
Topological Graph Theory∗

Lecture 4: Circle packing representations

Notes taken by Andrej Vodopivec

Burnaby, 2006

Summary: A circle packing of a plane graph G is a set of circles {Cv | v ∈ V (G)}
in R

2 such that for u 6= v Cv and Cu have disjoint interiors, Cv and Cu intersect if an
only if uv ∈ E(G) and such that by putting vertices v ∈ V (G) in the centers of Cv and
joining adjacent vertices u, v with a strait line segment we get a plane representation of
G, which is equivalent to G. We show that every 3-connected plane graph has a circle
packing representation and show some corollaries.

1 Definitions

In this lecture we assume that all graphs are 2-connected.

Definition 1.1. Let G be a plane graph. A circle packing of G (CP of G) is a set of circles
{Cv | v ∈ V (G)} such that

• The interiors of Cv are pairwise disjoint.

• Cu and Cv intersect if and only if u and v are adjacent.

• By putting vertices v ∈ V (G) into the centers of corresponding Cv and embedding every edge
uv by a strait line segment joining u and v we get a plane representation of G equivalent to
G.

If we consider circle packings in the extended plane, the circle packing may contain special circle
Cω which corresponds to a vertex of the graph G we put in infinity.

If we consider R
2 as C

∗ then we can define a Möbius transformation w : C
∗ → C

∗ as

w(z) =
az + b

cz + d
, ad − bc 6= 0.

Möbius transformation maps circles and lines into circles and lines.

Lemma 1.2. If a graph G has a CP representation and v ∈ V (G) then G has a CP representation
such that the circle corresponding to v is centered at infinity.

∗ Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.
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Figure 1: Circle packing and extended circle packing representation of K4

Let G be a connected plane graph. Construct a new graph G∗ by putting a vertex vf in each
face f of G and connecting vf1 and vf2 by an edge e∗ if faces f1 and f2 share an edge e (e∗ is the
dual edge to e). The graph G∗ is called the geometric dual of plane graph G.

Lemma 1.3. Let G be a plane graph. Then either G or G∗ has a vertex of degree at most 3.

Proof. Assume that the deg(v) ≥ 4 for every vertex v ∈ V (G) and deg(f) ≥ 4 for every face in
F (G). Counting argument gives that 2|V (G)| ≤ |E(G)| and 2|F (G)| ≤ |E(G)|, which contradicts
the Euler formula.

A primal-dual CP (PDCP) is a pair of simultaneous CP representations of G and G∗ such that
for any dual edges e = uv and e∗ = u∗v∗ the circles Cu and Cv touch at the same point as the
circles Cu∗ and Cv∗ and the lines representing e and e∗ intersect perpendicularly.

Figure 2: Primal dual circle packing representation of K4

We will show that every 3-connected plane graph admits a PDCP.
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2 Properties of circle packing representations

Let G be a plane graph. Define a graph Γ as the graph whose vertices correspond to vertices and
faces of G and vertices ν and τ are connected if ν corresponds to a face and τ to a vertex incident
with that face.

Lemma 2.1. Let G be a 2-connected plane graph with at least 4 vertices and Γ its vertex-face
graph. The following are equivalent:

1. G is 3-connected.

2. Every 4-cycle in Γ is facial

3. For ever prober subset S ⊂ V (Γ) that contains at least 5 vertices of Γ we have

2|S| − |E(Γ(S))| ≥ 5. (1)

Proof. If a 4-cycle C in Γ is not facial then the vertices on C corresponding to vertices of G separate
G, so 1. implies 2. If G is not 3-connected then the separating vertices {x, y} in G are on a non-facial
4-cycle in Γ, so 2 implies 1.

By Euler formula 2|S| − |E(Γ(S))| ≥ 4 (Γ is bipartite) and equality holds iff Γ(S) is a qaudran-
gulation. If S is a proper subset with at least 5 vertices, then Γ(S) is a quadrangulation, then one
of the 4-cycles (boundary of the infinite face) is not facial, so 2. implies 3. If C is a non-facial
4-cycle in Γ then V (C) with the vertices in the interior or exterior will give equality, so 3. implies
2.

