# PROBABILISTIC METHOD 

## Fall 2007, Set 2

Homework is due on Monday, October 15. Problems 4, 5, 6, and just one of the problems 1, 2, 3 are to be solved. Numbers on the right indicate the grading scheme.

$$
[n] \text { denotes }\{1,2, \ldots, n\}
$$

1. Let $P$ be a property of graphs such that if $G$ has $P$ then any graph $H$ with $V(H)=V(G)$ and $E(G) \subseteq E(H)$ also has $P$. Let $G(n, p)$ denote the random graph on $n$ vertices with each possible edge present with probability $p$ (independent of other edges). Prove that if $p_{1}<p_{2}$ then the probability of $G\left(n, p_{1}\right)$ having $P$ is not larger than the probability of $G\left(n, p_{2}\right)$ having $P$.
2. (a) Let $\mathcal{S}$ be a system consisting of $m$ subsets of an $n$-point set $X$, each of size $\geq s$. Prove that there exists $N \subseteq X,|N| \leq\lceil(n / s) \ln m\rceil$, that intersects each set of $\mathcal{S}$.
(b) Show that there exists a system $\mathcal{S}$ of $m=n^{2}$ sets of size $s$ on an $n$-element set $X$ such that any set meeting all sets of $\mathcal{S}$ has at least $t \geq c(n / s) \log n$ elements, for some constant $c>0$, provided that $s<n / 2$.
3. Let $a \leq n$ be integers. Show that there is a coloring of $E\left(K_{n}\right)$ by two colors, so that the number of monochromatic copies of $K_{a}$ is at most $\binom{n}{a} 2^{1-\binom{a}{2}}$.
For $a$ fixed, show how to find such coloring in a time polynomial in $n$.
4. Let $A$ be random $n \times n$ matrix of -1 s and 1 s ; each entry is -1 or 1 with the same probability, and the entries are mutually independent.
(a) Show that the expected value of $\operatorname{det}(A)$ is 0 .
(b) Calculate the expected value of $\operatorname{det}(A)^{2}$.
5. For each $i \in[n]$ let $v_{i}=\left(x_{i}, y_{i}\right)$ be a pair of integers with absolute value at most $2^{n / 2} /(100 \sqrt{n})$. Prove that there are two disjoint nonempty sets $I, J \subseteq[n]$ such that

$$
\sum_{i \in I} v_{i}=\sum_{j \in J} v_{j} .
$$

6. Let the van der Waerden number $W(k, r)$ be the minimum $N$ such that whenever the numbers $1, \ldots, N$ are $r$-colored, there exists a monochromatic $k$-element arithmetic progression. Prove that (a) $W(3, r) \geq$ $r^{2} / 15$ [2 points], $W(k, 2) \geq c 2^{k} / k$ for some constant $c>0$.

Hints: For the first problem, either consider the random graph model, where not all edges have the same probability, or try to generate a random graph as a union of two random graphs.
In the next one use the basic method, and select a random set by choosing each element inpendently with a properly chosen probability.
In the latter problems, use second moment and the Lovász's local lemma.

