Topological Graph Theory*
 Lecture 3-4: Characterizations of Planar Graphs

Notes taken by Dan Benvenuti

Burnaby, 2006

Summary: An indepth look at various characterizations of planar graphs including: Kuratowski subgraphs, bridges, cycle spaces, and 2-bases.

1 Kuratowski's Theorem

Definition 1.1. A Kuratowski subgraph is a subgraph homeomorphic to a subdivision of K_{5} or $K_{3,3}$, denoted $S K_{5} / S K_{3,3}$.

Lemma 1.2. Let G be a graph with cycle C and $X, Y \subseteq V(G)$ then one of the following holds:

1. $|X|=1$ or $|Y|=1$
2. $X=Y$
3. \exists vertices $x_{1}, y_{1}, x_{2}, x_{1}$ occuring in that order on C with $x_{i} \in X$ and $y_{i} \in Y$ for $i=1 \ldots 2$
4. \exists vertices $u, v \in V(C) \ni$ there are two paths, P and Q, from u to v with $C=P \cup Q$ and $X \subseteq V(P), Y \subseteq V(Q)$

Proof. Assume X and Y do not satisfy (1) or (2). Furthermore, assume $x_{1} \in X \backslash Y$. Walk along C in both directions until vertices $y_{1}, y_{2} \in Y$ are reached. Denote the $y_{1} y_{2}$-path on C not using x_{1} as Q. If $x_{2} \in X$ is in Q then (4). Else, (3).

Lemma 1.3. Let G be a 3-connected graph that does not contain $S K_{5}$ or $S K_{3,3}$ as a subgraph, then G can be embedded in $\mathbb{R}^{2} \ni$ all faces are convex and the unbounded face is the complement of a convex set. In particular, all edges are straight line segments.

Proof. Show $G^{\prime}=G / / e$ has a convex embedding by induction on $|G|$. Let z denote the vertex formed by contracting edge $e \in E(G)$. Then, $G^{\prime}-z$ is 2 -connected with a new face, C, bounded by a cycle in G. Consider the two cases, C is the bounded face, and C is the unbounded face. Apply Lemma 1.2 to obtain the desired result from Case 4.

Corollary 1.4. Every 2 -connected planar graph has a convex embedding in \mathbb{R}^{2}.

[^0]Lemma 1.5. Suppose G with $|G| \geq 4$ has no $S K_{5} / S K_{3,3}$, but adding any edge between non-adjacent vertices creates such a subdivision then G is 3-connected.

Proof. Proceed by induction on $|G|$. Clearly, G is 2 -connected. Suppose G has cutset $\{x, y\}$, where $e=x y$. Denote $G=G_{1} \cap G_{2}$ where $G_{1} \cup G_{2}=e$. Observe that G_{1} and G_{2} are 3-connected. Let z_{i} be a vertex in the same face as edge e in $G_{i}, i=1 \ldots 2$. Adding the edge $z_{1} z_{2}$ in G yields the desired contradiction.

Theorem 1.6. Kuratowski's Theorem: Graph G is planar $\Longleftrightarrow G$ does not contain $S K_{5} / S K_{3,3}$.
Proof. Apply Lemma 1.3 and Lemma 1.5.
Theorem 1.7. If G is a planar graph then G has a planar representation whose edges are all straight lines.

2 Other Characterizations of Planar Graphs

Definition 2.1. Graph G contains K as a minor if K can be obtained from a subgraph of G by a sequence of edge contractions.

Theorem 2.2. G is a planar graph \Longleftrightarrow it contains neither K_{5} nor $K_{3,3}$ as a minor.
Observation 2.3. The following are direct consquences of previous results:

1. If G contains a subdivision of K then G contains K as a minor.
2. If G contains K_{5} as a minor then G contains either $S K_{5}$ or $S K_{3,3}$.

Definition 2.4. A chord of cycle C in graph G is an edge $e \in E(G)$ with endpoints on C but $e \notin E(C)$.
Definition 2.5. Let C be a cycle of graph G. A bridge of C is either a connected component H of $G-V(C)$ togehter with all edges joining H to C , or a chord of C.

Definition 2.6. The vertices of attachment of a bridge B on cycle C are the vertices $V(C) \cap V(B)$.
Definition 2.7. Two bridges B_{1} and B_{2} of cycle C overlap if:

1. B_{1} and B_{2} have three (or more) common vertices of attachment, or
2. C contains distinct vertices $b_{1,1}, b_{2,1}, b_{1,2}, b_{2,2}$ in the given order, where $b_{i, j} \in B_{i}$ for $i, j=$ $1 \ldots 2$.

Definition 2.8. Bridges B_{1} and B_{2} skew-overlap if they exhibit Case 2 of 2.7.
Lemma 2.9. If C is a cycle of planar graph G with overlapping bridges B_{1} and B_{2} then B_{1} and B_{2} lie in distinct faces with respect to C.

