Topological Graph Theory*
 Lecture 4: Circle packing representations

Notes taken by Andrej Vodopivec

Burnaby, 2006

Abstract

Summary: A circle packing of a plane graph G is a set of circles $\left\{C_{v} \mid v \in V(G)\right\}$ in \mathbb{R}^{2} such that for $u \neq v C_{v}$ and C_{u} have disjoint interiors, C_{v} and C_{u} intersect if an only if $u v \in E(G)$ and such that by putting vertices $v \in V(G)$ in the centers of C_{v} and joining adjacent vertices u, v with a strait line segment we get a plane representation of G, which is equivalent to G. We show that every 3 -connected plane graph has a circle packing representation and show some corollaries.

1 Definitions

In this lecture we assume that all graphs are 2-connected.
Definition 1.1. Let G be a plane graph. A circle packing of G (CP of G) is a set of circles $\left\{C_{v} \mid v \in V(G)\right\}$ such that

- The interiors of C_{v} are pairwise disjoint.
- C_{u} and C_{v} intersect if and only if u and v are adjacent.
- By putting vertices $v \in V(G)$ into the centers of corresponding C_{v} and embedding every edge $u v$ by a strait line segment joining u and v we get a plane representation of G equivalent to G.

If we consider circle packings in the extended plane, the circle packing may contain special circle C_{ω} which corresponds to a vertex of the graph G we put in infinity.

If we consider \mathbb{R}^{2} as \mathbb{C}^{*} then we can define a Möbius transformation $w: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ as

$$
w(z)=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0 .
$$

Möbius transformation maps circles and lines into circles and lines.
Lemma 1.2. If a graph G has a $C P$ representation and $v \in V(G)$ then G has a CP representation such that the circle corresponding to v is centered at infinity.

[^0]

Figure 1: Circle packing and extended circle packing representation of K_{4}

Let G be a connected plane graph. Construct a new graph G^{*} by putting a vertex v_{f} in each face f of G and connecting $v_{f_{1}}$ and $v_{f_{2}}$ by an edge e^{*} if faces f_{1} and f_{2} share an edge $e\left(e^{*}\right.$ is the dual edge to e). The graph G^{*} is called the geometric dual of plane graph G.

Lemma 1.3. Let G be a plane graph. Then either G or G^{*} has a vertex of degree at most 3.
Proof. Assume that the $\operatorname{deg}(v) \geq 4$ for every vertex $v \in V(G)$ and $\operatorname{deg}(f) \geq 4$ for every face in $F(G)$. Counting argument gives that $2|V(G)| \leq|E(G)|$ and $2|F(G)| \leq|E(G)|$, which contradicts the Euler formula.

A primal-dual CP (PDCP) is a pair of simultaneous CP representations of G and G^{*} such that for any dual edges $e=u v$ and $e^{*}=u^{*} v^{*}$ the circles C_{u} and C_{v} touch at the same point as the circles $C_{u^{*}}$ and $C_{v^{*}}$ and the lines representing e and e^{*} intersect perpendicularly.

Figure 2: Primal dual circle packing representation of K_{4}
We will show that every 3 -connected plane graph admits a PDCP.

2 Properties of circle packing representations

Let G be a plane graph. Define a graph Γ as the graph whose vertices correspond to vertices and faces of G and vertices ν and τ are connected if ν corresponds to a face and τ to a vertex incident with that face.

Lemma 2.1. Let G be a 2-connected plane graph with at least 4 vertices and Γ its vertex-face graph. The following are equivalent:

1. G is 3 -connected.
2. Every 4-cycle in Γ is facial
3. For ever prober subset $S \subset V(\Gamma)$ that contains at least 5 vertices of Γ we have

$$
\begin{equation*}
2|S|-|E(\Gamma(S))| \geq 5 \tag{1}
\end{equation*}
$$

Proof. If a 4-cycle C in Γ is not facial then the vertices on C corresponding to vertices of G separate G, so 1 . implies 2 . If G is not 3 -connected then the separating vertices $\{x, y\}$ in G are on a non-facial 4 -cycle in Γ, so 2 implies 1.

