Topological Graph Theory^{*} Lecture 4: Circle packing representations

Notes taken by Andrej Vodopivec

Burnaby, 2006

Summary: A circle packing of a plane graph G is a set of circles $\{C_v \mid v \in V(G)\}$ in \mathbb{R}^2 such that for $u \neq v \ C_v$ and C_u have disjoint interiors, C_v and C_u intersect if an only if $uv \in E(G)$ and such that by putting vertices $v \in V(G)$ in the centers of C_v and joining adjacent vertices u, v with a strait line segment we get a plane representation of G, which is equivalent to G. We show that every 3-connected plane graph has a circle packing representation and show some corollaries.

1 Definitions

In this lecture we assume that all graphs are 2-connected.

Definition 1.1. Let G be a plane graph. A circle packing of G (CP of G) is a set of circles $\{C_v \mid v \in V(G)\}$ such that

- The interiors of C_v are pairwise disjoint.
- C_u and C_v intersect if and only if u and v are adjacent.
- By putting vertices $v \in V(G)$ into the centers of corresponding C_v and embedding every edge uv by a strait line segment joining u and v we get a plane representation of G equivalent to G.

If we consider circle packings in the *extended plane*, the circle packing may contain special circle C_{ω} which corresponds to a vertex of the graph G we put in infinity.

If we consider \mathbb{R}^2 as \mathbb{C}^* then we can define a *Möbius transformation* $w: \mathbb{C}^* \to \mathbb{C}^*$ as

$$w(z) = \frac{az+b}{cz+d}, \qquad ad-bc \neq 0.$$

Möbius transformation maps circles and lines into circles and lines.

Lemma 1.2. If a graph G has a CP representation and $v \in V(G)$ then G has a CP representation such that the circle corresponding to v is centered at infinity.

^{*} Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.

Figure 1: Circle packing and extended circle packing representation of K_4

Let G be a connected plane graph. Construct a new graph G^* by putting a vertex v_f in each face f of G and connecting v_{f_1} and v_{f_2} by an edge e^* if faces f_1 and f_2 share an edge e (e^* is the dual edge to e). The graph G^* is called the *geometric dual* of plane graph G.

Lemma 1.3. Let G be a plane graph. Then either G or G^* has a vertex of degree at most 3.

Proof. Assume that the deg $(v) \ge 4$ for every vertex $v \in V(G)$ and deg $(f) \ge 4$ for every face in F(G). Counting argument gives that $2|V(G)| \le |E(G)|$ and $2|F(G)| \le |E(G)|$, which contradicts the Euler formula.

A primal-dual CP (PDCP) is a pair of simultaneous CP representations of G and G^* such that for any dual edges e = uv and $e^* = u^*v^*$ the circles C_u and C_v touch at the same point as the circles C_{u^*} and C_{v^*} and the lines representing e and e^* intersect perpendicularly.

Figure 2: Primal dual circle packing representation of K_4

We will show that every 3-connected plane graph admits a PDCP.

2 Properties of circle packing representations

Let G be a plane graph. Define a graph Γ as the graph whose vertices correspond to vertices and faces of G and vertices ν and τ are connected if ν corresponds to a face and τ to a vertex incident with that face.

Lemma 2.1. Let G be a 2-connected plane graph with at least 4 vertices and Γ its vertex-face graph. The following are equivalent:

- 1. G is 3-connected.
- 2. Every 4-cycle in Γ is facial
- 3. For ever prober subset $S \subset V(\Gamma)$ that contains at least 5 vertices of Γ we have

$$2|S| - |E(\Gamma(S))| \ge 5.$$
 (1)

Proof. If a 4-cycle C in Γ is not facial then the vertices on C corresponding to vertices of G separate G, so 1. implies 2. If G is not 3-connected then the separating vertices $\{x, y\}$ in G are on a non-facial 4-cycle in Γ , so 2 implies 1.

By Euler formula $2|S| - |E(\Gamma(S))| \ge 4$ (Γ is bipartite) and equality holds iff $\Gamma(S)$ is a qaudrangulation. If S is a proper subset with at least 5 vertices, then $\Gamma(S)$ is a quadrangulation, then one of the 4-cycles (boundary of the infinite face) is not facial, so 2. implies 3. If C is a non-facial 4-cycle in Γ then V(C) with the vertices in the interior or exterior will give equality, so 3. implies 2.

We assume that the vertex of Γ corresponding to the unbounded face of G is at the infinity and denote it by ω . We define $\Gamma' = \Gamma - \omega$.

