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LEMMA 2.1.9. Let T'y,I's be plane graphs such that each edge is a
simple polygonal arc. Then the union of the point sets of I'y and 'y is
the point set of a plane graph I's, and I's is uniquely determined up to
homeomorphism. If both I'y and T'y are 2-connected and have at least two
points in common, then also I's is 2-connected.

ProoOF. For i = 1,2, let I'; denote the plane graph which is a subdi-
vision of I'; such that each edge of I'} is a straight line segment. Let I'/
be the subdivision of I'; such that a point p on an edge e of I’} is a vertex
of '/ if either p is a vertex of I'] or 'y, or p is on an edge of I';_, that
crosses e. Then the usual union of graphs I'{ and I'} is a graph that can
play the role of I';. (Note that I's has no loops or multiple edges since its
edges are straight line segments.)

It is obvious that I's is uniquely determined up to a homeomorphism.
The last statement about 2-connectivity is left as an easy exercise. O

Lemma 2.1.9 does not hold for general plane graphs since two arcs
can intersect infinitely often.

We shall use the notation I's = I'y UT's to denote the graph I's arising
from I'y and I's as described in the proof of Lemma 2.1.9. Note that the
“union” of plane graphs defined above is associative.

LEMMA 2.1.10 (Thomassen [Th92a]). Let I'y,Ty,... T (k > 2) be
2-connected polygonal arc embedded plane graphs such that, fori =2,3,...,
k — 1, the graph T'; has at least two points in common with each of T';_q
and T'iy1 and no point in common with any other T';, |j —i| > 2. Then
any point which is in the outer face of each of 'y Uy, To UT;3, ...,
T'y—1 UT is also in the outer face of I'1 UTo U --- U .

PROOF. Suppose pis a point in a bounded face of I' = 'y U- - -UT';. By
Lemma 2.1.9, T' is 2-connected, and by Proposition 2.1.5, there is a cycle
C in T such that p € int(C). Choose C such that C isin I'; UL, U---UT;
and such that j — ¢ is minimum. We will show that 7 —¢ < 1. So assume
that j —¢ > 2. Among all cycles in I';U- - - UT'; having p in the interior we
assume that C' is chosen in such a way that the number of edges in C and
not in I';_; is minimum. Since C intersects both I';\I';_; and I';_»\T';_1,
C has at least two disjoint maximal segments P, and P in I';_;. Since
I';_, is connected, it contains a path from P; to P». Let P; be a shortest
path in I';_y from P, to C — V(P;). Then C'U P; has three cycles two
of which have p in the interior. The one that contains P3 has fewer edges
not in I';_; than C. This contradicts the minimality of C. |

THEOREM 2.1.11. If P is a simple arc in the plane, then RQ\P s
arcwise connected.

PROOF (from [Th92a]). Let p,q be two points of R*\P, and let d
be a positive number such that each of p,q has distance > 3d from P.
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We shall join p,q by a simple polygonal arc in ]RQ\P. Since P is the
image of a continuous (and hence uniformly continuous) map, we can
partition P into segments P;, P, ..., P, such that P; joins p; and p;4q
for i = 1,2,...,k and such that each point on P; has distance less than
d from p; (1 =1,2,...,k). Let d’ be a positive number smaller than the
minimal distance between P; and P;, 1 <4,i+2 < j <k, and (4,5) #
(1,k). Note that d’ < d. For each i = 1,2,...,k, we partition P; into
segments P; 1, P; o, ..., P, such that P; ; joins a point p; ; with p; ;41 for
j=1,2,...,k;—1 and such that each point on P; ; has distance less than
d'/4 to p; ;. Let T'; be the graph which is the union of the boundaries of
the squares that consist of horizontal and vertical line segments of length
d'/2 and have a point p; ; (1 < j < k;) as the center. Then the graphs
'y, o, ..., 'y satisfy the assumptions of Lemma 2.1.10. Hence both of p
and ¢ are in the outer face of I'y U ... UT; (because they are outside the
disc of radius 3d and with center p;11, while I'; UT';;; is inside that disc,
i=1,2,...,k—1), and P does not intersect that face. Therefore p and ¢
can be joined by a simple polygonal arc disjoint from P. O

If C is a closed subset of the plane, and (2 is a region in RZ\C , then a
point p in C is accessible from Q if for some (and hence each) point ¢ in 2,
there is a polygonal arc from ¢ to p having only p in common with C. If C
is a simple closed curve, then p need not be accessible from 2. However,
if P is any segment of C' containing p, then Theorem 2.1.11 implies that
(R*\C') U P contains a simple polygonal arc P’ from ¢ to a region of R*\C
distinct from Q. Then P’ intersects C' in a point on P. Since P can be
chosen to be arbitrarily small, we conclude that the points on C accessible
from Q are dense on C'. We also get:

ProposITION 2.1.12. If C is a simple closed curve in the plane, then
R*\C' has at most two regions.