By Euler formula $2|S|-|E(\Gamma(S))| \geq 4$ (Γ is bipartite) and equality holds iff $\Gamma(S)$ is a qaudrangulation. If S is a proper subset with at least 5 vertices, then $\Gamma(S)$ is a quadrangulation, then one of the 4 -cycles (boundary of the infinite face) is not facial, so 2 . implies 3. If C is a non-facial 4-cycle in Γ then $V(C)$ with the vertices in the interior or exterior will give equality, so 3 . implies 2.

We assume that the vertex of Γ corresponding to the unbounded face of G is at the infinity and denote it by ω. We define $\Gamma^{\prime}=\Gamma-\omega$.

Lemma 2.2. Let $r_{\nu}, \nu \in V(\Gamma)$ be the radii of a PDCP of G. If if $\nu \in V\left(\Gamma^{\prime}\right)$ and $\nu \omega \notin E(\Gamma)$ then

$$
\begin{equation*}
\sum_{\substack{\tau \\ \nu \tau \in E(\Gamma)}} \arctan \frac{r_{\tau}}{r_{\nu}}=\pi \tag{2}
\end{equation*}
$$

Let v_{1}, \ldots, v_{k} be the vertices of Γ such that $v_{i} \omega \in E(\Gamma), i=i, \ldots, k$ and let $\alpha_{i}=\sum_{\tau} \arctan \frac{r_{\tau}}{r_{v_{i}}}$ where the sum is over all neighbors τ of v_{i} in Γ^{\prime}. Then

$$
\begin{equation*}
0<\alpha_{i}<\tau \quad(1 \leq i \leq k) \quad \text { and } \quad \sum_{i=1}^{k} \alpha_{i}=(k-2) \pi . \tag{3}
\end{equation*}
$$

Proof. Let $\nu \in V(\Gamma)$. If $\nu \neq \omega$, then the sum in (2) is half of the sum of angles around ν, which implies the equality. If $\nu=\omega$ then α_{i} is the angle at v_{i} in the outer facial cycle of G, which implies (3).

A weak PDCP of G is a simultaneous CP representation of G and $G^{*}-\omega$ such that for each edge $\nu \tau \in E\left(\Gamma^{\prime}\right)$ the circles C_{ν} and C_{τ} cross at the right angle. We will show that the existence of positive numbers r_{ν} satisfying (2) and (3) is sufficient for the existence of a weak PDCP.

3 Existence of circle packing representations

Lemma 3.1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a covering map (continuous, onto, for each p and $f(p)$ there exist open neighborhoods U and W of p and $f(p)$ such that f restricted to U is a homeomorphism of U to W. Suppose that the set $S=\left\{q \in \mathbb{R}^{2}| | f^{-1}(q) \mid>1\right\}$ is bounded. Then f is a homeomorphism.

Proof. We prove that both S and the complement of S are open. Since S is bounded, it is empty.
Lemma 3.2. Let G be a 2-connected plane graph with polygonal edges. Let H be a drawing of G in the plane (possibly with edge crossings) such that all edges of H are polygonal arcs. Suppose further that:

1. For each $x \in V(G)$ the edges incident with x in H are pairwise non crossing and leave x in the same clockwise order as in G.
2. Each facial cycle in G corresponds to a simple closed curve in H.
3. If C is a facial cycle bounding a bounded face in G and e is an edge of G leaving C, then the first segment of e is in the exterior of C in H.

Then H is a plane representation of G.
Proof. Let $f: G \rightarrow H$ be an isomorphism. We extend f to a continuous map of the point set of G onto the point set the point set of H such that is is $1-1$ on each edge of G. Let C_{0} denote the outer cycle in G. For each facial cycle $C \neq C_{0}$ we can extend f using Jordan-Schönflies Theorem to $\operatorname{int}(C)$ such that restriction of f onto $\overline{\operatorname{int}}(C)$ is homeomorphism onto of $\operatorname{int}(C)$ onto $f(\overline{\operatorname{int}}(C))$.

