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() and such that all vertices of By are on the outer face boundary. The
reader may check the example of Figure 2.6 where By, consists of the black
vertices 7,8,b,¢,d and U = {7, a,d}.

By the definition of an st-ordering, the subgraph of G induced by
{Vk+1,...,0n} is connected. Therefore, if there is no embedding of @
with U on the outer face boundary, the graph G is not planar.

2.8. Circle packing representations

Let G be a plane graph. A circle packing (abbreviated CP) of G is a
set of circles {C, | v € V(G)} in the plane such that:
(i) The interiors of the circles Cy, v € V(G), are pairwise disjoint open
discs.

(ii) Cy and Cy (u,v € V(G)) intersect if and only if uv € E(G).

(iii) By putting vertices v € V(G) in the centers of the corresponding
circles C, and embed every edge uv € E(G) as a straight line seg-
ment joining v and v through C,NC,,, we get a plane representation
of G which is equivalent to G (where “equivalent” is defined after
Theorem 2.6.7).

FiGUre 2.7. A CP representation of the 3-cube

Given a CP of G, the straight line representation of G defined in (iii)
is said to be a circle packing representation of G (or just a circle packing
of G). A circle packing representation of the graph of the 3-cube is shown
in Figure 2.7.

Jackson and Ringel [JR84, Ri85] conjectured that every plane graph
admits a circle packing representation. They used the term “coin rep-
resentation” and the problem has also become known as Ringel’s coin
problem. However, as Sachs [Sa94] points out in his survey on this prob-
lem, it was solved already by Koebe [K036] who obtained the existence of



52 2. PLANAR GRAPHS

circle packing representations as a corollary of a general theorem on con-
formal mapping of “contact domains”. Section 2.9 shows that the relation
between circle packings of graphs and conformal mappings is very strong.

In this section we present the result of Brightwell and Scheinerman
[BS93] that every 3-connected planar graph and its dual have simultane-
ous straight line embeddings in the plane such that only dual pairs of edges
intersect and every such pair is perpendicular. This proves an old conjec-
ture of Tutte [Tu63]. This result is a corollary of the Primal-Dual Circle
Packing Theorem 2.8.8. Another by-product of this result is Steinitz’ The-
orem [St22] which characterizes the graphs of the convex 3-dimensional
polyhedra as the 3-connected planar graphs.

It is convenient to consider circle packings in the extended plane (the
plane together with a point co which we call infinity), and a circle packing
may contain a special circle, denoted by C\,, which behaves differently.
Instead of (i), we require that none of the circles intersects the exterior
of C,. We call C, a circle centered at infinity. To get the corresponding
CP representation in (iii), each edge from a vertex v to the vertex of C,
is represented by the half-line from the center of C, through C, N C,
(towards infinity). See Figure 2.8 for an example of a CP representation
with a circle centered at infinity.

F1GURE 2.8. A CP with a circle centered at infinity

Let us view R? as the complex plane C and the extended plane as
C* = CU {oo}. Suppose that we have a transformation w : C — C. It is
well-known and easy to see that w preserves circles (i.e., for every circle
C in the plane, w(C) is a circle) if and only if w can be expressed in the
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form:

w(z) =az+b or w(z) =az+b
where a # 0 and b are complex numbers. In the extended plane C* there
are more general maps which preserve circles if we think of a line as a
circle through oco. Consider transformations w : C* — C* of the following
form: b

w(z):%, ad — bc # 0,

where w(oo) = a/c if ¢ # 0 and w(oo) = oo if ¢ = 0. Also, w(—d/c) =
0o. These maps are called fractional linear transformations or Mdébius
transformations. It is well known (and easy to see) that every fractional
linear transformation maps circles and lines to circles and lines in C* (lines
in C* correspond to usual lines in the plane together with the point o).
Every circle that does not contain the point z = —d/c is mapped by w
onto a circle. Therefore every fractional linear transformation maps a CP
onto another CP if z = —d/c does not lie on any of the circles in the CP.
If z = —d/c is the center of a circle in a CP, then the transformed CP has
that circle centered at infinity. An immediate corollary is the following:

LEMMA 2.8.1. If a graph G has a circle packing representation and
v is a vertex of G, then there is a CP representation of G such that the
circle corresponding to v is centered at infinity.

