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Lecture 9: Planarizing Cycles

Notes taken by Kseniya Garaschuk

Burnaby, 2006

Summary: These notes cover the tenth week of lectures. Topics included are cy-
cle double cover, surface minors, planarizing cycles graph colourings and Four Colour
Theorem.

1 Cycle Double Cover

Proposition 1.1. Let G be a 2-connected graph. An embedding Π of G has face-width at least 2 if
and only if all facial walks of G are cycles.

• Question: When does there exist an embedding in which all faces are cycles?

If Π is an embedding of a 2-connected graph G with fw(G, Π) ≥ 2, then all facial cycles of G have
the property that every edge is contained in precisely two of them. Such a collection of cycles (not
necessarily associated with an embedding) is called a cycle double cover (CDC) of G.

Conjecture 1.2 (Cycle Double Cover Conjecture). Every 2-connected graph has a CDC.

Conjecture 1.3. Every 2-connected graph has an embedding of face-width at least 2 in some
(orientable) surface.

Conjecture 1.2 is a strenthening of Conjecture 1.3. A lot of work has been done in order to
find proof of either one, but that hasn’t been accomplished just yet. However, there are some
improvements, for example it’s been shown that Conjecture 1.2 can be reduced to cubic graphs,
i.e. if it works for cubic graphs, it works for all graphs.

2 Face-width and Surface Minors

Definition 2.1. Let G be a Π-embedded graph. Then by successively deleting edges and contract-
ing edges that are not loops we can obtain the induced embedding Π∗ of some connected minor G∗

of G. Then G∗ is called a surface minor of G.

Theorem 2.2. For every planar graph H there exists an integer k such that H is a (surface) minor
of the k × k grid.
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So grids are in a certain sense universal for planar graphs and the above Theorem clearly won’t
work for non-planar graphs since k × k grid cannot be made non-planar by edge-deletion and/or
edge-contraction.

Proof. First let’s show that H is a minor of a cubic planar graph. By a process illustrated in the
picture below we can see that it suffices to prove the Theorem for cubic planar graphs.

For a cubic H take a straight-line representation of H in R2, take a fine grid and put it over
the graph. With a fine enough grid we can make the vertices of G coincide with the vertices of the
grid and for the edges of G we’ll take the closest edges of the grid.

Now it’s easy to see that G is indeed a subgraph of the grid.

Note that in the proof we could take the grid as fine as needed, but it has been shown that a
grid of order O(|H|) sufficies.

Theorem 2.3. Let H be a graph embedded in a surface of Euler genus at least g, where g ≥ 1.
Then there exists an integer k = k(H, g) such that every graph G embedded in the same surface as
H with the face-width at least k contains H as a surface minor.

So counterpart of a grid for non-planar graphs is a sequence of graphs whose face-width grows
infinitely.

Corollary 2.4. If G is a 3-connected graph embedded in Sg or Ng with sufficiently large face-width,
then every embedding of G in the same surface is equivalent to it.
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Note that this is a generalization of Whitney’s Theorem.

Proof. Let H be a graph in S = Sg or S = Ng such that H is 3-connected and uniquely embeddable.
Such H exists, just consider an LEW-embedded graph (take any graph and put a dense grid in
each of its faces). Suppose H is a cubic graph. Then G as in Theorem 2.3 contains H as a surface
minor. Since H is cubic, a subdivision of H is a subgraph of G. It implies that every facial walk
of Π is a contractible cycle of Π∗. Therefore the two embeddings are equivalent.

Corollary 2.5. If fw(G, Π) in Sg or Ng, where g ≥ 2, then G contains a non-contractible surface-
separating cycle.

In fact, it was proven that on any surface with face-width at least 11 will do, and this bound
was later improved to 6. However, the best face-width bound is not known.

Conjecture 2.6. Every graph G embedded in Sg or Ng, where g ≥ 2, with face-width at least 3
contains a non-contractible surface-separating cycle.

Similarly for uniqueness of embeddings it has been shown that face-width at least 2g + 3 or
clog(g)

log(log(g)) will be enough.