For each $p \in \operatorname{int}\left(C_{0}\right)$ the image $f(p)$ is in interior of $f\left(\overline{\operatorname{int}}\left(C_{0}\right)\right)$. This is clear if p is in int (C) for some face C of G. Is p is on some edge of G, use condition 3. and if p is a vertex of G use 1. and 3. to get a neighborhood of $f(p)$ in $f\left(\overline{\operatorname{int}}\left(C_{0}\right)\right.$. So the boundary of $f\left(\overline{\operatorname{int}}\left(C_{0}\right)\right)$ is a subset of $f\left(C_{0}\right)$. This implies that $f\left(\overline{\operatorname{int}}\left(C_{0}\right)\right)=\overline{\operatorname{int}}\left(f\left(C_{0}\right)\right)$. We can extend f onto $\overline{\operatorname{ext}}\left(C_{0}\right)$ to get a continuous map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which is by Lemma 3.1 homeomorphism. In particular, H is a plane representation of G.

Lemma 3.3. Let G be a 3-connected plane graph and Γ its vertex-face graph. If there are positive numbers $r_{\nu}, \nu \in V\left(\Gamma^{\prime}\right)$, such that (2) and (3) are satisfied, then there exists a weak PDCP of G and G^{*} with radii r_{ν} and with the same local clockwise orientations as in G, G^{*}.

Proof. Given radii r_{ν} all facial quadrangles in Γ are uniquely defined. First choose the position of arbitrary τ_{0} and one of its neighbors τ_{1} at distance $\sqrt{r_{\tau_{0}}^{2}+r_{\tau_{1}}^{2}}$. Using the clockwise order of neighbors of τ_{0} and the position of τ_{1} all neighbors of τ have uniquely determined positions. Using a path P from τ_{0} to $\tau \in V(\Gamma)$ we get positions for all other vertices τ. If we change the path P over a facial quadrangle in Γ, the position of τ does not change, so the position is independent of the choice of P. We have a drawing of G in the plane, which is by Lemma 3.2 a plane representation of G.

Lemma 3.4. Let G be a 3-connected plane graph with outer cycle $C=v_{1} v_{2} \cdots v_{k}$. Let $\alpha_{1}, \alpha_{2} \ldots, \alpha_{k}$ be real numbers such that $0<\alpha_{i}<\pi(i=1, \ldots, k)$ and $\alpha_{i}+\cdots+\alpha_{k}=(k-2) \pi$. Then there are positive numbers $r_{\nu}, \nu \in V\left(\Gamma^{\prime}\right)$ such that (2) holds for $\nu \neq v_{1}, \ldots, v_{k}$ and for each $i=1, \ldots, k$,

$$
\begin{equation*}
2 \sum_{v_{i} \tau \in E\left(\Gamma^{\prime}\right)} \arctan \frac{r_{\tau}}{r_{v_{i}}}=\alpha_{i} \tag{4}
\end{equation*}
$$

where the summation is taken over all neighbors τ of v_{i} in Γ^{\prime}. The numbers r_{ν} are unique up to a multiplicative constant.

Proof. Suppose we have a sequence of numbers $r=\left(r_{\nu} \mid \nu \in V\left(\Gamma^{\prime}\right)\right)$. For each $\nu \in V\left(\Gamma^{\prime}\right) \backslash\left\{v_{1}, \ldots, v_{k}\right\}$ we define

$$
\vartheta_{\nu}(r)=\sum_{\nu \tau \in E(\Gamma)} \arctan \frac{r_{\tau}}{r_{\nu}}-\pi
$$

and for $i=1, \ldots, k$

$$
\vartheta_{v_{i}}(r)=\sum_{v_{i} \tau \in E\left(\Gamma^{\prime}\right)} \arctan \frac{r_{\tau}}{r_{v_{i}}}-\frac{1}{2} \alpha_{i} .
$$

Then the number

$$
\mu(r)=\sum_{\nu \in V\left(\Gamma^{\prime}\right)} \vartheta_{\nu}(r)^{2}
$$

is a measure for how far r is from a solution. To prove the theorem we find a sequence $r=\left(r_{\nu}\right)$ such that $\mu(r)=0$.

