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Lecture 1-2: Connectivity, Planar Graphs and the Jordan Curve

Theorem

Notes taken by Karin Arikushi

Burnaby, 2006

Summary: These notes cover the first and second weeks of lectures. Topics included are
basic notation, connectivity of graphs, planar graphs, and the Jordan Curve Theorem.

1 Basic Notation

graph: G denotes a graph, with no loops or multiple edges. When loops and multiple edges are
present, we call G a multigraph.

vertex set of G: denoted V (G) or V . The order of G is n = |V (G)|, or |G|.

edge set of G: denoted E(G) or E. q = |E(G)| or ‖G‖.

subgraphs: H is a spanning subraph of G if V (H) = V (G) and E(H) ⊆ E(G). H is an induced
subgraph of G if V (H) ⊆ V (G), and E(H) is all edges of G with both ends in V (H).

paths: Pn denotes a path with n vertices; also called an n-path.

cycles: Cn denotes a cycle with n vertices; also called an n-cycle.

union of graph: G ∪H has vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

intersection of graph: G ∩H has vertex set V (G) ∩ V (H) and edge set E(G) ∩ E(H).

2 Connectivity

We begin by covering some basic terminology.

k-connected: A graph G is k-connected if |G| ≥ k + 1 and for all S ⊆ V (G) with |S| < k, the
graph G− S is connected. S separates G if G− S is not connected.

cutvertex: v ∈ V (G) is a cutvertex if G− {v} is not connected.
∗ Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.
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blocks: We can define an equivalence relation ∼ on E(G), such that e1 ∼ e2 if and only if e1 = e2

or there exists a cycle in G containing both e1 and e2. Then, ∼ partions E(G) into sets which
determine subraphs of G called blocks.

Observe that every block is either a single edge or a 2-connected graph.

Proposition 2.1. Let G be a graph. Then,

1. e ∈ E(G) is a cutedge if and only if the ends of e belong to different components of G− e.

2. v ∈ V (g) is a cutvertex if and only if G− v has more components than G.

3. If u and v are vertices in a block, B, of G containing at least 2 edges, then B has a cycle
containing u and v.

4. Two blocks of G have at most one vertex in common, and this vertex is a cutvertex of G.

Proof. The first three claims follow from the definition of blocks. The fourth claim is proved by
contradiction. Suppose B1 and B2 are two blocks with two vertices in common, u and v. Then, B1

and B2 have cycles C1 and C2, respectively, containing u and v. It is then possible to find a cycle
containing an edge of C1 and an edge of C2.

Proposition 2.2. Let G be connected with |G| ≥ 3. Then, the following are equivalent:

1. G is 2-connected.

2. Any two vertices of G are on a common cycle.

3. Any two edges lie on a common cycle.

4. G has no cut vertices.

5. For all v ∈ V (G), G− v is connected.

6. G has only one block.

Definition 2.3. An ear of a graph G is a path with end vertices in common with G.

Proposition 2.4. If a graph G is 2-connected, then G can be obtained from a cycle by successively
adding ears.

Proof. We provide an algorithm which contstructs G by successively adding ears to a cycle in G.
If G is not a cycle, then let G′ be the current graph. We construct ears to add to G′ by choosing
an edge e = uv with v ∈ V (G′) but u /∈ V (G′). Let Q be the shortest path in G− v from u to some
vertex in G′. Then Q together with e is an ear, which we add to G′. Continue this process until
we obtain G.

Proposition 2.5. If G is a 2-connected graph with e = v1vn ∈ E(G), (n = |G|), then the vertices
of G can be enumerated v1, . . . , vn so that the graphs G[{v1, . . . , vi}] and G[{vi, vi+1, . . . , vn}] are
both connected for i = 1, 2, . . . , n.
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Proof. Let C be a cycle in G and let P1, P2, . . . , Pr be the paths in an ear decomposition of G.
Then, it is possible to enumerate the vertices so that for all vi, there exists a path from v1 to vi

with increasing indices, and there exists a path from vi to vn with increasing indices. Then, the
required graphs are connected.

Definition 2.6. We denote an edge contraction by G/e. We denote strong edge contraction by
G//e, where e is first contracted then multiple edges are replaced by a single edge.

Lemma 2.7. For every 3-connected graph G of order at least 5, there exists an edge e such that
G//e is still 3-connected.

There is an analogous result for 2-connected graphs, which we state below.

Corollary 2.8. Let G be a 2-connected graph, with |G| ≥ 4. Then, for all e ∈ E(G), G− e or G/e
is 2-connected.

Definition 2.9. A multigraph, G, is 2-connected if it has no loops, and the underlying graph is
2-connected. G is k-connected if it has no multiple edges and the underlying graph is k-connected.

Theorem 2.10. If G is a 3-connected graph distinct from a wheel, then G contains an edge e such
that either G− e or G/e is 3-connected.