We assume that the vertex of Γ corresponding to the unbounded face of G is at the infinity and
denote it by ω. We define Γ′ = Γ − ω.

Lemma 2.2. Let rν , ν ∈ V (Γ) be the radii of a PDCP of G. If if ν ∈ V (Γ′) and νω 6∈ E(Γ) then

∑

τ

ντ∈E(Γ)

arctan
rτ

rν

= π. (2)

Let v1, . . . , vk be the vertices of Γ such that viω ∈ E(Γ), i = i, . . . , k and let αi =
∑

τ arctan rτ

rvi

where the sum is over all neighbors τ of vi in Γ′. Then

0 < αi < τ (1 ≤ i ≤ k) and
k

∑

i=1

αi = (k − 2)π. (3)

Proof. Let ν ∈ V (Γ). If ν 6= ω, then the sum in (2) is half of the sum of angles around ν, which
implies the equality. If ν = ω then αi is the angle at vi in the outer facial cycle of G, which implies
(3).

A weak PDCP of G is a simultaneous CP representation of G and G∗ − ω such that for each
edge ντ ∈ E(Γ′) the circles Cν and Cτ cross at the right angle. We will show that the existence of
positive numbers rν satisfying (2) and (3) is sufficient for the existence of a weak PDCP.
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3 Existence of circle packing representations

Lemma 3.1. Let f : R
2 → R

2 be a covering map (continuous, onto, for each p and f(p) there exist
open neighborhoods U and W of p and f(p) such that f restricted to U is a homeomorphism of U

to W . Suppose that the set S = {q ∈ R
2 | |f−1(q)| > 1} is bounded. Then f is a homeomorphism.

Proof. We prove that both S and the complement of S are open. Since S is bounded, it is empty.

Lemma 3.2. Let G be a 2-connected plane graph with polygonal edges. Let H be a drawing of G in
the plane (possibly with edge crossings) such that all edges of H are polygonal arcs. Suppose further
that:

1. For each x ∈ V (G) the edges incident with x in H are pairwise non crossing and leave x in
the same clockwise order as in G.

2. Each facial cycle in G corresponds to a simple closed curve in H.

3. If C is a facial cycle bounding a bounded face in G and e is an edge of G leaving C, then the
first segment of e is in the exterior of C in H.

Then H is a plane representation of G.

Proof. Let f : G → H be an isomorphism. We extend f to a continuous map of the point set of
G onto the point set the point set of H such that is is 1-1 on each edge of G. Let C0 denote the
outer cycle in G. For each facial cycle C 6= C0 we can extend f using Jordan-Schönflies Theorem
to int(C) such that restriction of f onto int(C) is homeomorphism onto of int(C) onto f(int(C)).

For each p ∈ int(C0) the image f(p) is in interior of f(int(C0)). This is clear if p is in int(C) for
some face C of G. Is p is on some edge of G, use condition 3. and if p is a vertex of G use 1. and
3. to get a neighborhood of f(p) in f(int(C0). So the boundary of f(int(C0)) is a subset of f(C0).
This implies that f(int(C0)) = int(f(C0)). We can extend f onto ext(C0) to get a continuous map
f : R

2 → R
2 which is by Lemma 3.1 homeomorphism. In particular, H is a plane representation of

G.

Lemma 3.3. Let G be a 3-connected plane graph and Γ its vertex-face graph. If there are positive
numbers rν , ν ∈ V (Γ′), such that (2) and (3) are satisfied, then there exists a weak PDCP of G

and G∗ with radii rν and with the same local clockwise orientations as in G, G∗.