PRrROOF. Assume (reductio ad absurdum) that qi,qe,q3 are points in
distinct regions Q;, Q9,3 of IR{2\C’. Let p1,p2, ps be distinct points on
C and let D; be a disc around p; (i = 1,2,3) such that Dy, Dy, D3 are
pairwise disjoint and contain none of qi,¢q2,¢3. By the remark following
Theorem 2.1.11, in ; there is a simple polygonal arc P; ; from ¢; to D;
for 4,5 = 1,2,3. We may assume that P;; N P, = {¢} for j # j',
and P;; N Py j = () when i # i'. We can now extend (by adding three
segments of C') the union of the curves P; ; (i,j = 1,2,3) to a plane graph
with vertex set {q1,¢2, 43,1, P2, ps} isomorphic to K3 3. This contradicts
Corollary 2.1.7. O

Propositions 2.1.8 and 2.1.12 constitute what is usually called the
Jordan Curve Theorem.
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The Jordan Curve Theorem. Any simple closed curve C in the
plane divides the plane into exactly two arcwise connected components.
Both of these regions have C as the boundary.

The Jordan Curve Theorem is named after Camille Jordan. Appar-
ently, the first correct proof was given by Veblen in 1905 [Ve05]. This
result is a special case of the Jordan-Schonflies Theorem which we prove
in the next section.

Discrete versions of the Jordan Curve Theorem have been considered
by Little [Li88], Stahl [St83], and Vince [Vi89].

2.2. The Jordan-Schonflies Theorem

Now that we have proved the Jordan Curve Theorem we can extend
some of the previous results. For example, Corollary 2.1.4 easily extends
to the case where C' is any simple closed curve and P is a simple arc in
int(C) such that only its ends lie on C. Also Lemma 2.1.9 remains valid if
Iy and T'y are plane graphs consisting of a simple closed curve C' (which
is the outer cycle in both I'; and I';) and polygonal curves in int(C).
(Lemma 2.1.9 would not be valid if I’y and I's had distinct outer cycles,
or if the interior edges are not polygonal arcs.)

If C and C' are simple closed curves, and I" and I are 2-connected
plane graphs whose exterior faces are bounded by C and C’, respectively,
then I" and I are said to be plane-isomorphic if there is an isomorphism
~ of T to I which maps C onto C' such that a cycle in T" bounds a face
of T' if and only if the image of the cycle is a face boundary in I'. The
isomorphism 7 is said to be a plane-isomorphism of T' and T".

The Jordan-Schonflies Theorem. If f is a homeomorphism of a
simple closed curve C in the plane onto a closed curve C' in the plane,
then f can be extended to a homeomorphism of the entire plane.

PRrOOF (from [Th92a]). Without loss of generality we may assume
that C' is a convex polygon. We shall first extend f to a homeomor-
phism of int(C) to int(C’). Let B denote a countable dense set in int(C)
(for example the points with rational coordinates). As mentioned before
Proposition 2.1.12, the points on C' accessible from int(C) are dense on
C. Therefore, there exists a countable set A C C' which is dense in C
consisting of points accessible from int(C). Let p1,po,... be a sequence
of points in AU B such that each point in AU B occurs infinitely often in
this sequence. Let I'g denote any 2-connected graph consisting of C' and
some simple polygonal curves in int(C). Let I'y be a graph consisting of
C" and simple polygonal curves in int(C") such that Ty and '}y are plane-
isomorphic (with isomorphism gq) such that go and f coincide on C. We
now extend f to CUV (T'g) such that go and f coincide on V(Ty). We shall
define a sequence of 2-connected graphs I'yg,I'1, T2, ... and Ty, T}, T4, ...
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such that, for each n > 1, T, is an extension of a subdivision of I',,_y, T',
is an extension of a subdivision of I'/,_;, there is a plane-isomorphism g,
of T';, onto I'}, which coincides with ¢,,—1 on V(I'y,_1), and T',, (respectively
') consists of C (respectively C') and simple polygonal curves in int(C)
(respectively int(C")). Also, we shall assume that I'/,\C" is connected for
each n. We then extend f such that f and g, coincide on V(T';,).