Claim 3.5.

$$
\sum_{\nu \in V\left(\Gamma^{\prime}\right)} \vartheta_{\nu}(r)=0
$$

Proof. By simple computation

$$
\begin{aligned}
\sum_{v \in V\left(\Gamma^{\prime}\right)} \vartheta_{\nu}(r)= & \sum_{\nu \tau \in E\left(\Gamma^{\prime}\right)}\left(\arctan \frac{r_{\tau}}{r_{\nu}}+\arctan \frac{r_{\nu}}{r_{\tau}}\right) \\
& -\pi\left(\left|V\left(\Gamma^{\prime}\right)\right|-k\right)-\frac{1}{2} \sum_{i=1}^{k} \alpha_{i}
\end{aligned}
$$

Now use $\arctan x+\arctan \frac{1}{x}=\frac{\pi}{2}$ and

$$
2\left|V\left(\Gamma^{\prime}\right)\right|=|E(\Gamma)|+2=\left|E\left(\Gamma^{\prime}\right)\right|+k+2
$$

Let S be a proper subset of $V\left(\Gamma^{\prime}\right)$. Denote by t the number of vertices among v_{1}, \ldots, v_{k} that are contained in S.

Claim 3.6. If $|S| \geq 4$ or if $|S| \in\{2,3\}$ and $t=0$ then

$$
2|S|-|E(\Gamma(S))| \geq t+3
$$

If $|S| \in\{2,3\}$ and $t>0$ then

$$
2|S|-|E(\Gamma(S))| \geq t+2
$$

Proof. For $|S| \geq 4$ use Lemma 2.1 for the set $S^{\prime}=S \cup\{\omega\}$. Other cases are checked directly.
Let Q be the set of all sequences $r=\left(r_{\nu} \mid \nu \in V\left(\Gamma^{\prime}\right)\right)$ such that $0<r_{\nu} \leq 1, r_{\nu}=1$ if $\vartheta_{\nu}(r)>0$ and $r_{\nu}=1$ for at least one $\nu \in V\left(\Gamma^{\prime}\right)$. Q is nonempty since the sequence $r_{\nu}=1$ is in Q. Let $m=\inf \{\mu(r) \mid r \in Q\}$.

Claim 3.7. The infimum is attained: there is some sequence r such that $\mu(r)=m$.
Proof. Let $r^{(i)}$ be a sequence such that $\mu\left(r^{(i)}\right) \rightarrow m$ and $i \rightarrow \infty$. We may assume that the numbers $r_{\nu}^{(i)}$ converge. Let S be the set of vertices for which $\lim _{i \rightarrow \infty} r_{\nu}^{(i)} \neq 0$. We need to show that $S=V\left(\Gamma^{\prime}\right)$.

Suppose S is a proper subset of $V\left(\Gamma^{\prime}\right)$. We show that

$$
\sum_{\nu \in S} \vartheta_{\nu}\left(r^{(i)}\right)<0
$$

for large i. Let t be the number of vertices v_{i}, \ldots, v_{k} in S. We compute

$$
\begin{aligned}
\sum_{\nu \in S} \vartheta_{\nu}\left(r^{(i)}\right)= & \frac{\pi}{2}|E(\Gamma(S))|-\pi(|S|-t) \\
& -\frac{1}{2} \sum_{v_{j} \in S} \alpha_{j}+\sum_{\substack{\nu \tau \in E\left(\Gamma^{\prime}\right) \\
\nu \in S, \tau \notin S}} \arctan \frac{r_{\tau}^{(i)}}{r_{\nu}^{(i)}}
\end{aligned}
$$

Since the last sum tends to 0 as $i \rightarrow \infty$ we get that $\sum_{\nu \in S} \vartheta_{\nu}\left(r^{(i)}\right)$ tends to

$$
-\frac{\pi}{2}(2|S|-|E(\Gamma(S))|-t-2)+\frac{1}{2} \sum_{v_{j} \in S}\left(\pi-\alpha_{j}\right)-\pi
$$

This is negative (the first term is negative by Claim 3.6 and the second term is negative since we can rewrite the condition $\alpha_{i}+\cdots+\alpha_{k}=(k-2) \pi$ as $\left.\sum_{i=1}^{k}\left(\pi-\alpha_{i}\right)=2 \pi\right)$ which implies that

