Topological Graph Theory^{*} Lecture 1-2: Connectivity, Planar Graphs and the Jordan Curve Theorem

Notes taken by Karin Arikushi

Burnaby, 2006

Summary: These notes cover the first and second weeks of lectures. Topics included are basic notation, connectivity of graphs, planar graphs, and the Jordan Curve Theorem.

1 Basic Notation

graph: G denotes a graph, with no loops or multiple edges. When loops and multiple edges are present, we call G a *multigraph*.

vertex set of G: denoted V(G) or V. The order of G is n = |V(G)|, or |G|.

edge set of G: denoted E(G) or E. q = |E(G)| or ||G||.

subgraphs: H is a spanning subraph of G if V(H) = V(G) and $E(H) \subseteq E(G)$. H is an induced subgraph of G if $V(H) \subseteq V(G)$, and E(H) is all edges of G with both ends in V(H).

paths: P_n denotes a *path* with *n* vertices; also called an *n*-path.

cycles: C_n denotes a *cycle* with *n* vertices; also called an *n*-cycle.

union of graph: $G \cup H$ has vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$.

intersection of graph: $G \cap H$ has vertex set $V(G) \cap V(H)$ and edge set $E(G) \cap E(H)$.

2 Connectivity

We begin by covering some basic terminology.

k-connected: A graph G is k-connected if $|G| \ge k + 1$ and for all $S \subseteq V(G)$ with |S| < k, the graph G - S is connected. S separates G if G - S is not connected.

cutvertex: $v \in V(G)$ is a *cutvertex* if $G - \{v\}$ is not connected.

^{*} Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.

blocks: We can define an equivalence relation \sim on E(G), such that $e_1 \sim e_2$ if and only if $e_1 = e_2$ or there exists a cycle in G containing both e_1 and e_2 . Then, \sim particular E(G) into sets which determine subraphs of G called *blocks*.

Observe that every block is either a single edge or a 2-connected graph.

Proposition 2.1. Let G be a graph. Then,

- 1. $e \in E(G)$ is a cutedge if and only if the ends of e belong to different components of G e.
- 2. $v \in V(g)$ is a cutvertex if and only if G v has more components than G.
- 3. If u and v are vertices in a block, B, of G containing at least 2 edges, then B has a cycle containing u and v.
- 4. Two blocks of G have at most one vertex in common, and this vertex is a cutvertex of G.

Proof. The first three claims follow from the definition of blocks. The fourth claim is proved by contradiction. Suppose B_1 and B_2 are two blocks with two vertices in common, u and v. Then, B_1 and B_2 have cycles C_1 and C_2 , respectively, containing u and v. It is then possible to find a cycle containing an edge of C_1 and an edge of C_2 .

Proposition 2.2. Let G be connected with $|G| \ge 3$. Then, the following are equivalent:

- 1. G is 2-connected.
- 2. Any two vertices of G are on a common cycle.
- 3. Any two edges lie on a common cycle.
- 4. G has no cut vertices.
- 5. For all $v \in V(G)$, G v is connected.
- 6. G has only one block.

Definition 2.3. An *ear* of a graph G is a path with end vertices in common with G.

Proposition 2.4. If a graph G is 2-connected, then G can be obtained from a cycle by successively adding ears.

Proof. We provide an algorithm which contstructs G by successively adding ears to a cycle in G. If G is not a cycle, then let G' be the current graph. We construct ears to add to G' by choosing an edge e = uv with $v \in V(G')$ but $u \notin V(G')$. Let Q be the shortest path in G - v from u to some vertex in G'. Then Q together with e is an ear, which we add to G'. Continue this process until we obtain G.

Proposition 2.5. If G is a 2-connected graph with $e = v_1v_n \in E(G)$, (n = |G|), then the vertices of G can be enumerated v_1, \ldots, v_n so that the graphs $G[\{v_1, \ldots, v_i\}]$ and $G[\{v_i, v_{i+1}, \ldots, v_n\}]$ are both connected for $i = 1, 2, \ldots, n$.