Let G be a connected plane graph and G* its geometric dual. A
primal-dual CP (abbreviated PDCP) of G is a pair of simultaneous circle
packings (in the extended plane) of G and of G*, respectively, such that
for any dual pair of edges e = uv € E(G) and e* = u*v* € E(G*),
the circles C,, and C), corresponding to e touch at the same point as the
circles Cy+,Cy+ corresponding to e*, and the line through the centers of
C, and C, is perpendicular to the line through the centers of C,- and
Cy+. We assume that the circle in a PDCP of G and G* corresponding to
the unbounded face of G is centered at infinity.

Our aim is to show that every 3-connected plane graph G admits
a PDCP. This immediately yields simultaneous straight line representa-
tions of G and its dual graph (with the vertex of G* corresponding to the
unbounded face of G at infinity) such that every pair of dual edges are
perpendicular (cf. Theorem 2.8.10).

We need some auxiliary results. We assume in this section that G is a
2-connected plane graph. We define the vertez-face graph® of G, T = T'(G),
as the plane graph obtained as follows. The vertices of I'(G) correspond
to vertices and faces of G, i.e.,, V(I') = V(G) U V(G*). The vertices of
G* are obtained by selecting a point in each face of G. The edges in I’
correspond to vertex-face incidence in G and are embedded in the plane
so that only their endpoints are in G U G*. Then T is bipartite and all

2The vertex-face graph is also known in the literature as the radial graph.
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faces of T' are bounded by 4-cycles. The vertex-face graph of the graph
of the 3-prism is represented in Figure 2.9. White vertices correspond to
vertices of the 3-prism and black vertices to its faces.

F1GURE 2.9. The 3-prism and its vertex-face graph

LEMMA 2.8.2. Let G be a 2-connected plane graph with at least 4 ver-
tices and let T be its vertex-face graph. Then the following assertions are
equivalent:

(a) G is 3-connected.

(b) Ewvery 4-cycle in T is facial.

(c) For every proper subset S C V(I') that contains at least 5 vertices
of I' we have®

215 - |E(D(S))] = 5. (2.3)

PRrROOF. If a 4-cycle in T is nonfacial, then any two opposite vertices
of the cycle separate G or G*. Hence (a) = (b). If G has a separating
set {z,y}, then {z,y} together with two faces whose boundaries intersect
distinct components of G — {z,y} form a nonfacial 4-cycle in I". Hence
(b) = (a).

By Proposition 2.1.6, 2|S| — |E(T'(S))| > 4 with equality if and only
if I'(S) is a quadrangulation. So, if we have equality, one of the facial 4-
cycles in I'(S) is nonfacial in I'. Conversely, if I" has a nonfacial 4-cycle C,
we obtain equality by letting S be V(C') together with the vertices in the
interior or the exterior of C'. This shows that (b) is equivalent to (c). O

In the sequel small Greek letters (e.g., v or 7) will be used for points in
C* which are vertices of I'. We assume that the vertex of T' corresponding
to the unbounded face of GG is the point at infinity and we denote it by w.
The vertex-deleted subgraph I' — w will be denoted by I'V. Given a PDCP
{C, | v e V(I')} of G, we will denote by r, the radius of C,, v € V(I").
It will be assumed that the circle C, of w is centered at infinity and that
r, is a negative number equal, in absolute value, to the radius of C,,.

3Recall that T'(S) is the subgraph of " induced by S.
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LeEmMA 2.8.3. Let r,, v € V(T'), be the radii of a PDCP of G. If
ve V(') and vw ¢ E(T), then

Z arctg It —a. (2.4)
T

Let vy, ..., vy be the vertices of T such that viw € E(T),i=1,...,k, and
let a; = 2% _arctg(r./ry,) where the sum is over all neighbors T of v; in
I''. Then

k
O<ai<m (1<i<k) and Zai:(k—Q)w. (2.5)
i=1

PROOF. We assume that v is a vertex of G. (The proof is similar if
v is in G*.) If v is not a neighbor of w (in I'), then C, is the inscribed
circle of the polygon in G* whose vertices are the neighbors (in I') of v.
In Figure 2.10, one of these neighbors is shown. The angle a in Figure
2.10 equals arctg(r /r,). This implies (2.4) since twice the sum of all such
angles is equal to 27.

