallest function $p(n)$ for which you can still show that $G_{n, p(n)}$ is connected almost surely?

Hints: Use the basic method, the expression of a random variable as a sum of indicator variables, the linearity of expectation, and the bound for the probability of the union of events.