Theorem 2.11. If G is a 3-connected graph distinct from K4, then G contains an edge e such that
G//e is 3-connected.

Proof. We prove this theorem by contradiction. Let G be a 3-connected graph such that for all
e = xy ∈ E(G), G//e is not 3-connected. Then, the vertex xy and another vertex z separate G//e,
so {x, y, z} separates G. We can choose e = xy and z such that the largest component, H, of
G− {x, y, z} is maximal in the number of vertices.

Note that the proof of Thomassen’s theorem is algorithmic, in that it allows us to find an edge
e such that G//e is 3-connected.

Proposition 2.12. If G is a 3-connected graph distinct from K4, and e0 = x0y0 is any edge, then
there exists e such that G//e is 3-connected and e is not incident with x0 or y0.

Theorem 2.13. Let G be a graph and s, t ∈ V (G) such that s 6= t, and k ∈ N. Then, G does not
contain k internally disjoint st-paths if and only if there exists S ⊆ V (G)\{s, t} with |S| ≤ k − 1
such that S separates s and t.

Theorem 2.14. Let G be a graph with |G| ≥ k + 1. Then, the following are equivalent:

1. G is k-connected.

2. For all x, y ∈ V (G) that are nonadjacent, there exists k internally disjoint xy-paths.

3. For all x, y ∈ V (G) there exists k internally disjoint xy-paths.

4. For all k = t1 + t2 + · · · + tp = s1 + s2 + · · · + sq with p, q ≥ 1, ti, sj ≥ 1 and for all
A = {a1, . . . , ap}, B = {b1, . . . , bp} ⊆ V (G), there exist k AB-paths such that ti paths start at
ai ( 1 ≤ i ≤ p) and sj paths end at bj (1 ≤ j ≤ q).
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3 Planar Graphs and the Jordan Curve Theorem

Definition 3.1. A curve or arc in R2, is the image of a continuous mapping f : I → R2, where
I = [0, 1]. An arc is simple if f is injective, i.e. the arc has no self-intersections, and an arc is closed
if f(0) = f(1). Moreover, if J ⊆ I is a connected interval, then f(J) is a segment of f(I).

Claim 3.2. Let F1, F2 ⊆ R2 be disjoint and closed. If A is an arc from F1 to F2, then A contains
a segment (or subarc) A′ such that A′ connects F1 and F2, and the interior of A′ is disjoint from
F1 ∪ F2.

Definition 3.3. Let G be a graph, and X a topological space. G is embedded in X if V (G) ⊆ X,
every edge of G is a simple arc in X connecting its end vertices, and the arcs corresponding to
the edges are pairwise disjoint, except for their common end vertices. (i.e. no edges intersect).
Moreover, an embedding in X of a graph G is an isomorphism with a graph G′ embedded in X. G′

is called a representation of G in X.

Definition 3.4. A polygonal arc is an arc composed of a finite number of straight line segments
in R2.

Lemma 3.5. If a graph G admits an embedding in R2, then it has an embedding in R2 in which
all edges are polygonal arcs.

Proof. V (G) ⊆ R2. For all v ∈ V (G), let Dv be a disc around v ∈ R2 such that no edge of G − v
intersects Dv, and Dv ∩ Du = Ø for u 6= v. For all e = uv, there is a segment Auv of e joining
Du and Dv, but internally disjoint from Du ∪ Dv. Since Auv is compact, there exists a finite
subcover S1, S2, . . . , Sm, such that each Si is a disc around i ∈ Auv where no other edge intersects
Si. Drawing line segments through the centres of S1, . . . , Sm, we obtain a polygonal arc.

Definition 3.6. D ⊆ R2 is arcwise connected if for all x, y ∈ D, x 6= y, there exists an arc in D
from x to y.

Theorem 3.7 (The Jordan Curve Theorem for Polygonal Arcs). If C is a simple closed polygonal
curve in R2, then R\C consists of precisely two arcwise connected components, each of which has
C as the boundary.

Proof. Let C = P1P2 · · ·Pn, the line segments of C, and assume that no Pi is horizontal. For all
z ∈ R2, let ray(z) denote the horizontal right ray from z, and let

π(z) = |{i | ray(z) intersects Pi in a point which is not the top end of Pi}|.

Let π(z) = π(z) mod 2. Then, we claim that π(z) is constant on every arcwise conneted component
of R2. Thus, we can show that R2\C has at least two arcwise connected components.

To show that there are not more than two arcwise connected components, consider a, b, c ∈
R2\C, and a disc D around a point in C. Then, there exist arcs Aa, Ab, Ac from a, b, c to D, two
of which can be joined in D. Therefore, there are at most two arcwise connected components in
R2\C.