FiGURE 2.10. The angle of 7 at v

If v; is adjacent to w, then «; is the angle at v; of the outer facial cycle
of G. Since C,, is inscribed in that polygon, (2.5) holds. O

Suppose that we have simultaneous CP representations of G and G* —
w such that for each edge vr € E(I"), the circles C, and C; cross at the
right angle. Then we say that we have a weak PDCP. We shall show
that the existence of positive numbers r,, v € V(I'), satisfying (2.4) and
(2.5) is sufficient for the existence of a weak PDCP. Suppose now that such
“radii” r,, v € V(I'), exist. For each face ® = vzry of T, the radii uniquely
determine the shape and the size of a quadrangle Q(®) corresponding to
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FIGURE 2.11. The quadrilateral Q(vzry)

® in a possible PDCP representation of G with given radii. Suppose that
v,z,y # w. Then the angle of Q(®) at v is equal to

a(®,v) = arctg =y arctg ] (2.6)
Ty Ty
and the length of the side vz is equal to /72 + 2. See Figure 2.11. If
T = w, then Q(®) is a quadrangle with two bounded and two unbounded
sides but the triangle vay is uniquely determined. By the angle condition
(2.4), the quadrangles Q(®) fit together around each vertex v # w.

Next we prove that a locally plane representation of I' as obtained
above by pasting together the quadrilaterals Q(®) determines a tiling of
the entire plane. For this we need some auxiliary results on graphs drawn
in the plane which may be of independent interest.

First we prove a special case of an elementary fact about covering
spaces.

LEMMA 2.8.4. Let f : R?* — R? be a covering map, i.e., f is continu-
ous, onto, and for each p € R? there exist open neighborhoods U and W
of p and f(p), respectively, such that the restriction of f to U is a home-
omorphism of U onto W. Suppose further that the set of points q such
that |f~1(f(q))| > 1 is bounded. Then f is a homeomorphism.

PROOF. The set S of points ¢ such that |f~!(g)| > 2 is clearly open.
Also, the set of points ¢ such that |f ~1(g)| = 1 is easily proved to be open.
This is possible only if S is empty. |

The conclusion of Lemma 2.8.4 can be derived even without the as-
sumption that {g € R® | |f~'(f(g))| > 1} is bounded (since R* is simply
connected, see e.g. Massey [Ma67]).

PROPOSITION 2.8.5. Let G be a 2-connected plane graph with polyg-
onal edges. Let H be a drawing of G in the plane (possibly with edge
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crossings) such that all edges of H are polygonal arcs. Suppose further
that:

(i) For each vertex x of G, the edges incident with x in H are pairwise
noncrossing and leave x in the same clockwise order as in G.
(ii) Each facial cycle in G corresponds to a simple closed curve in H.
(iii) If C is a facial cycle bounding a bounded face in G, and e is an
edge of G leaving C, then the first segment of e is in the exterior
of C in H.

Then H is a plane representation of G, i.e., H has no edge crossings.

PrOOF. Let f : G — H be an isomorphism. We extend f to a
continuous map of the point set of G onto the point set of H such that
fis 1-1 on each edge of G. Next we extend f to a continuous map from
R? — R? using the Jordan-Schonflies Theorem as follows. Let C denote
the outer cycle of G. For every facial cycle C # Cy of G we use (ii) and the
Jordan-Schénflies Theorem to extend f to int(C') such that the restriction
of the new map (which we also call f) to int(C) is a homeomorphism onto
int(f(C)). If pis a point in int(Cp), then by (i) and (iii), f(p) is an interior
point in the compact set f(int(Cp)). Hence the boundary of f(int(Cp))
is a subset of f(Cp). This implies that either f(int(Cp)) = int(f(Cp)) or
f(int(Cp)) = ext(f(Co)). As f(int(Cp)) is compact, the former equality
holds. By the Jordan-Schonflies Theorem, f can be extended to R? such
that the restriction to ext(Cp) is a homeomorphism onto ext(f(Cp)). By
Lemma 2.8.4, f is a homeomorphism of R? onto R%. In particular, H is a
plane representation of G. |

Fi1GURE 2.12. Locally bad drawings
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Figure 2.12 shows that just a slight weakening of conditions (i)—(iii)
of Proposition 2.8.5 does not result in the conclusion of that proposition.