Suppose that we have already defined I'g, ... ,I'y,_1, Ty,... , T} _;, and
905 -+ ygn—1. We shall define T';,, T/, and g, as follows. We consider the
point p,. If p,, € A, then we let P be a simple polygonal curve from p,, to
a point g, of I';,_1\C such that ',y N P = {pn,qn}. We let T',, denote
the graph I';,_; UP. The arc P is drawn in a face of I';,_;. By Proposition
2.1.5, this face is bounded by a cycle S, say. We add to I',_; a simple
polygonal curve P’ in the face bounded by g¢,_1(S) such that P’ joins
f(pp) with g,—1(gn) (if ¢, is a vertex of T',,_1) or a point on g,—1(a) (if a
is an edge of I';,_; containing the point ¢, ). Then we put I}, =T _, U P’
and we define the plane-isomorphism g,, from T',, to I}, in the obvious way.
We extend f to C UV(T'},) such that f(gn) = gn(qn)-

If p, € B, we consider the largest square with vertical and horizontal
sides, which has p,, as the center and which is in int(C). Inside this square
(whose sides we are not going to add to I';,—_; as they may contain infinitely
many points of C') we draw a new square with vertical and horizontal sides
each of which has distance < 1/n from the sides of the first square. Inside
the new square we draw vertical and horizontal lines such that p,, is on
both a vertical line and a horizontal line and such that all regions in the
square have diameter < 1/n. We let H,, be the union of I',_; and the
new horizontal and vertical straight line segments possibly together with
an additional polygonal curve in int(C') in order to make H,, 2-connected
and H,\C connected. By Proposition 1.4.2, H, can be obtained from
I';,—1 by successively adding paths in faces. We add the corresponding
paths to I/, _; and obtain a graph H/ which is plane-isomorphic to H,.
Then we add vertical and horizontal line segments in int(C") to H/, such
that the resulting graph has no (bounded) region of diameter > 1/2n. If
necessary, we displace some of the lines a little such that they intersect C’
only in f(A) and such that all bounded regions have diameter < 1/n and
such that each of the new lines has only finite intersection with H,. This
extends H), into a graph that we denote by I',,. We add to H,, polygonal
curves such that we obtain a graph I';, plane-isomorphic to I'},. Then
we extend f such that it is defined on C' U V(T',) and coincides with the
plane-isomorphism g, on V(T';,).

When we extend H), into I'}, and H, into I'j,, we are adding many
edges and it is perhaps difficult to visualize what is going on. However,
Proposition 1.4.2 tells us that we can look at the extension of H,, into I},
as the result of a sequence of path additions (each of which is a straight line
segment in a face). We then just perform successively the corresponding
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additions in H,. Note that we have plenty of freedom for that since the
current mapping f is only defined on the current vertex set. The images
of the points on the current edges have not been specified yet. In this way
we extend f to a 1-1 map defined on FF=CUV(T,)UV (1) U--- whose
image is the set C' UV (I'y) UV (I'}) U---. These sets are dense in int(C)
and int(C"), respectively.

If p is a point in int(C') on which f is not yet defined, then we consider
a sequence ¢, ¢, . . . converging to p and consisting of points from V(I'g)U
V([y)U---. We shall show that f(q1), f(g=2),... converges and we let f(p)
be the limit. Let d be the distance from p to C, and let p, be a point
of B at distance < d/3 from p. Then p is inside the largest square in
int(C) having p, as the center (and also inside what we called the new
square if n is sufficiently large). By the construction of I'y, and I, it
follows that I',, has a cycle S such that p € int(S) and such that both
S and ¢,(S) are in discs of radius < 1/n. Since f maps F N int(S) into
int(g,(S)) and F N ext(S) into ext(g,(S)), it follows in particular, that
the sequence f(qm), f(@m+1),... is in int(g,(S)) for some m. Since n
can be chosen arbitrarily large, f(q1), f(g2), ... is a Cauchy sequence and
hence convergent. It follows that f is well-defined. Moreover, using the
above notation, f maps int(S) into int(g,(S)). Hence f is continuous in
int(C). Since V(I'{) UV (I'})U--- is dense in int(C"), the same argument
shows that f maps int(C) onto int(C') and that f is 1-1 and that f~! is
continuous on int(C").

