Topological Graph Theory*
Lecture 4: Circle packing representations

Notes taken by Andrej Vodopivec
Burnaby, 2006

Summary: A circle packing of a plane graph G is a set of circles {C, | v € V(G)}
in R? such that for u # v Cy and C), have disjoint interiors, C, and C,, intersect if an
only if uv € E(G) and such that by putting vertices v € V(G) in the centers of C, and
joining adjacent vertices u, v with a strait line segment we get a plane representation of
G, which is equivalent to G. We show that every 3-connected plane graph has a circle
packing representation and show some corollaries.

1 Definitions

In this lecture we assume that all graphs are 2-connected.

Definition 1.1. Let G be a plane graph. A circle packing of G (CP of G) is a set of circles
{Cy | v € V(G)} such that

e The interiors of C, are pairwise disjoint.
e (), and C, intersect if and only if v and v are adjacent.

e By putting vertices v € V(@) into the centers of corresponding C), and embedding every edge
uv by a strait line segment joining v and v we get a plane representation of G equivalent to

G.

If we consider circle packings in the extended plane, the circle packing may contain special circle
C,, which corresponds to a vertex of the graph G we put in infinity.
If we consider R? as C* then we can define a Mébius transformation w : C* — C* as
az+b

w(Z):m, ad—bc#o

Mobius transformation maps circles and lines into circles and lines.

Lemma 1.2. If a graph G has a CP representation and v € V(G) then G has a CP representation
such that the circle corresponding to v is centered at infinity.
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Figure 1: Circle packing and extended circle packing representation of Ky

Let G be a connected plane graph. Construct a new graph G* by putting a vertex vy in each
face f of G and connecting vy, and vy, by an edge e* if faces fi and fo share an edge e (e* is the
dual edge to e). The graph G* is called the geometric dual of plane graph G.

Lemma 1.3. Let G be a plane graph. Then either G or G* has a vertex of degree at most 3.

Proof. Assume that the deg(v) > 4 for every vertex v € V(G) and deg(f) > 4 for every face in
F(G). Counting argument gives that 2|V (G)| < |E(G)| and 2|F(G)| < |E(G)|, which contradicts
the Euler formula. ]

A primal-dual CP (PDCP) is a pair of simultaneous CP representations of G and G* such that
for any dual edges e = uv and e* = u*v* the circles C, and C, touch at the same point as the
circles Uy« and Cy+ and the lines representing e and e* intersect perpendicularly.

Figure 2: Primal dual circle packing representation of K,

We will show that every 3-connected plane graph admits a PDCP.



2 Properties of circle packing representations

Let G be a plane graph. Define a graph I' as the graph whose vertices correspond to vertices and
faces of G and vertices v and 7 are connected if v corresponds to a face and 7 to a vertex incident
with that face.

Lemma 2.1. Let G be a 2-connected plane graph with at least 4 vertices and I' its vertex-face
graph. The following are equivalent:

1. G is 3-connected.
2. Every 4-cycle in T is facial

3. For ever prober subset S C V(') that contains at least 5 vertices of I' we have

25| = [ET(S))] = 5. (1)

Proof. If a 4-cycle C in I' is not facial then the vertices on C' corresponding to vertices of G separate
G, so 1. implies 2. If G is not 3-connected then the separating vertices {z,y} in G are on a non-facial
4-cycle in I', so 2 implies 1.

By Euler formula 2|S|— |E(I'(S))| > 4 (T is bipartite) and equality holds iff I'(.S) is a qaudran-
gulation. If S is a proper subset with at least 5 vertices, then I'(S) is a quadrangulation, then one
of the 4-cycles (boundary of the infinite face) is not facial, so 2. implies 3. If C is a non-facial
4-cycle in T' then V(C') with the vertices in the interior or exterior will give equality, so 3. implies
2. O

We assume that the vertex of I' corresponding to the unbounded face of GG is at the infinity and
denote it by w. We define I' =T — w.

Lemma 2.2. Let r,, v € V(T') be the radii of a PDCP of G. If if v € V(I'') and vw ¢ E(T") then

Z arctan -~ = 7. (2)
Ty

Let vy, ..., v be the vertices of I' such that viw € E(I'), i = i,...,k and let a; = ) _arctan -

Tu,

where the sum is over all neighbors T of v; in I'. Then
k
O<a; <7 (1<i<k) and Zaiz(k—2)7r. (3)
i=1

Proof. Let v € V(T'). If v # w, then the sum in (2) is half of the sum of angles around v, which
implies the equality. If v = w then «; is the angle at v; in the outer facial cycle of GG, which implies
(3). O

A weak PDCP of G is a simultaneous CP representation of G and G* — w such that for each
edge v1 € E(I"”) the circles C, and C; cross at the right angle. We will show that the existence of
positive numbers r,, satisfying (2) and (3) is sufficient for the existence of a weak PDCP.