LEMMA 2.8.6. Let G be a 3-connected plane graph and I' = I'(Q) its
vertex-face graph. If there are positive numbers r,, v € V(I"), such that
(2.4)-(2.5) are satisfied, then there exists a weak PDCP of G,G* with
radii vy, v € V(I'') and with the same local clockwise orientations as in

G, G*.

PRrROOF. For every vertex v € V(I'), we shall determine a point 7 in
R? such that the circles C,, with center 7 and radius r, (v € V(I')) form
the desired weak PDCP. We start with a vertex 79 of I’ and draw any
edge 7971, its length being equal to \/r2 + 72 (cf. Figure 2.10). Then
the position of each neighbor of 7y is uniquely determined. So, having
drawn 7y and 7; we consider, for each vertex 7 in I, a path from 75 to 7
and thus get a position for 7. Clearly, the position for 79 does not change
if we walk from 79 to 79 along a facial 4-cycle or, more generally, along any
cycle C (as can be proved by induction on the number of facial 4-cycles in
int(C)), or along any closed walk from 79 to 79. Hence, we get the same
point 7 if we consider another path from 7y to 7. Also, we get the same
drawing of I" if we start with any other edge instead of 7971 and repeat
the construction. It follows that (2.4) is satisfied at every vertex. It only
remains to show that the drawing of IV has no edge crossings. But this
follows from Proposition 2.8.5. (Note that we need (2.5) in order to show
that the outer facial cycle of I' satisfies (ii).) O

Lemma 2.8.7 below shows that for any 3-connected plane graph G,
there exist positive real numbers associated with the vertices of T' = I'(G)
such that (2.4)—(2.5) are satisfied.

LeEMMA 2.8.7. Let G be a 3-connected plane graph with outer cycle
C =vvy...v5. Let ay,as,...,ap be real numbers such that 0 < a; <
(i=12,...,k) and a1 + --- + ap = (k — 2)w. Then there are positive
numbers r,, v € V(I'), such that (2.4) holds for v # vq,...,vx and, for
eachi=1,...,k,

I
2 S T = o .
arctg - « (2.7)
vir€B(T) :

where the summation is taken over all neighbors T of v; inT'. The numbers
ry, v € V(I'), are unique up to a multiplicative constant.

PROOF. Suppose that we have a list of positive numbers, r = (r, |
v € V(I")). For each v € V(I) \ {v1,...,vr} we define

9, =9,(r) = Z arcth—T — 7.
vreE(T) v
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Also, we define for i =1,...,k
Dy, = Dy, (1) = Z arctg —— — ta;.

Ui

v;TEE(T)
The number
pry=">_ 02 (2.8)
vev(r’)

is a measure for how far r is from a solution. To prove the theorem, it
suffices to see that there are positive numbers r = (r,) such that p(r) = 0.
We claim that

> 9,=0. (2.9)
veV(I')
To see this, we expand the sum of ¢, as:
Tr Ty
Z Y, = Z (arctg " + arctg Z)
veVv(r’) vreE(T)

k

(V) -0 -5 > (2.10)

i=1
Since T is a quadrangulation, we have by Proposition 2.1.6(b)
2V =1ED)|+2=|EI")|+k+2. (2.11)
Since arctg(z)+arctg(1l/z) = m/2 for every z > 0, (2.10) and (2.11) clearly

imply (2.9).
Let S be a proper nonempty subset of V' (I'). Denote by ¢ the number

of vertices among vy, . .., vy that are contained in S. By applying (2.3) on
the set SU{w} C V(I'), we see that
2|1S| - |E(T(S)| >t+3 (2.12)

if | S| > 4. It is easy to see that (2.12) holds also in cases when |S| € {2, 3}
and t =0. If t > 0 and |S| € {2, 3}, then we have:

2|S| — |E((S))| >t +2. (2.13)

Let Q be the set of all sequences r = (r, | v € V(I")) (of radii
candidates) such that 0 < r, < landr, =1if ¢, > 0 (v € V(I')).
Moreover, we require that r, = 1 for some v € V(I'). Clearly, Q is
nonempty since the sequence with r, = 1 for each v € V(I'") belongs to
Q.