Proof. Given radii rν all facial quadrangles in Γ are uniquely defined. First choose the position
of arbitrary τ0 and one of its neighbors τ1 at distance

√

r2
τ0

+ r2
τ1

. Using the clockwise order of
neighbors of τ0 and the position of τ1 all neighbors of τ have uniquely determined positions. Using
a path P from τ0 to τ ∈ V (Γ) we get positions for all other vertices τ . If we change the path P over
a facial quadrangle in Γ, the position of τ does not change, so the position is independent of the
choice of P . We have a drawing of G in the plane, which is by Lemma 3.2 a plane representation
of G.

Lemma 3.4. Let G be a 3-connected plane graph with outer cycle C = v1v2 · · · vk. Let α1, α2 . . . , αk

be real numbers such that 0 < αi < π (i = 1, . . . , k) and αi + · · · + αk = (k − 2)π. Then there are
positive numbers rν , ν ∈ V (Γ′) such that (2) holds for ν 6= v1, . . . , vk and for each i = 1, . . . , k,

2
∑

viτ∈E(Γ′)

arctan
rτ

rvi

= αi, (4)
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where the summation is taken over all neighbors τ of vi in Γ′. The numbers rν are unique up to a
multiplicative constant.

Proof. Suppose we have a sequence of numbers r = (rν |ν ∈ V (Γ′)). For each ν ∈ V (Γ′)\{v1, . . . , vk}
we define

ϑν(r) =
∑

ντ∈E(Γ)

arctan
rτ

rν

− π

and for i = 1, . . . , k

ϑvi
(r) =

∑

viτ∈E(Γ′)

arctan
rτ

rvi

−
1

2
αi.

Then the number
µ(r) =

∑

ν∈V (Γ′)

ϑν(r)
2

is a measure for how far r is from a solution. To prove the theorem we find a sequence r = (rν)
such that µ(r) = 0.

Claim 3.5.
∑

ν∈V (Γ′)

ϑν(r) = 0.

Proof. By simple computation

∑

v∈V (Γ′)

ϑν(r) =
∑

ντ∈E(Γ′)

(

arctan
rτ

rν

+ arctan
rν

rτ

)

−π(|V (Γ′)| − k) −
1

2

k
∑

i=1

αi

Now use arctan x + arctan 1
x

= π
2 and

2|V (Γ′)| = |E(Γ)| + 2 = |E(Γ′)| + k + 2.

Let S be a proper subset of V (Γ′). Denote by t the number of vertices among v1, . . . , vk that
are contained in S.

Claim 3.6. If |S| ≥ 4 or if |S| ∈ {2, 3} and t = 0 then

2|S| − |E(Γ(S))| ≥ t + 3.

If |S| ∈ {2, 3} and t > 0 then
2|S| − |E(Γ(S))| ≥ t + 2.

Proof. For |S| ≥ 4 use Lemma 2.1 for the set S′ = S ∪ {ω}. Other cases are checked directly.

Let Q be the set of all sequences r = (rν | ν ∈ V (Γ′)) such that 0 < rν ≤ 1, rν = 1 if ϑν(r) > 0
and rν = 1 for at least one ν ∈ V (Γ′). Q is nonempty since the sequence rν = 1 is in Q. Let
m = inf{µ(r) | r ∈ Q}.
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Claim 3.7. The infimum is attained: there is some sequence r such that µ(r) = m.

Proof. Let r(i) be a sequence such that µ(r(i)) → m and i → ∞. We may assume that the numbers

r
(i)
ν converge. Let S be the set of vertices for which limi→∞ r

(i)
ν 6= 0. We need to show that

S = V (Γ′).
Suppose S is a proper subset of V (Γ′). We show that

∑

ν∈S

ϑν(r
(i)) < 0

for large i. Let t be the number of vertices vi, . . . , vk in S. We compute

∑

ν∈S

ϑν(r
(i)) =

π

2
|E(Γ(S))| − π(|S| − t)

−
1

2

∑

vj∈S

αj +
∑

ντ∈E(Γ′)

ν∈S,τ 6∈S

arctan
r
(i)
τ

r
(i)
ν

Since the last sum tends to 0 as i → ∞ we get that
∑

ν∈S ϑν(r
(i)) tends to

−
π

2
(2|S| − |E(Γ(S))| − t − 2) +

1

2

∑

vj∈S

(π − αj) − π.