3 Planarazing Cycles

Definition 3.1. Suppose that a graph G is embedded in Sg with g ≥ 0. A collection of disjoint
cycles C1, . . . Ck form a planarizing set of cycles if cutting along all of C1, . . . Ck gives rise to an
embedding of genus 0.

Note that cutting along a cycle creates 2 facial walks, one for each copy of the cycle. Every cut
therefore decreases an Euler genus by 2, so we’ll need precisely g of those cycles to get Euler genus
to be 0. Thus k = g.

Theorem 3.2. Let d and g be positive integers. If G is a triangulation of Sg of edge-width at least
8(d + 1)(2g − 1), then G contains a planarizing set of induced cycles such that distG(Ci, Cj) ≥ d.

Proof. The whole result except for the bound follows from Theorem 2.3, so we will only provide a
sketch of the proof for that bound. It uses the induction on g. If g = 0 there’s nothing to prove,
since we’d be cutting along 0 cycles. If g = 1, take C1 to be the shortest non-contractible cycle. By
3-Path-Property it’s induced. So we may assume that g ≥ 2. Let C be the shortest non-contractible
cycle. There are 2 cases:

• C is non-surface-separating

• C is surface-separating

Let G∗ be the graph obtained by cutting along C and triangulating new faces by adding vertices
x1 and x2 inside them. Then,

ew(G∗) ≥ ew(G) = 4(d + 1)(2g − 1) = 8(d + 1)(2g − 1) + 4(d + 1).
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So we have a little more than we need to apply the induction hypothesis, 4(d+1) more to be
precise.

In a triangulation for every vertex x and integer q ≤ 1
2ew(G∗) − 1

2 we define the q-canonical
cycles Q1, . . . Qq recursively so that they are all contractible and int(Qi) ⊇ Int(Qi−1) ∀i.

Next we’ll cut along Q1, . . . Qd+2 and Q∗
1, . . . Q

∗
d+2. This results in a new surface and we’ll add

two new vertices y1 and y2 to triangulate two new faces. Now we can apply induction.

Cutting along each cycle results in decrease of edge-width by at most 2. So

ew(G∗∗) ≥ ew(G∗)− 2(d + 1 + d + 1) = 8(d + 1)(2g − 1),

which is precisely what we need.
Therefore by induction hypothesis there exist C1, . . . Cg−1 in G∗ that are planarizing and at

distance at least d from each other.
So the only thing to be taken care of are the cycles that pass through x1 or x2, but we can

easily modify them in order to avoid those vetices.

Thus the above cycles together with C form a planarizing set for G.
Surface-separating case can be treated similarly.

Notice the importance of this Theorem: since after cutting along the specified cycles we get a
planar graph, we can apply our knowledge of the planar graphs and then modify the conclusions
to work for the original G.
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4 Colourings of Graphs and Surfaces

Definition 4.1. Let G be a graph and let C be a set of colours (usually C ⊆ N). Then for every
v ∈ V (G) let L(v) ⊆ C be a set of admissible colours for v. An L-colouring of a graph G is a
function c : V (G) → C such that ∀v ∈ V (G), c(v) ∈ L(v) and c(u) 6= c(v) if uv ∈ E(G).

Note that the usual k-colourings are a special case where L(v) = {1, 2 . . . k} ∀v.

Definition 4.2. The choice number or list chromatic number of G is the minimum integer k
such that for every list assignment L : V (G) → C, where |L(v)| ≥ k ∀v ∈ V (G) there exists an
L-colouring of G. We will denote choice number of G by ch(G).

Clearly ch(G) ≥ χ(G).

Claim 4.3. There exists a bipartite graph whose choice number can be made infinitely large.

Example 4.4. Consider a complete bipartite graph Bkk,k as follows:

Here Li is a k-subset that uses precisely one element of each list on the right. Then ch(Bkk,k) >
k.

Theorem 4.5. (Thomassen) Every planar graph has choice number at most 5 (i.e. it’s 5-choosable).