Let m = inf{u(r) | r € Q}. We claim that the infimum is attained,
i.e., m = p(r) for some r € Q. Let r(M) ) #3)  be a sequence in Q
such that p(r(9) — m as i — oo. By standard arguments, there is a sub-
sequence such that for each v € V(I'') the corresponding numbers r$¥) con-
verge. We may assume that this holds for the sequence (1) #(2) #3)
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Let S C V(I') be the set of vertices v for which lim; r,(,i) # 0.
Suppose that S # V(I'). By a calculation similar to that in (2.10) we get

i ™
> 0,0 = S ETE)] = (S| ~1)
veSs
1 rg)
—3 aj + Zarctgr(—i) (2.14)
v; €S v, T v

where the last sum is taken over all edges v7 € E(I") such that v € S and
T ¢ S. By definition of S, this latter sum tends to 0 as i — oo. Therefore
Y oves Vv (r()) tends to

™ 1
—5(2|S| — |E(T(S))| —t—2) + 5 dr—ay)—m (2.15)
v; €S
as i — oo. Since m —a; > 0for j =1,...,k and Z?zl(ﬂ'—aj) = 2m,

(2.15) implies that 3, ¢ ¥, (r?) < 0 if ¢ is large enough and if (2.12)
holds. The same is true when we have equality in (2.13) since in that

case t < k. The remaining case when |S| = 1 trivially gives the same
conclusion. This result and (2.9) imply that

Z 9, (r?) >0

vgS

if i is sufficiently large. But 9, (r?) > 0 implies that r\) = 1, a contra-
diction to the definition of S. Hence S = V (I").

Let r = lim; o (V. Since the functions ¥, are continuous, r € Q.
Now we prove that m = u(r) = 0. Suppose that this is not the case. Let
S’ be the set of vertices v with d,(r) < 0. By (2.9), S’ # V(I'") and
S"#0Q. Let v, =7, if v ¢ S" and let v}, = ar, if v € S', where a < 1.
If « is close enough to 1 (so that no ¢,(r'), v € S', becomes positive),
then ' € Q. Using (2.9) and the definition of 9,, it is easy to see that
w(r') < wp(r) if « is close enough to 1. This contradicts the minimality of
p(r).

Suppose now that there are distinct solutions r and 7' such that
max{r, | v € V(I'")} = max{r, | v € V(I')} = 1. Then 9,(r) =
9y (r') = 0 for all v € V(I"). Assume without loss of generality that
the set S = {v | r, > r,} is nonempty. Clearly, S # V(I''). From (2.14)
applied to r and 7', respectively, we get

, r, "
0= Z 9, (1) Z 9, (r') = Z(arctg " arctg o )

veS ves v,T v v

where the last sum is taken over all edges v7 € E(I") such that v € S and
7 ¢ S. By definition of S, the latter sum is negative, a contradiction. The
proof is complete. O
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We now apply Lemmas 2.8.6 and 2.8.7 to show that every 3-connected
planar graph admits a PDCP.

THEOREM 2.8.8 (Brightwell and Scheinerman [BS93]). Let G be a 3-
connected plane graph. Then G admits a PDCP representation. The
PDCP of G is unique up to fractional linear transformations and reflec-
tions in the plane.