Lemma 2.2. Let r_{ν} , $\nu \in V(\Gamma)$ be the radii of a PDCP of G. If if $\nu \in V(\Gamma')$ and $\nu \omega \notin E(\Gamma)$ then

$$\sum_{\substack{\tau\\\nu\tau\in E(\Gamma)}} \arctan\frac{r_{\tau}}{r_{\nu}} = \pi.$$
 (2)

Let v_1, \ldots, v_k be the vertices of Γ such that $v_i \omega \in E(\Gamma)$, $i = i, \ldots, k$ and let $\alpha_i = \sum_{\tau} \arctan \frac{r_{\tau}}{r_{v_i}}$ where the sum is over all neighbors τ of v_i in Γ' . Then

$$0 < \alpha_i < \tau \quad (1 \le i \le k) \qquad \text{and} \qquad \sum_{i=1}^k \alpha_i = (k-2)\pi.$$
(3)

Proof. Let $\nu \in V(\Gamma)$. If $\nu \neq \omega$, then the sum in (2) is half of the sum of angles around ν , which implies the equality. If $\nu = \omega$ then α_i is the angle at v_i in the outer facial cycle of G, which implies (3).

A weak PDCP of G is a simultaneous CP representation of G and $G^* - \omega$ such that for each edge $\nu \tau \in E(\Gamma')$ the circles C_{ν} and C_{τ} cross at the right angle. We will show that the existence of positive numbers r_{ν} satisfying (2) and (3) is sufficient for the existence of a weak PDCP.

3 Existence of circle packing representations

Lemma 3.1. Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a covering map (continuous, onto, for each p and f(p) there exist open neighborhoods U and W of p and f(p) such that f restricted to U is a homeomorphism of U to W. Suppose that the set $S = \{q \in \mathbb{R}^2 \mid |f^{-1}(q)| > 1\}$ is bounded. Then f is a homeomorphism.

Proof. We prove that both S and the complement of S are open. Since S is bounded, it is empty. \Box

Lemma 3.2. Let G be a 2-connected plane graph with polygonal edges. Let H be a drawing of G in the plane (possibly with edge crossings) such that all edges of H are polygonal arcs. Suppose further that:

- 1. For each $x \in V(G)$ the edges incident with x in H are pairwise non crossing and leave x in the same clockwise order as in G.
- 2. Each facial cycle in G corresponds to a simple closed curve in H.
- 3. If C is a facial cycle bounding a bounded face in G and e is an edge of G leaving C, then the first segment of e is in the exterior of C in H.

Then H is a plane representation of G.

Proof. Let $f: G \to H$ be an isomorphism. We extend f to a continuous map of the point set of G onto the point set the point set of H such that is 1-1 on each edge of G. Let C_0 denote the outer cycle in G. For each facial cycle $C \neq C_0$ we can extend f using Jordan-Schönflies Theorem to int(C) such that restriction of f onto int(C) is homeomorphism onto of int(C) onto f(int(C)).

For each $p \in \operatorname{int}(C_0)$ the image f(p) is in interior of $f(\operatorname{int}(C_0))$. This is clear if p is in $\operatorname{int}(C)$ for some face C of G. Is p is on some edge of G, use condition 3. and if p is a vertex of G use 1. and 3. to get a neighborhood of f(p) in $f(\operatorname{int}(C_0))$. So the boundary of $f(\operatorname{int}(C_0))$ is a subset of $f(C_0)$. This implies that $f(\operatorname{int}(C_0)) = \operatorname{int}(f(C_0))$. We can extend f onto $\operatorname{ext}(C_0)$ to get a continuous map $f : \mathbb{R}^2 \to \mathbb{R}^2$ which is by Lemma 3.1 homeomorphism. In particular, H is a plane representation of G.

Lemma 3.3. Let G be a 3-connected plane graph and Γ its vertex-face graph. If there are positive numbers r_{ν} , $\nu \in V(\Gamma')$, such that (2) and (3) are satisfied, then there exists a weak PDCP of G and G^* with radii r_{ν} and with the same local clockwise orientations as in G, G^* .

Proof. Given radii r_{ν} all facial quadrangles in Γ are uniquely defined. First choose the position of arbitrary τ_0 and one of its neighbors τ_1 at distance $\sqrt{r_{\tau_0}^2 + r_{\tau_1}^2}$. Using the clockwise order of neighbors of τ_0 and the position of τ_1 all neighbors of τ have uniquely determined positions. Using a path P from τ_0 to $\tau \in V(\Gamma)$ we get positions for all other vertices τ . If we change the path P over a facial quadrangle in Γ , the position of τ does not change, so the position is independent of the choice of P. We have a drawing of G in the plane, which is by Lemma 3.2 a plane representation of G.

