# Topological Graph Theory <br> Math 820 - Spring 2006 Homework assignment \#2 

1. Prove (by using the Jordan Curve Theorem) that a planar graph is bipartite if and only if all its faces are of even length. (Make appropriate definition of the "face length" yourself.)
2. Let $G$ be a (2-)connected planar graph with vertices $v_{1}, \ldots, v_{n}$ and faces $F_{1}, \ldots, F_{n}$. Prove that:

$$
\begin{gathered}
\sum\left(6-\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)\right) \geq 12 \\
\sum\left(6-\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)\right)+\sum\left(6-2 \operatorname{deg}\left(\mathrm{~F}_{\mathrm{j}}\right)\right)=12 \\
\sum\left(4-\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)\right)+\sum\left(4-\operatorname{deg}\left(\mathrm{F}_{\mathrm{j}}\right)\right)=8 .
\end{gathered}
$$

When do we have equality in the first formula? How do these relations change if we allow multigraphs?
3. Let G be a planar graph of minimum degree at least 4 . Show that G has at least eight triangular faces. Find an infinite set of 3-connected planar graphs of minimum degree 4 and with precisely eight triangular faces.
4. Read the proof of Theorem 2.5.2 (and the corresponding Lemma 2.5.3) on p.40-41 (supplied on the course web page).
5. Go to Ken Stephenson's (or some other) web page and find some nice drawings of circle packings.