PRrROOF. Suppose first that the outer cycle of G is a 3-cycle. Using
the notation in Lemma 2.8.7 we let a3 = as = a3 = 7/3 and then apply
Lemma 2.8.7. The list r = (r, | v € V(I")) satisfies (2.4)—-(2.5). By
Lemma 2.8.6, there is a weak PDCP of G with these radii. In particular,
Ty, = Ty, = Tyg. This implies that this weak PDCP can be extended
to a PDCP by adding the circle C,,. Because of the uniqueness of the
radii in Lemma 2.8.7, the resulting PDCP is unique once the three circles
C1,C5, C5 corresponding to vy, vs, vz, respectively, have been prescribed.

Suppose next that the outer cycle of G has length greater than 3.
Then either G or G* has a facial 3-cycle by the proof of Proposition 2.1.6.
Now redraw G and G* (using a fractional linear transformation), and
interchange the roles of G and G* if necessary, so that the outer cycle of
G in the new embedding is a 3-cycle. By the previous paragraph the new
embedding of G, G* has a PDCP representation. The inverse of the applied
fractional linear transformation gives rise to a PDCP representation of the
original pair G, G*.

For any PDCP representation of GG, there exists a fractional linear
transformation (possibly followed by reflection) taking the PDCP repre-
sentation into one using the prescribed circles Vi, Cs, C3 in the previous
paragraph. That proves uniqueness. [l

Mohar [Mo97a] proved that, given a 3-connected planar graph G
and an £ > 0, one can determine the centers and radii of the PDCP of G
with precision ¢ in time that is bounded by a polynomial in |V (G)| and
max{log(1/e),1}.

An immediate corollary of Theorem 2.8.8 is a result of Koebe [K036]
which was independently discovered by Andreev [An70a, An70b] and
Thurston [Th78|.

COROLLARY 2.8.9 (Koebe-Andreev—Thurston). Ewvery plane graph ad-
mits a circle packing representation.

Koebe (and also Andreev and Thurston) also proved that circle pack-
ing representations of planar triangulations are unique up to fractional
linear transformations.

In Theorem 2.3.2 we proved that every 3-connected planar graph has
a convex representation. Since every PDCP representation is convex, The-
orem 2.8.8 yields a much stronger result:
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THEOREM 2.8.10 (Brightwell and Scheinerman [BS93]). IfG is a pla-
nar 3-connected graph, then G and its dual G* can be embedded in the
plane with straight edges and with the outer vertex of G* at infinity such
that they form a geometric dual pair. Both embeddings are convex and
each pair of dual edges is perpendicular.

Theorem 2.8.10 was conjectured by Tutte [Tu63] who proved that ev-
ery planar 3-connected graph G and its dual G* have simultaneous straight
line representations so that only dual pairs of edges cross.

FI1GURE 2.13. A PDCP representation of the 3-prism

In Figure 2.13 a PDCP representation of the 3-prism is shown. The
edges of the dual graph are represented by broken lines.

Tutte established a necessary and sufficient condition for a 2-connected
graph G with a given cycle C' to have a convex embedding in the plane
such that C' bounds the outer face and it is a convex |V(C)|-gon. The
condition is that G is a subdivision of a 2-connected graph H such that
every separating set {u,v} of H (if any) is contained in the cycle of H
corresponding to C. This result was generalized by Thomassen [Th80al]
to cover also the case where C need not be strictly convex, i.e., it could
be a k-gon with £ < |V(C)|. Thomassen [Th88] also extended Tutte’s
result of simultaneous straight line representations of a planar graph and
its dual to the 2-connected case. The proof of [Th80a] yields a linear time
algorithm for convex drawings of planar graphs. See [CYN84, NCB88§|
for details.
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The inverse of the stereographic projection which maps the extended
plane onto the unit sphere in R® takes every CP in the extended plane
into a spherical circle packing, a set of circles on the unit sphere in R® that
has the same properties as are required for circle packings in the plane.
Theorem 2.8.8 implies the following geometric result.

THEOREM 2.8.11. If G is a 3-connected planar graph, then there is a
convex polyhedron Q in R® whose graph is isomorphic to G such that all
edges of QQ are tangent to the unit sphere in R3.