Lemma 3.4. Let G be a 3-connected plane graph with outer cycle $C = v_1v_2\cdots v_k$. Let $\alpha_1, \alpha_2 \ldots, \alpha_k$ be real numbers such that $0 < \alpha_i < \pi$ $(i = 1, \ldots, k)$ and $\alpha_i + \cdots + \alpha_k = (k - 2)\pi$. Then there are positive numbers r_{ν} , $\nu \in V(\Gamma')$ such that (2) holds for $\nu \neq v_1, \ldots, v_k$ and for each $i = 1, \ldots, k$,

$$2\sum_{v_i\tau\in E(\Gamma')}\arctan\frac{r_{\tau}}{r_{v_i}} = \alpha_i,\tag{4}$$

where the summation is taken over all neighbors τ of v_i in Γ' . The numbers r_{ν} are unique up to a multiplicative constant.

Proof. Suppose we have a sequence of numbers $r = (r_{\nu} | \nu \in V(\Gamma'))$. For each $\nu \in V(\Gamma') \setminus \{v_1, \ldots, v_k\}$ we define

$$\vartheta_{\nu}(r) = \sum_{\nu \tau \in E(\Gamma)} \arctan \frac{r_{\tau}}{r_{\nu}} - \pi$$

and for $i = 1, \ldots, k$

$$\vartheta_{v_i}(r) = \sum_{v_i \tau \in E(\Gamma')} \arctan \frac{r_{\tau}}{r_{v_i}} - \frac{1}{2} \alpha_i.$$

Then the number

$$\mu(r) = \sum_{\nu \in V(\Gamma')} \vartheta_{\nu}(r)^2$$

is a measure for how far r is from a solution. To prove the theorem we find a sequence $r = (r_{\nu})$ such that $\mu(r) = 0$.

Claim 3.5.

$$\sum_{\nu \in V(\Gamma')} \vartheta_{\nu}(r) = 0$$

Proof. By simple computation

$$\sum_{\nu \in V(\Gamma')} \vartheta_{\nu}(r) = \sum_{\nu \tau \in E(\Gamma')} \left(\arctan \frac{r_{\tau}}{r_{\nu}} + \arctan \frac{r_{\nu}}{r_{\tau}} \right) -\pi(|V(\Gamma')| - k) - \frac{1}{2} \sum_{i=1}^{k} \alpha_i$$

Now use $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$ and

$$2|V(\Gamma')| = |E(\Gamma)| + 2 = |E(\Gamma')| + k + 2.$$

Let S be a proper subset of $V(\Gamma')$. Denote by t the number of vertices among v_1, \ldots, v_k that are contained in S.

Claim 3.6. If $|S| \ge 4$ or if $|S| \in \{2,3\}$ and t = 0 then

$$2|S| - |E(\Gamma(S))| \ge t + 3.$$

If $|S| \in \{2, 3\}$ and t > 0 then

$$2|S| - |E(\Gamma(S))| \ge t + 2.$$

Proof. For $|S| \ge 4$ use Lemma 2.1 for the set $S' = S \cup \{\omega\}$. Other cases are checked directly. \Box

Let Q be the set of all sequences $r = (r_{\nu} \mid \nu \in V(\Gamma'))$ such that $0 < r_{\nu} \le 1$, $r_{\nu} = 1$ if $\vartheta_{\nu}(r) > 0$ and $r_{\nu} = 1$ for at least one $\nu \in V(\Gamma')$. Q is nonempty since the sequence $r_{\nu} = 1$ is in Q. Let $m = \inf\{\mu(r) \mid r \in Q\}.$ **Claim 3.7.** The infimum is attained: there is some sequence r such that $\mu(r) = m$.

Proof. Let $r^{(i)}$ be a sequence such that $\mu(r^{(i)}) \to m$ and $i \to \infty$. We may assume that the numbers $r_{\nu}^{(i)}$ converge. Let S be the set of vertices for which $\lim_{i\to\infty} r_{\nu}^{(i)} \neq 0$. We need to show that $S = V(\Gamma')$.

Suppose S is a proper subset of $V(\Gamma')$. We show that

$$\sum_{\nu \in S} \vartheta_{\nu}(r^{(i)}) < 0$$

for large *i*. Let *t* be the number of vertices v_i, \ldots, v_k in *S*. We compute

$$\begin{split} \sum_{\nu \in S} \vartheta_{\nu}(r^{(i)}) &= \frac{\pi}{2} |E(\Gamma(S))| - \pi(|S| - t) \\ &- \frac{1}{2} \sum_{v_j \in S} \alpha_j + \sum_{\substack{\nu \tau \in E(\Gamma') \\ \nu \in S, \tau \not\in S}} \arctan \frac{r_{\tau}^{(i)}}{r_{\nu}^{(i)}} \end{split}$$

Since the last sum tends to 0 as $i \to \infty$ we get that $\sum_{\nu \in S} \vartheta_{\nu}(r^{(i)})$ tends to

$$-\frac{\pi}{2}(2|S| - |E(\Gamma(S))| - t - 2) + \frac{1}{2}\sum_{v_j \in S} (\pi - \alpha_j) - \pi$$

This is negative (the first term is negative by Claim 3.6 and the second term is negative since we can rewrite the condition $\alpha_i + \cdots + \alpha_k = (k-2)\pi$ as $\sum_{i=1}^k (\pi - \alpha_i) = 2\pi$) which implies that

$$\sum_{\nu \notin S} \vartheta_{\nu}(r^{(i)}) > 0$$

for large *i*. This is a contradiction to the definition of *S*, so $S = V(\Gamma')$.