3 Existence of circle packing representations

Lemma 3.1. Let f : R? — R? be a covering map (continuous, onto, for each p and f(p) there exist
open neighborhoods U and W of p and f(p) such that f restricted to U is a homeomorphism of U
to W. Suppose that the set S = {q € R? | |f~1(q)| > 1} is bounded. Then f is a homeomorphism.

Proof. We prove that both S and the complement of S are open. Since S is bounded, it is empty. [

Lemma 3.2. Let G be a 2-connected plane graph with polygonal edges. Let H be a drawing of G in
the plane (possibly with edge crossings) such that all edges of H are polygonal arcs. Suppose further
that:

1. For each x € V(QG) the edges incident with x in H are pairwise non crossing and leave x in
the same clockwise order as in G.

2. Each facial cycle in G corresponds to a simple closed curve in H.

3. If C is a facial cycle bounding a bounded face in G and e is an edge of G leaving C, then the
first segment of e is in the exterior of C in H.

Then H is a plane representation of G.

Proof. Let f : G — H be an isomorphism. We extend f to a continuous map of the point set of
G onto the point set the point set of H such that is is 1-1 on each edge of G. Let Cj denote the
outer cycle in G. For each facial cycle C' # Cy we can extend f using Jordan-Schonflies Theorem
to int(C) such that restriction of f onto int(C) is homeomorphism onto of int(C') onto f(int(C)).
For each p € int(Cp) the image f(p) is in interior of f(int(Cp)). This is clear if p is in int(C) for
some face C of G. Is p is on some edge of (G, use condition 3. and if p is a vertex of G use 1. and
3. to get a neighborhood of f(p) in f(int(Cp). So the boundary of f(int(Cp)) is a subset of f(Cp).
This implies that f(int(Cp)) = int(f(Cp)). We can extend f onto ext(Cp) to get a continuous map
f : R? = R? which is by Lemma 3.1 homeomorphism. In particular, H is a plane representation of
G. O

Lemma 3.3. Let G be a 3-connected plane graph and I' its vertez-face graph. If there are positive
numbers r,, v € V(I'), such that (2) and (3) are satisfied, then there exists a weak PDCP of G
and G* with radii r, and with the same local clockwise orientations as in G, G*.

Proof. Given radii r, all facial quadrangles in I' are uniquely defined. First choose the position
of arbitrary 79 and one of its neighbors 7 at distance \/1"30 + 72, Using the clockwise order of
neighbors of 7y and the position of 7 all neighbors of 7 have uniquely determined positions. Using
a path P from 7o to 7 € V(I') we get positions for all other vertices 7. If we change the path P over
a facial quadrangle in I', the position of 7 does not change, so the position is independent of the
choice of P. We have a drawing of G in the plane, which is by Lemma 3.2 a plane representation
of G. O

Lemma 3.4. Let G be a 3-connected plane graph with outer cycle C = vivg -+ -vg. Let ay,an. .., oy
be real numbers such that 0 < o; <7 (i=1,...,k) and o; + --- + ap, = (k — 2)7. Then there are
positive numbers r,, v € V(I') such that (2) holds for v # vi,... v and for each i =1,... k,

I
2 S tan - = 4
arctan - i, (4)

v;TEE(TY) v



where the summation is taken over all neighbors T of v; in I''. The numbers r, are unique up to a
multiplicative constant.

Proof. Suppose we have a sequence of numbers r = (r,|v € V(I')). For each v € V(I'")\{v1,...,vx}
we define

and fori=1,...,k

1
Wy, (1) = Z arctan :—T - 5
v TEE(TY) i

Then the number

plry =Y Ou(r)?
)

veV (I’

is a measure for how far r is from a solution. To prove the theorem we find a sequence r = (r,)
such that p(r) = 0.

Claim 3.5.

> dy(r)=0.

veV(I)
Proof. By simple computation

Z (r) = Z (arctan ::—T + arctan ?)
14 T

veV (L) vreE(TY)
: Ly
R I g
=1

Now use arctanx + arctan% = g and
V()| = |E(D)|+ 2= |EM)| + k + 2.
O

Let S be a proper subset of V(I'). Denote by ¢ the number of vertices among vy, ..., v that
are contained in S.

Claim 3.6. If |S| >4 orif |S| € {2,3} and t =0 then
2|S| — |E(T(S))] > t+3.