Proor. By Theorem 2.8.8, G has a PDCP. The inverse of the stere-
ographic projection maps the circles of the PDCP to circles C, v €
V(['(G)), on the unit sphere in R®*. Denote by II, the plane in R? that
contains C,. It is easy to see that the planes II,, v € V(G*), determine
a convex polytope whose graph is isomorphic to G and whose edges are
tangent to the unit sphere. O

The construction in the above proof gives, at the same time, a convex
polyhedron whose graph is G* and whose edges are tangent to the unit
sphere at the same points as their dual edges, and are perpendicular to
their dual edges.

We have proved that part of Theorem 2.8.8 implies Theorem 2.8.11.
Also, the converse holds as pointed out by Sachs [Sa94]. To see this, let G
be a 3-connected planar graph and @ a convex polyhedron whose graph is
isomorphic to G' and whose edges are tangent to the unit sphere S? in R?.
Then the faces of () intersect the unit sphere in circles which determine
a spherical CP. Let C, be the circle corresponding to the face 7 of Q.
The stereographic projection maps these circles into a CP representation
of the dual graph G* of G in the plane. At the same time, we get a CP
of G as follows. Let v be a vertex of (). The cone with apex v that is
tangent to the unit sphere S? has a circle C, in common with S2. All
such circles C,,, v € V(Q) = V(G), determine a circle packing of G on S2.
Clearly, these circles intersect the corresponding circles C, in the CP of
G* perpendicularly (or not at all). The stereographic projection therefore
gives rise to a PDCP of G and G* in the plane.

Theorem 2.8.11 was conjectured by Griinbaum and Shephard [GS87]
(cf. also Schulte [Sch87]) and independently by Sachs [Sa94] (see also
Lehel and Sachs [LS90]).

Theorem 2.8.11 implies the difficult part of Steinitz’ Theorem [St22].

Steinitz’ Theorem. A graph G is the graph of a convex polytope in
R® if and only if it is planar and 3-connected.

For the definition of the graph (1-skeleton) of a polytope and for the
easy part of Steinitz’ Theorem, the reader is referred to Griinbaum [Gr67]
or Brgndsted [Br83|.



64 2. PLANAR GRAPHS

The uniqueness of the PDCP in Theorem 2.8.8 implies that every au-
tomorphism* of a 3-connected planar graph G induces a geometric sym-
metry of the corresponding polyhedron @) in Theorem 2.8.11. This implies
an extension of Steinitz’ Theorem.

THEOREM 2.8.12 (Mani [Ma71]). IfG is a 3-connected planar graph,
then there is a convez polyhedron Q in R® whose graph is isomorphic to
G such that every automorphism of G induces a symmetry of Q.

Schramm has obtained the following generalizations of (part of) The-
orems 2.8.8 and 2.8.11, respectively.

THEOREM 2.8.13 (Schramm [Sc96)). Let G be a planar graph and
(P, ; v € V(Q)) a collection of strictly convex compact subsets of the plane
with smooth boundary. Then there are numbers a, > 0 (v € V(G)) and
points p, € R* (v € V(G)) such that the sets Q, = a, Py + py (v € V(G))
have pairwise disjoint interiors, and Q., Q. intersect if and only if u and
v are adjacent in G.

THEOREM 2.8.14 (Schramm [Sc92]). Let S be a strictly convex com-
pact set in R® with nonempty interior. If G is a 3-connected planar graph,
then there is a convex polyhedron P in R®, whose graph is isomorphic to
G, all of whose edges are tangent to S.

Colin de Verdiere [CV89, CV91] and Mohar [Mo097a] obtained ana-
logues of the PDCP results for graphs on arbitrary surfaces.
H. Harborth (private communication) has raised the following

PRrROBLEM 2.8.15. Does every planar graph have a straight line repre-
sentation such that all edges have integer length?

Brightwell and Scheinerman [BS93] showed that this cannot in gen-
eral be achieved by a circle packing representation since otherwise it would
be possible to trisect an angle of /3 by ruler and compass.