Proof. Let C be a cycle in G and let P_1, P_2, \ldots, P_r be the paths in an ear decomposition of G. Then, it is possible to enumerate the vertices so that for all v_i , there exists a path from v_1 to v_i with increasing indices, and there exists a path from v_i to v_n with increasing indices. Then, the required graphs are connected.

Definition 2.6. We denote an edge contraction by G/e. We denote strong edge contraction by G//e, where e is first contracted then multiple edges are replaced by a single edge.

Lemma 2.7. For every 3-connected graph G of order at least 5, there exists an edge e such that G//e is still 3-connected.

There is an analogous result for 2-connected graphs, which we state below.

Corollary 2.8. Let G be a 2-connected graph, with $|G| \ge 4$. Then, for all $e \in E(G)$, G - e or G/e is 2-connected.

Definition 2.9. A multigraph, G, is 2-connected if it has no loops, and the underlying graph is 2-connected. G is k-connected if it has no multiple edges and the underlying graph is k-connected.

Theorem 2.10. If G is a 3-connected graph distinct from a wheel, then G contains an edge e such that either G - e or G/e is 3-connected.

Theorem 2.11. If G is a 3-connected graph distinct from K_4 , then G contains an edge e such that G//e is 3-connected.

Proof. We prove this theorem by contradiction. Let G be a 3-connected graph such that for all $e = xy \in E(G), G//e$ is not 3-connected. Then, the vertex xy and another vertex z separate G//e, so $\{x, y, z\}$ separates G. We can choose e = xy and z such that the largest component, H, of $G - \{x, y, z\}$ is maximal in the number of vertices.

Note that the proof of Thomassen's theorem is algorithmic, in that it allows us to find an edge e such that G//e is 3-connected.

Proposition 2.12. If G is a 3-connected graph distinct from K_4 , and $e_0 = x_0y_0$ is any edge, then there exists e such that G//e is 3-connected and e is not incident with x_0 or y_0 .

Theorem 2.13. Let G be a graph and $s, t \in V(G)$ such that $s \neq t$, and $k \in \mathbb{N}$. Then, G does not contain k internally disjoint st-paths if and only if there exists $S \subseteq V(G) \setminus \{s, t\}$ with $|S| \leq k - 1$ such that S separates s and t.

Theorem 2.14. Let G be a graph with $|G| \ge k + 1$. Then, the following are equivalent:

- 1. G is k-connected.
- 2. For all $x, y \in V(G)$ that are nonadjacent, there exists k internally disjoint xy-paths.
- 3. For all $x, y \in V(G)$ there exists k internally disjoint xy-paths.
- 4. For all $k = t_1 + t_2 + \dots + t_p = s_1 + s_2 + \dots + s_q$ with $p, q \ge 1, t_i, s_j \ge 1$ and for all $A = \{a_1, \dots, a_p\}, B = \{b_1, \dots, b_p\} \subseteq V(G)$, there exist k AB-paths such that t_i paths start at a_i ($1 \le i \le p$) and s_j paths end at b_j ($1 \le j \le q$).

3 Planar Graphs and the Jordan Curve Theorem

Definition 3.1. A curve or arc in \mathbb{R}^2 , is the image of a continuous mapping $f : I \to \mathbb{R}^2$, where I = [0, 1]. An arc is simple if f is injective, i.e. the arc has no self-intersections, and an arc is closed if f(0) = f(1). Moreover, if $J \subseteq I$ is a connected interval, then f(J) is a segment of f(I).

Claim 3.2. Let $F_1, F_2 \subseteq \mathbb{R}^2$ be disjoint and closed. If A is an arc from F_1 to F_2 , then A contains a segment (or subarc) A' such that A' connects F_1 and F_2 , and the interior of A' is disjoint from $F_1 \cup F_2$.

Definition 3.3. Let G be a graph, and X a topological space. G is *embedded* in X if $V(G) \subseteq X$, every edge of G is a simple arc in X connecting its end vertices, and the arcs corresponding to the edges are pairwise disjoint, except for their common end vertices. (i.e. no edges intersect). Moreover, an *embedding* in X of a graph G is an isomorphism with a graph G' embedded in X. G' is called a *representation* of G in X.