Corollary 3.8. Let C be a simple closed polygonal curve in R2, and p, q ∈ C. Let P be a polygonal
arc from p to q such that P ∩ C = {p, q}. Then, P ∪ C has precisely three arcwise connected
components (faces), whose boundaries are C,S1 ∪ P, S2 ∪ P where S1 ∪ S2 = C.
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Proof. We apply 3.7 to see that C,P ∪ S1, P ∪ S2 each have two faces. Assume that P ∈ int(C).
Then, each face of C ∪ P is both a face of P ∪ S1 and P ∪ S2. Let X1, X2 be the bounded face of
P ∪ S1, P ∪ S2 respectively, and let Y1, Y2 be the unbounded face of P ∪ S1, P ∪ S2 respectively.
Then, Y1∩Y2 = Y , the unbounded face of C∪P , X1∩Y2 = X1 is a face of C∪P , and X2∩Y1 = X2

is a face of C ∪ P . We have now counted all the faces of C ∪ P .

Theorem 3.9. If G is a 2-connected plane graph, whose edges are polygonal arcs, then the number
of faces in G is precisely

‖G‖ − |G|+ 2

and each of these faces is bounded by a cycle of G.

Proof. Let G have ear decomposition C,P1, P2, . . . , Pr. Let G0 = C, and Gi = C ∪ Gi−1 for
i = 1, . . . , r, where each Gi is 2-connected in the plane. We perform induction on r.

If r = 0, we apply the Jordan Curve Theorem, and the claim holds. Otherwise, for r ≥ 1, the
embedding Gr−1 has the required number of faces, which are bounded by cycles. Pr is a path in
one of the faces, bounded by a cycle C ′ of G. By 3.8, Ge has one more face than Gr−1. Counting
the appropriate number of vertices end edges for Gr, we see that the result holds.

Proposition 3.10. Let G be a plane graph, ebedded with polygonal edges such that |G| = n ≥ 4.
Then,

1. ‖G‖ ≤ 3n− 6, with equality if and only if every face of G is bounded by a 3-cycle (including
the outer face).

2. If G has no cycle of length 3, then ‖G‖ ≤ 2n − 4, with equality if and only if all faces are
bounded by 4 cycles.

Proof. Assume G is 2-connected, and let f = 2−|G|+‖G‖, the number of faces of G. Then, double
count the pairs (e, F ) where e ∈ E and F is a face containing e on the boundary, so the number of
pairs is 2‖G‖. Since every F contains at least 3 edges on its boundary, the number of pairs is at
least 3f . By applying 3.9, we see that ‖G‖ ≤ 3n− 6.

To show the second part, we apply the same method but observe that the number of pairs is at
least 4f . If G is not 2 connected, we apply the same method to blocks of G.

Corollary 3.11. K5 and K3,3 are not planar.

Proof. If K5 has a planar representation, then there exists a representation with polygonal edges.
Applying 3.10 we see ‖K5‖ ≤ 3 · 5− 6 = 9, but ‖K5‖ = 10. Hence, K5 cannot be planar.

To show that K3,3 is not planar, we use the same technique but apply the second inequality in
3.10.

Theorem 3.12 (The Jordan Curve Theorem). If C is a simple closed curve in R2, then R2\C
consists of two arcwise connected components (whose boundary is C).

Proof. We first prove that there are at least 2 faces in R\C. Let p, q be the leftmost and rightmost
points on C. Then C\{p, q} divides C into disjoint segments S1, S2. Let P be a polygonal arc in
ext(C) from p to q, and let L be a line segment intersecting S1 and S2. Then, there exists Q ∈ L
which joins S1 and S2, and let x be the midpoint of Q, which is disjoint from C. If there is only
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one face in R2\C, then there exists a simple curve in R2\C from x to y ∈ P\C, which is disjoint
from Q ∪ P\{x, y}. However, we have just constructed an embedding of K3,3 in the plane, which
is not possible.

Now we shall prove that there are at most 2 faces in R\C. We claim that if P is a simple
(non-closed) arc in R2, then R2\P is arcwise connected. Thus, it follows that a point y ∈ C is
accessible from x if there is a polygonal curve from x to y disjoint from C\{y}. Suppose that R2\C
has 3 distinct faces, Ω1,Ω2,Ω3. Let p1, p2, p3 ∈ C and qj ∈ Ωj (j = 1, 2, 3). Then, we can draw
polygonal arcs from qj to each pi, where arcs q1pi ⊆ Ω1, q2pi ⊆ Ω2, q3pi ⊆ Ω3. Thus, we obtain an
embedding of K3,3 in R2.

Theorem 3.13 (Jordan-Schönflies). If φ : C → C ′ is a homeomorphism of two simple closed curves
C,C ′ ∈ R2, then there exists φ : R2 → R2 such that φ is a homeomorphism and extends φ.
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