2.9. The Riemann Mapping Theorem

An open connected set Q C R? is simply connected if, for every simple
closed curve J C 0, we have int(J) C Q. Using the proof of the Jordan—
Schonflies Theorem presented in Section 2.2, it is not difficult to prove that
every open simply connected set Q in R? is homeomorphic to the open unit
disc A in R?. The Riemann Mapping Theorem says that, if Q is bounded,
then Q is conformally equivalent to A, i.e., there exists a homeomorphism
f : Q@ — A which is conformal (analytic). At the International Sympo-
sium in Celebration of the Proof of the Bieberbach Conjecture (Purdue
University, March 1985), William Thurston conjectured that the confor-
mal mapping of €2 to the unit disc A can be approximated by manipulating

4An automorphism of a graph is an isomorphism of the graph onto itself.
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hexagonal circle packing configurations in 2. More precisely, let p and ¢
be fixed distinct points in Q. Consider the standard hexagonal tiling of
the plane into hexagons of diameter 1/n. Let G, be the graph which is
the union of those hexagons that are in 2. Let G be the maximal sub-
graph of G, which contains p and ¢ in its hexagons and which has no two
adjacent vertices which separate G).. For n sufficiently large, G!' exists
and is a subdivision of a 3-connected graph G,,. By Theorem 2.8.8, the
pair G, G}, has a PDCP such that the vertex of G}, in the unbounded
face of G, corresponds to the unit circle (i.e., the boundary of A) centered
at infinity. We focus on the circle packing of G,. An example is indicated
in Figure 2.14. It shows a region ) with the hexagonal lattice graph in
it and the graph G}, without its vertex corresponding to the outer face of
G- A circle packing of G, is shown in Figure 2.15.

Q
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F1GURE 2.14. Discretization of a region (2

We define a map f,, from the interior of the outer cycle of G} into A
by mapping all points inside a hexagon to the center of the corresponding
circle in A. By modifying the circle packing by a Md&bius transformation,
we may assume that f,,(p) = 0, and using a rotation we may assume that
fn(q) is a positive real number. Thurston conjectured that f, converges
to a homeomorphism which is analytic, and this was verified by Rodin
and Sullivan [RS87].

The Riemann Mapping Theorem has several other proofs but the proof
of Rodin and Sullivan based on circle packings is particularly interesting
because of its combinatorial and constructive nature. It can be used for
computer experiments on conformal mappings, see Dubejko and Stephen-
son [DS95b] and Collins and Stephenson [CS98p].

Some other central results in the theory of conformal mappings have
been successfully attacked by the use of circle packings, e.g., Schwartz’
Lemma (e.g., Beardon and Stephenson [BS91], Dubejko and Stephenson
[DS95a], Rodin [R087, Ro89]), Koebe uniformization (He and Schramm
[HS93, HS95)), etc. (Aharonov [Ah90]). More references can be found
in Stephenson’s Cumulative bibliography on circle packings [St93].
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FIGURE 2.15. An approximation to a Riemann mapping

2.10. The Jordan Curve Theorem and Kuratowski’s Theorem
in general topological spaces

We have previously observed that, in Kuratowski’s theorem, K3 3 is
more fundamental in that K5 can be omitted when we restrict Kura-
towski’s theorem to 3-connected graphs of order at least 6 (cf. Lemma
2.5.5). The fundamental character of K3 3 becomes even more clear when
we consider more general topological spaces that have the Jordan curve
separation property, as demonstrated by the following result that provides
a link between the Jordan Curve Theorem and Kuratowski’s theorem.

THEOREM 2.10.1 (Thomassen [Th90a]). Let X be an arcwise con-
nected Hausdorff space that cannot be separated by a simple arc. Assume
also that X is not homeomorphic to a simple closed curve. Then the fol-
lowing statements are equivalent:

(a) Every simple closed curve separates X .

(b) Every simple closed curve separates X into precisely two arcwise
connected components.

(c) K33 cannot be embedded in X .

(d) Neither K33 nor K5 can be embedded in X .

ProoF. Clearly (b) = (a) and (d) = (c). It is also easy to prove
that (c) = (d). For suppose that K3 is embedded in X. Let vy, vs,... ,v5
be the vertices of K5. Let p;,ps be points on the edge vyv, such that
vy, P1, P2, Ve are distinct. Now consider an arc A in K5 which connects p;
and p, and which contains all of vy, vy, vs,vs,v5. Since X \ A is arcwise