This is negative (the first term is negative by Claim 3.6 and the second term is negative since we
can rewrite the condition αi + · · · + αk = (k − 2)π as

∑k
i=1(π − αi) = 2π) which implies that

∑

ν 6∈S

ϑν(r
(i)) > 0

for large i. This is a contradiction to the definition of S, so S = V (Γ′).

Let r = limi→∞ r(i). Since ϑν are continuous functions, r ∈ Q.

Claim 3.8. The minimum is zero: m = 0.

Suppose m > 0. Let S′ be the set of vertices ν with ϑν(r) < 0. S′ is a proper subset of V (Γ′).
Define r′ as r′ν = rν for ν 6∈ S and r′ν = αrν for 0 < α < 1 such that r′ ∈ Q (choose α close to
1 so that the sign of ϑν(r

′) is the same as the sign of ϑν(r) for all ν ∈ V (Γ′). For such α we get
µ(r′) < µ(r), contradiction.

Claim 3.9. The minimizing r is unique.

Let r and r′ be distinct and µ(r) = µ(r′) = 0. Then ϑ(rν) = ϑ(r′ν) = 0 for all ν ∈ V (Γ′). We
can assume that S = {ν | rν > r′ν} is nonempty. S is a proper subset of V (Γ′). Then

0 =
∑

ν∈S

ϑν(r) −
∑

ν∈S

ϑν(r
′) =

∑

ντ

(

arctan
rτ

rν

− arctan
r′τ
r′ν

)

< 0

where the last sum is over ντ ∈ E(Γ′), ν ∈ S and τ 6∈ S.
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Theorem 3.10 (Brightwell and Scheinerman). Let G be a 3-connected plane graph. Then G

admits a PDCP representation. The PDCP of G is unique up to factional linear transformations
are reflections in the plane.

Proof. If the outer cycle of G is a 3-cycle let α1 = α2 = α3 = π
3 . By Lemma 3.4 there exist a

sequence r = (rν | ν ∈ V (Γ′)) which satisfies (2) and (3). By Lemma 3.3 there exists a weak PDCP
with these radii. In particular rv1 = rv2 = rv3 , which implies that the weak PDCP can be extended
to a PDCP. By uniqueness of radii the resulting PDCP is unique once C1, C2 and C3 are prescribed.

If the outer cycle of G has length greater than 3, then either G or G∗ has a facial 3-cycle.
Using Möbius transformation we redraw G so that this is an outer facial cycle and use previous
paragraph.

For any PDCP representation of G there exists a Möbious transformation which takes this
PDCP into a PDCP with prescribed C1, C2, C3 which shows the uniqueness of PDCP.

4 Corollaries

Corollary 4.1 (Koebe-Andreev-Thurston). Every plane graph admits a circle packing representa-
tion.

Theorem 4.2 (Brightwell and Scheinerman). If G is a planar 3-connected graph, then G and its
dual G∗ can be embedded in the plane with strait lines and with the outer vertex of G∗ at infinity
such that they form a geometric dual pair. Both embeddings are convex and each pair of dual edges
is perpendicular.

Theorem 4.3. If G is a 3-connected planar graph, then there is a convex polyhedron Q in R
3 whose

graph is isomorphic to G such that all edges of Q are tangent to the unit sphere in R
3.

Proof. Use inverse of the stereographic projection to map circles of the PDCP of G onto circles on
the sphere. Let Πν be the plane which intersects the sphere in Cν , ν ∈ G∗. These spheres define
polyhedron Q.

Theorem 4.4 (Steinitz). A graph G is the graph of a convex polytope in R
3 if and only if it is

planar and 3-connected.

Theorem 4.5 (Mani). If G is a 3-connected planar graph, then there is a convex polyhedron Q in
R

3 whose graph is isomorphic to G such that every automorphism of G induces a symmetry of Q.
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