If |S] € {2,3} and t > 0 then
21| = |E(T(S))] >t +2.
Proof. For |S| > 4 use Lemma 2.1 for the set S’ = S U {w}. Other cases are checked directly. [

Let @ be the set of all sequences r = (r, | v € V(I')) such that 0 < r, <1, 7r, =1if 9,(r) >0
and r, = 1 for at least one v € V(I'). @Q is nonempty since the sequence r, = 1 is in Q. Let

m = inf{u(r) | r € Q}.



Claim 3.7. The infimum is attained: there is some sequence r such that p(r) = m.

Proof. Let () be a sequence such that u(r(i)) — m and ¢ — oo. We may assume that the numbers

rl(,i) converge. Let S be the set of vertices for which lim; rl(,i) # 0. We need to show that

S =Vv().
Suppose S is a proper subset of V(I'"). We show that

> 9, (r) <0
vesS
for large i. Let ¢t be the number of vertices v;, ..., v in S. We compute

> 0.00) = ZIEQS)| (s - 1)

ves
(@)

fézaj+ Z arctanr;.)

UjGS vTEE(TY) T
veS,T¢S

Since the last sum tends to 0 as i — oo we get that ) g 9, (r®) tends to

TS|~ |BOS)| ~t -2+ 3 3 (r—ay)
v; €S

This is negative (the first term is negative by Claim 3.6 and the second term is negative since we
can rewrite the condition ; + - - 4+ o = (k — 2)m as S~ (7 — a;) = 21) which implies that

> d,(r®) >0

vgS
for large 7. This is a contradiction to the definition of S, so S = V/(I"). O

Let r = lim;_o, r®. Since 9, are continuous functions, r € Q.
Claim 3.8. The minimum s zero: m = 0.

Suppose m > 0. Let S’ be the set of vertices v with 9, (r) < 0. S’ is a proper subset of V(I").
Define " as v}, = r, for v € S and 7], = ar, for 0 < a < 1 such that ' € @ (choose « close to
1 so that the sign of ¥, (r’) is the same as the sign of ¥,(r) for all v € V(I'). For such a we get
w(r’) < u(r), contradiction.

Claim 3.9. The minimizing v 1S unique.

Let r and 7" be distinct and p(r) = p(r’) = 0. Then 9(r,) = ¥(r),) =0 for all v € V(I'). We
can assume that S = {v | r, > 7.} is nonempty. S is a proper subset of V(I''). Then

/
0= 219,,(7“) - 2191,(7“') = Z (arctan :—T — arctan :/T) <0

ves ves vT v

where the last sum is over v € E(IV), v € Sand 7 & S.



Theorem 3.10 (Brightwell and Scheinerman). Let G be a 3-connected plane graph. Then G
admits a PDCP representation. The PDCP of G is unique up to factional linear transformations
are reflections in the plane.
Proof. 1f the outer cycle of G is a 3-cycle let a1 = ap = a3 = §. By Lemma 3.4 there exist a
sequence r = (r, | v € V(I”)) which satisfies (2) and (3). By Lemma 3.3 there exists a weak PDCP
with these radii. In particular r,, = r,, = 7y,, which implies that the weak PDCP can be extended
to a PDCP. By uniqueness of radii the resulting PDCP is unique once C7, Cy and C5 are prescribed.
If the outer cycle of G has length greater than 3, then either G or G* has a facial 3-cycle.
Using Mobius transformation we redraw G so that this is an outer facial cycle and use previous

paragraph.
For any PDCP representation of G there exists a Mobious transformation which takes this
PDCP into a PDCP with prescribed C7, Co, C3 which shows the uniqueness of PDCP. O

4 Corollaries

Corollary 4.1 (Koebe-Andreev-Thurston). Every plane graph admits a circle packing representa-
tion.

Theorem 4.2 (Brightwell and Scheinerman). If G is a planar 3-connected graph, then G and its
dual G* can be embedded in the plane with strait lines and with the outer vertex of G* at infinity
such that they form a geometric dual pair. Both embeddings are convexr and each pair of dual edges
1s perpendicular.

Theorem 4.3. If G is a 3-connected planar graph, then there is a convex polyhedron Q in R® whose
graph is isomorphic to G such that all edges of Q are tangent to the unit sphere in R3.

Proof. Use inverse of the stereographic projection to map circles of the PDCP of G onto circles on
the sphere. Let II, be the plane which intersects the sphere in C,, v € G*. These spheres define
polyhedron Q. O

Theorem 4.4 (Steinitz). A graph G is the graph of a convex polytope in R® if and only if it is
planar and 3-connected.

Theorem 4.5 (Mani). If G is a 3-connected planar graph, then there is a convex polyhedron Q) in
R3 whose graph is isomorphic to G such that every automorphism of G induces a symmetry of Q.