This Theorem is a Corollary of the following Lemma.

Lemma 4.6. Let L be a list assignment for a plane graph G. Suppose that the outer face of G is
bounded by a cycle C = v1v2 . . . vr and suppose also that |L(v1)| ≥ 1, |L(v2)| ≥ 1, |L(v1)

⋂
L(v2)| ≥

2, |L(vi)| ≥ 3 for i = 3, . . . r and for every vertex v ∈ V (G)\V (C) |L(v)| ≥ 5. Then G is
L-colourable.

5



Note that Theorem 4.5 follows if we let |L(v)| = 5 for every v ∈ V (G).

Proof. Proof will use the induction on the number of vertices of G. We may assume that all faces
of G (except possibly for C) are 3-cycles and we may also assume that L(v1) = {a}, L(v2) = {b},
where b 6= a and |L(vi)| = 3, |L(v)| = 5 for v and all vi as defined in the statement of the Theorem.
Then either C has a chord or C is an induced cycle.
First suppose that C has a chord vivj . Split C into two as following:

Now we will apply induction hypothesis to G1 to get an L-colouring for it. Let a∗ and b∗ be
colours of vi and vj in G1. After letting L(vi) = {a∗} and L(vj) = {b∗} we can apply induction
hypothesis to G2 to get a valid L-colouring of G.
Suppose now that C is an induced cycle. Let p and q be two distinct colours in L(vr) not equal to
a. By removing p and q from the lists of colours of neighbours of vr on the interior of C, we can
apply induction hypothesis to G− vr. We may assume that vr−1 was not coloured with q and then
the obtained colouring can be extended to L-colouring of G.

5 Four Colour Theorem

Theorem 5.1. Every planar graph can be 4-coloured.

This theorem was finally proved in 1977 by Appel and Haken and we will provide some ideas
for the proof.

• Minimal counterexample
Let G be a minimal counterexample. It can be shown that it implies that G is a triangulation
with minimum degree 5 and is therefore 5-connected.

• Unavoidability
Every minimal counterexample contains a configuration in a list Q1, Q2, . . . Qn, where n ≈
1300.

• Reducibility
Q1, Q2, . . . Qn cannot occur in a minimal counterexample.

Let’s now consider an axample of an unavoidability result.
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Proposition 5.2. Every 5-connected triangulation of genus 0 with minimum degree 5 contains one
of the following 2 configurations:

Proof. We will use a technique known as discharging. We initially assign a charge c(v) ∈ (R) to
every vertex of G such that

∑
v∈V (G) c(v) > 0. We then specify the rules of discharging based on

the degrees of the vertices around v to redistribute the charge, so that the new charges c∗(v) satisfy
the following: ∑

v∈V (G)

c∗(v) =
∑

v∈V (G)

c(v) > 0.

All that’s left to prove now is that c∗(v) ≤ 0 ∀v ∈ V (G). For planar triangulations we can use
c(v) = 6− deg(v) for initial charge. Then Euler’s formula implies that∑

v∈V (G)

c(v) =
∑

v∈V (G)

(6− deg(v)) = 12.

Define the discharging rule as follows: for every vertex of degree 5 send 1
3 of the charge to its

neighbours of degree at least 7. If v is a vertex of degree 5, then it has at least 3 neighbours of
degree at least 7 and therefore c∗(v) ≤ 1− 1

3 × 3 = 0. If deg(v) = 6, then c∗(v) = c(v) = 0. Finally
if deg(v) = k ≥ 7, then v has at most bk

2c neighbours of degree 5. Then

c∗(v) ≤ c(v) +
1
3
bk
2
c = 6− k +

1
3
bk
2
c.

So for k = 7, c∗(v) = 0 and for k ≥ 8 we get:

c∗(v) ≤ 6− k +
1
3
bk
2
c ≤ 6− k +

k

6
= 6− 5

6
k < 0.

Therefore the total charge is non-positive and this contradiction proves that one of the configura-
tions in the statement must be present.
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