It only remains to be shown that f is continuous on C. (Then also
f~1 is continuous since int(C) is compact.) In order to prove this, it is
sufficient to consider a sequence g1, ¢s, ... of points in int(C) converging
to ¢ on C and then show that f(q1), f(g2),... converges to f(q). Suppose
therefore that this is not the case. Since int(C') is compact, we may
assume (by considering an appropriate subsequence, if necessary) that
nh_{r;o flgn) = ¢ # f(g). Since f~! is continuous on int(C"), ¢' is on C".

Since A is dense in C, f(A) is dense in C' and hence each of the two
curves on C' from ¢' to f(q) contain a point f(q1) and f(q2), respectively,
in f(A). For some n, I';, has a path P from ¢; to ¢ having only ¢; and ¢
in common with C. As we have noted at the beginning of this section, P
separates int(C') in two regions. These two regions are mapped on the two
distinct regions of int(C')\gn(P). Hence we cannot have nh_}rrgo flan) =¢'.

This contradiction shows that f has the appropriate extension to int(C').

By similar arguments, f can be extended to ext(C): Without loss of
generality we may assume that int(C') contains the origin and that both
C and C' are in the interior of the quadrangle T" with corners (1, +£1).
Let L1, Ly be the line segments (on lines through the origin) from (1,1)
and (—1,—1), respectively, to C. Let p; be the end of L; on C, i = 1,2.
Let L, L} be simple polygonal arcs from f(p;) to (1,1) and from f(p2)
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to (—1,—1), respectively, such that Lj N L5 = () and these arcs have only
their ends in common with C'UT. It is easy to see that we can extend
f to a homeomorphism CUL; UL, UT — C"UL] UL, UT so that f
is the identity on T'. Now we can use the method of the first part of the
proof to extend f to a homeomorphism of int(7T") (onto itself). Since f is
the identity on T, it can be extended to the entire plane such that it is
the identity on ext(T"). This determines a required homeomorphism. [

If F is a closed set in the plane, then we say that a point p in F' is
curve-accessible if, for each point ¢ € F, there is a simple arc from ¢ to p
having only p in common with F'. The Jordan-Schonflies Theorem implies
that every point on a simple closed curve is curve-accessible. Hence, the
following is an extension of Proposition 2.1.12.

THEOREM 2.2.1 (Thomassen [Th92a)). If F' is a closed set in the
plane with at least three curve-accessible points, then RQ\F has at most
two regions.

ProOF. If py, p2, p3 are curve-accessible points in F' and ¢1, ¢2, g3
belong to distinct regions of R?\ F, then we get, as in the proof of Propo-
sition 2.1.12, a plane graph isomorphic to K3 3 with vertices p1, p2, p3, ¢1,
q2, g3, a contradiction to Corollary 2.1.7. O

In Theorem 2.2.1, “three” cannot be replaced by “two”. To see this,
we let F' be a collection of three or more internally disjoint simple arcs
between two fixed points.

Some other consequences of the Jordan—Schoénflies Theorem are pre-
sented below. First we generalize Corollary 2.1.4.

PROPOSITION 2.2.2. Let Py, P>, P3 be simple arcs with ends p,q such
that P, N P; = {p,q} for 1 <i < j <3. Then P, UP, U P; has precisely
three faces with boundaries Py U Py, Py U Py and Py U P3, respectively.
If the outer face is bounded by P, U Py, and P, Py, P, are simple arcs
joining p',q' such that P; N P} = {p',q'} for 1 <i < j < 3, and such
that P C int(P] U Py), then any homeomorphism f of Py U P> U P onto
P U Py U P such that f(P;)) = P} (i = 1,2,3) can be extended to a
homeomorphism of R? onto itself.

ProOOF. IfPl QQE(PQUP3), Py g@(Pl UP3), and P3 ga(Plu
P,), then it is easy to extend Py U P, U P3 to a K33 in the plane, a
contradiction. So we may assume that P; C int(P; U P%). The first part
of the proposition follows easily. To prove the last part, it is sufficient to
consider the case where P{, Ps, P} are polygonal arcs. This case is done
by using the Jordan-Schénflies Theorem to int(Py U Ps), int(P> U Ps), and
ext(P, U P), respectively. O

Now we generalize Proposition 2.1.5.