Definition 3.4. A *polygonal arc* is an arc composed of a finite number of straight line segments in \mathbb{R}^2 .

Lemma 3.5. If a graph G admits an embedding in \mathbb{R}^2 , then it has an embedding in \mathbb{R}^2 in which all edges are polygonal arcs.

Proof. $V(G) \subseteq \mathbb{R}^2$. For all $v \in V(G)$, let D_v be a disc around $v \in \mathbb{R}^2$ such that no edge of G - v intersects D_v , and $D_v \cap D_u = \emptyset$ for $u \neq v$. For all e = uv, there is a segment A_{uv} of e joining D_u and D_v , but internally disjoint from $D_u \cup D_v$. Since A_{uv} is compact, there exists a finite subcover S_1, S_2, \ldots, S_m , such that each S_i is a disc around $i \in A_{uv}$ where no other edge intersects S_i . Drawing line segments through the centres of S_1, \ldots, S_m , we obtain a polygonal arc. \Box

Definition 3.6. $D \subseteq \mathbb{R}^2$ is arcwise connected if for all $x, y \in D, x \neq y$, there exists an arc in D from x to y.

Theorem 3.7 (The Jordan Curve Theorem for Polygonal Arcs). If C is a simple closed polygonal curve in \mathbb{R}^2 , then $\mathbb{R}\setminus C$ consists of precisely two arcwise connected components, each of which has C as the boundary.

Proof. Let $C = P_1 P_2 \cdots P_n$, the line segments of C, and assume that no P_i is horizontal. For all $z \in \mathbb{R}^2$, let ray(z) denote the horizontal right ray from z, and let

 $\pi(z) = |\{i \mid ray(z) \text{ intersects } P_i \text{ in a point which is not the top end of } P_i\}|.$

Let $\overline{\pi}(z) = \pi(z) \mod 2$. Then, we claim that $\overline{\pi}(z)$ is constant on every arcwise connected component of \mathbb{R}^2 . Thus, we can show that $\mathbb{R}^2 \setminus C$ has at least two arcwise connected components.

To show that there are not more than two arcwise connected components, consider $a, b, c \in \mathbb{R}^2 \setminus C$, and a disc D around a point in C. Then, there exist arcs A_a, A_b, A_c from a, b, c to D, two of which can be joined in D. Therefore, there are at most two arcwise connected components in $\mathbb{R}^2 \setminus C$.

Corollary 3.8. Let C be a simple closed polygonal curve in \mathbb{R}^2 , and $p, q \in C$. Let P be a polygonal arc from p to q such that $P \cap C = \{p,q\}$. Then, $P \cup C$ has precisely three arcwise connected components (faces), whose boundaries are $C, S_1 \cup P, S_2 \cup P$ where $S_1 \cup S_2 = C$.

Proof. We apply 3.7 to see that $C, P \cup S_1, P \cup S_2$ each have two faces. Assume that $P \in \overline{int}(C)$. Then, each face of $C \cup P$ is both a face of $P \cup S_1$ and $P \cup S_2$. Let X_1, X_2 be the bounded face of $P \cup S_1, P \cup S_2$ respectively, and let Y_1, Y_2 be the unbounded face of $P \cup S_1, P \cup S_2$ respectively. Then, $Y_1 \cap Y_2 = Y$, the unbounded face of $C \cup P, X_1 \cap Y_2 = X_1$ is a face of $C \cup P$, and $X_2 \cap Y_1 = X_2$ is a face of $C \cup P$. We have now counted all the faces of $C \cup P$.

Theorem 3.9. If G is a 2-connected plane graph, whose edges are polygonal arcs, then the number of faces in G is precisely

$$||G|| - |G| + 2$$

and each of these faces is bounded by a cycle of G.

Proof. Let G have ear decomposition C, P_1, P_2, \ldots, P_r . Let $G_0 = C$, and $G_i = C \cup G_{i-1}$ for $i = 1, \ldots, r$, where each G_i is 2-connected in the plane. We perform induction on r.