Let $r = \lim_{i \to \infty} r^{(i)}$. Since ϑ_{ν} are continuous functions, $r \in Q$.

Claim 3.8. The minimum is zero: m = 0.

Suppose m > 0. Let S' be the set of vertices ν with $\vartheta_{\nu}(r) < 0$. S' is a proper subset of $V(\Gamma')$. Define r' as $r'_{\nu} = r_{\nu}$ for $\nu \notin S$ and $r'_{\nu} = \alpha r_{\nu}$ for $0 < \alpha < 1$ such that $r' \in Q$ (choose α close to 1 so that the sign of $\vartheta_{\nu}(r')$ is the same as the sign of $\vartheta_{\nu}(r)$ for all $\nu \in V(\Gamma')$. For such α we get $\mu(r') < \mu(r)$, contradiction.

Claim 3.9. The minimizing r is unique.

Let r and r' be distinct and $\mu(r) = \mu(r') = 0$. Then $\vartheta(r_{\nu}) = \vartheta(r'_{\nu}) = 0$ for all $\nu \in V(\Gamma')$. We can assume that $S = \{\nu \mid r_{\nu} > r'_{\nu}\}$ is nonempty. S is a proper subset of $V(\Gamma')$. Then

$$0 = \sum_{\nu \in S} \vartheta_{\nu}(r) - \sum_{\nu \in S} \vartheta_{\nu}(r') = \sum_{\nu \tau} \left(\arctan \frac{r_{\tau}}{r_{\nu}} - \arctan \frac{r'_{\tau}}{r'_{\nu}} \right) < 0$$

where the last sum is over $\nu \tau \in E(\Gamma')$, $\nu \in S$ and $\tau \notin S$.

Theorem 3.10 (Brightwell and Scheinerman). Let G be a 3-connected plane graph. Then G admits a PDCP representation. The PDCP of G is unique up to factional linear transformations are reflections in the plane.

Proof. If the outer cycle of G is a 3-cycle let $\alpha_1 = \alpha_2 = \alpha_3 = \frac{\pi}{3}$. By Lemma 3.4 there exist a sequence $r = (r_{\nu} \mid \nu \in V(\Gamma'))$ which satisfies (2) and (3). By Lemma 3.3 there exists a weak PDCP with these radii. In particular $r_{v_1} = r_{v_2} = r_{v_3}$, which implies that the weak PDCP can be extended to a PDCP. By uniqueness of radii the resulting PDCP is unique once C_1, C_2 and C_3 are prescribed.

If the outer cycle of G has length greater than 3, then either G or G^* has a facial 3-cycle. Using Möbius transformation we redraw G so that this is an outer facial cycle and use previous paragraph.

For any PDCP representation of G there exists a Möbious transformation which takes this PDCP into a PDCP with prescribed C_1, C_2, C_3 which shows the uniqueness of PDCP.

4 Corollaries

Corollary 4.1 (Koebe-Andreev-Thurston). Every plane graph admits a circle packing representation.

Theorem 4.2 (Brightwell and Scheinerman). If G is a planar 3-connected graph, then G and its dual G^* can be embedded in the plane with strait lines and with the outer vertex of G^* at infinity such that they form a geometric dual pair. Both embeddings are convex and each pair of dual edges is perpendicular.

Theorem 4.3. If G is a 3-connected planar graph, then there is a convex polyhedron Q in \mathbb{R}^3 whose graph is isomorphic to G such that all edges of Q are tangent to the unit sphere in \mathbb{R}^3 .

Proof. Use inverse of the stereographic projection to map circles of the PDCP of G onto circles on the sphere. Let Π_{ν} be the plane which intersects the sphere in C_{ν} , $\nu \in G^*$. These spheres define polyhedron Q.

Theorem 4.4 (Steinitz). A graph G is the graph of a convex polytope in \mathbb{R}^3 if and only if it is planar and 3-connected.

Theorem 4.5 (Mani). If G is a 3-connected planar graph, then there is a convex polyhedron Q in \mathbb{R}^3 whose graph is isomorphic to G such that every automorphism of G induces a symmetry of Q.