$$
\sum_{\nu \notin S} \vartheta_{\nu}\left(r^{(i)}\right)>0
$$

for large i. This is a contradiction to the definition of S, so $S=V\left(\Gamma^{\prime}\right)$.
Let $r=\lim _{i \rightarrow \infty} r^{(i)}$. Since ϑ_{ν} are continuous functions, $r \in Q$.
Claim 3.8. The minimum is zero: $m=0$.
Suppose $m>0$. Let S^{\prime} be the set of vertices ν with $\vartheta_{\nu}(r)<0$. S^{\prime} is a proper subset of $V\left(\Gamma^{\prime}\right)$. Define r^{\prime} as $r_{\nu}^{\prime}=r_{\nu}$ for $\nu \notin S$ and $r_{\nu}^{\prime}=\alpha r_{\nu}$ for $0<\alpha<1$ such that $r^{\prime} \in Q$ (choose α close to 1 so that the sign of $\vartheta_{\nu}\left(r^{\prime}\right)$ is the same as the sign of $\vartheta_{\nu}(r)$ for all $\nu \in V\left(\Gamma^{\prime}\right)$. For such α we get $\mu\left(r^{\prime}\right)<\mu(r)$, contradiction.
Claim 3.9. The minimizing r is unique.
Let r and r^{\prime} be distinct and $\mu(r)=\mu\left(r^{\prime}\right)=0$. Then $\vartheta\left(r_{\nu}\right)=\vartheta\left(r_{\nu}^{\prime}\right)=0$ for all $\nu \in V\left(\Gamma^{\prime}\right)$. We can assume that $S=\left\{\nu \mid r_{\nu}>r_{\nu}^{\prime}\right\}$ is nonempty. S is a proper subset of $V\left(\Gamma^{\prime}\right)$. Then

$$
0=\sum_{\nu \in S} \vartheta_{\nu}(r)-\sum_{\nu \in S} \vartheta_{\nu}\left(r^{\prime}\right)=\sum_{\nu \tau}\left(\arctan \frac{r_{\tau}}{r_{\nu}}-\arctan \frac{r_{\tau}^{\prime}}{r_{\nu}^{\prime}}\right)<0
$$

where the last sum is over $\nu \tau \in E\left(\Gamma^{\prime}\right), \nu \in S$ and $\tau \notin S$.

Theorem 3.10 (Brightwell and Scheinerman). Let G be a 3-connected plane graph. Then G admits a PDCP representation. The PDCP of G is unique up to factional linear transformations are reflections in the plane.

Proof. If the outer cycle of G is a 3 -cycle let $\alpha_{1}=\alpha_{2}=\alpha_{3}=\frac{\pi}{3}$. By Lemma 3.4 there exist a sequence $r=\left(r_{\nu} \mid \nu \in V\left(\Gamma^{\prime}\right)\right)$ which satisfies (2) and (3). By Lemma 3.3 there exists a weak PDCP with these radii. In particular $r_{v_{1}}=r_{v_{2}}=r_{v_{3}}$, which implies that the weak PDCP can be extended to a PDCP. By uniqueness of radii the resulting PDCP is unique once C_{1}, C_{2} and C_{3} are prescribed.

If the outer cycle of G has length greater than 3 , then either G or G^{*} has a facial 3-cycle. Using Möbius transformation we redraw G so that this is an outer facial cycle and use previous paragraph.

For any PDCP representation of G there exists a Möbious transformation which takes this PDCP into a PDCP with prescribed C_{1}, C_{2}, C_{3} which shows the uniqueness of PDCP.

4 Corollaries

Corollary 4.1 (Koebe-Andreev-Thurston). Every plane graph admits a circle packing representation.

Theorem 4.2 (Brightwell and Scheinerman). If G is a planar 3-connected graph, then G and its dual G^{*} can be embedded in the plane with strait lines and with the outer vertex of G^{*} at infinity such that they form a geometric dual pair. Both embeddings are convex and each pair of dual edges is perpendicular.

Theorem 4.3. If G is a 3-connected planar graph, then there is a convex polyhedron Q in \mathbb{R}^{3} whose graph is isomorphic to G such that all edges of Q are tangent to the unit sphere in \mathbb{R}^{3}.

Proof. Use inverse of the stereographic projection to map circles of the PDCP of G onto circles on the sphere. Let Π_{ν} be the plane which intersects the sphere in $C_{\nu}, \nu \in G^{*}$. These spheres define polyhedron Q.

Theorem 4.4 (Steinitz). A graph G is the graph of a convex polytope in \mathbb{R}^{3} if and only if it is planar and 3-connected.

Theorem 4.5 (Mani). If G is a 3-connected planar graph, then there is a convex polyhedron Q in \mathbb{R}^{3} whose graph is isomorphic to G such that every automorphism of G induces a symmetry of Q.

[^0]: * Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.