If r = 0, we apply the Jordan Curve Theorem, and the claim holds. Otherwise, for $r \ge 1$, the embedding G_{r-1} has the required number of faces, which are bounded by cycles. P_r is a path in one of the faces, bounded by a cycle C' of G. By 3.8, G_e has one more face than G_{r-1} . Counting the appropriate number of vertices end edges for G_r , we see that the result holds.

Proposition 3.10. Let G be a plane graph, ebedded with polygonal edges such that $|G| = n \ge 4$. Then,

- 1. $||G|| \leq 3n 6$, with equality if and only if every face of G is bounded by a 3-cycle (including the outer face).
- 2. If G has no cycle of length 3, then $||G|| \leq 2n 4$, with equality if and only if all faces are bounded by 4 cycles.

Proof. Assume G is 2-connected, and let f = 2 - |G| + ||G||, the number of faces of G. Then, double count the pairs (e, F) where $e \in E$ and F is a face containing e on the boundary, so the number of pairs is 2||G||. Since every F contains at least 3 edges on its boundary, the number of pairs is at least 3f. By applying 3.9, we see that $||G|| \leq 3n - 6$.

To show the second part, we apply the same method but observe that the number of pairs is at least 4f. If G is not 2 connected, we apply the same method to blocks of G.

Corollary 3.11. K_5 and $K_{3,3}$ are not planar.

Proof. If K_5 has a planar representation, then there exists a representation with polygonal edges. Applying 3.10 we see $||K_5|| \le 3 \cdot 5 - 6 = 9$, but $||K_5|| = 10$. Hence, K_5 cannot be planar.

To show that $K_{3,3}$ is not planar, we use the same technique but apply the second inequality in 3.10.

Theorem 3.12 (The Jordan Curve Theorem). If C is a simple closed curve in \mathbb{R}^2 , then $\mathbb{R}^2 \setminus C$ consists of two arcwise connected components (whose boundary is C).

Proof. We first prove that there are at least 2 faces in $\mathbb{R}\setminus C$. Let p, q be the leftmost and rightmost points on C. Then $C\setminus\{p,q\}$ divides C into disjoint segments S_1, S_2 . Let P be a polygonal arc in ext(C) from p to q, and let L be a line segment intersecting S_1 and S_2 . Then, there exists $Q \in L$ which joins S_1 and S_2 , and let x be the midpoint of Q, which is disjoint from C. If there is only

one face in $\mathbb{R}^2 \setminus C$, then there exists a simple curve in $\mathbb{R}^2 \setminus C$ from x to $y \in P \setminus C$, which is disjoint from $Q \cup P \setminus \{x, y\}$. However, we have just constructed an embedding of $K_{3,3}$ in the plane, which is not possible.

Now we shall prove that there are at most 2 faces in $\mathbb{R}\setminus C$. We claim that if P is a simple (non-closed) arc in \mathbb{R}^2 , then $\mathbb{R}^2 \setminus P$ is arcwise connected. Thus, it follows that a point $y \in C$ is accessible from x if there is a polygonal curve from x to y disjoint from $C \setminus \{y\}$. Suppose that $\mathbb{R}^2 \setminus C$ has 3 distinct faces, $\Omega_1, \Omega_2, \Omega_3$. Let $p_1, p_2, p_3 \in C$ and $q_j \in \Omega_j$ (j = 1, 2, 3). Then, we can draw polygonal arcs from q_j to each p_i , where arcs $q_1p_i \subseteq \Omega_1, q_2p_i \subseteq \Omega_2, q_3p_i \subseteq \Omega_3$. Thus, we obtain an embedding of $K_{3,3}$ in \mathbb{R}^2 .

Theorem 3.13 (Jordan-Schönflies). If $\phi: C \to C'$ is a homeomorphism of two simple closed curves $C, C' \in \mathbb{R}^2$, then there exists $\overline{\phi}: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\overline{\phi}$ is a homeomorphism and extends ϕ .