Proof. Suppose both B_{1} and B_{2} lie in the face face with respect to C (WLOG suppose they lie on the exterior of C). Form graph G^{\prime} by adding an additional vertex, v, to the opposing face (the interior) and placing edges from v to all vertices of attachment. This contradcts the planarity of G by obtaining $S K_{5} / S K 3,3$ in both cases of Defintion 2.7.

Theorem 2.10. A graph G is not planar $\Longleftrightarrow \exists$ a cycle C in G that contains three (or more) bridges, B_{1}, B_{2}, B_{3}, that pairwise overlap.

Proof. As shown in Lemma 2.9 at most one overlapping bridge may reside in a given face of C to retain planarity. By the Jordan Curve Theorem cycle C seperates the plane into two components. Hence, C can have at most two overlapping bridges.

Theorem 2.11. Let G be a planar graph with $x, y \in V(G) . G+x y$ is not planar $\Longleftrightarrow G$ contains a cycle $C \ni x$ and y are in distinct overlapping bridges of C.

Proof. (\Leftarrow) Given x and y reside in overlapping bridges, they reside is different faces in G seperated by C. Thus, edge $x y$ cannot be added while conserving planarity. (\Rightarrow) Given $G+x y$ is not planar $\exists K=S K_{5} / S K_{3,3}$ with cycle C in K seperating x from y. Since C is also a cycle of G with x and y seperated, x and y are distinct.

Definition 2.12. The overlap graph of cycle C in graph G has C-bridges as vertices and two such vertices are adjacent if the corresponding bridges overlap.

Definition 2.13. The skew-overlap graph is a spanning subgraph of the overlap graph with vertices adjacent \Longleftrightarrow the corresponding bridges skew-overlap.

Theorem 2.14. The following are equivalent:

1. graph G is not planar
2. the overlap graph of some cycle C is non-bipartite
3. the skew-overlap graph of some cycle C is non-bipartite
4. the skew-overlap graph of some cycle C contains a 3-cycle

Proof. Trivally, $4 \rightarrow 3 \rightarrow 2 \rightarrow 1$. We need only show $1 \rightarrow 4$. Proceed by induction on the number of edges which need to be removed to obtain $S K_{5} / S K_{3,3}$. So $\exists e \in E(G) \ni G-e$ is non-planar. By induction $G-e$ has a cycle C whose skew-overlap graph, H, contains 3 -cycle T. Let H^{\prime} be the graph formed from H by identifying two vertices. Use these vertices, cycle C, and Lemma 2.9 to obtain the desired result.

3 Algebraic Graph Theory

Definition 3.1. The cycle space of graph G denoted, $Z(G)$, has $E(G) \supseteq A \in Z(G) \Longleftrightarrow A$ generates an Eulerian subgraph of G.

Definition 3.2. The symmetric difference of $A, B \subseteq E(G)$ is defined, $A+B=(A \cup B) \backslash(A \cap B)$.
Observation 3.3. The symmetric difference of two sets is associative $(A+B=B+A)$ and if $s \in S=S_{1}+\cdots+S_{k}$ then s belongs to an odd number of S_{i}.

Definition 3.4. The power set of $E(G)$ denoted, $P(E)$, is a vector space over $G F(2)$ with operation "+".

Observation 3.5. $\operatorname{dim}(P(E))=\|G\|=|E(G)|$.

Definition 3.6. Given a graph G and spanning tree T, a fundamental cycle of T is the unique cycle, $C(e, T)$, formed by adding any non-tree edge in G to T.

Proposition 3.7. If G is a connected graph, then:

$$
\operatorname{dim}(Z(G)=\|G\|-|G|+1=|E(G)|-(n-1)
$$

Proof. Construct a basis for $Z(G)$ via a spanning tree, T. Then

$$
\{C(e, T): e \in E(G) \backslash E(T)\}
$$

is a basis of $Z(G)$, as the $C(e, T)$ are independent and, as a set, have the desired cardinality.
Proposition 3.8. Let G be a 2-connected planar graph then the set of all facial cycles of G generates $Z(G)$. Moreover, if any facial cycle is removed then we obtain a basis for $Z(G)$.

Proof. It is sufficent to show every cycle is the sum of facial cycles inside the disk bounded by the current identified cycle, C. The result follows from Euler's Formula, $\|G\|-|G|+f=2 \Rightarrow f-1=$ $|G|-\|G\|+1=\operatorname{dim}(Z(G))$.

Definition 3.9. A basis, \mathcal{B}, of a cycle space is a 2 -basis if every edge of G belongs to at most two elements of \mathcal{B}.

Theorem 3.10. (MacLane) Let G e a 2-connected graph. G has a 2-basis of $Z(G) \Longleftrightarrow G$ is planar. Moreover, if \mathcal{B} is a 2-basis then \mathcal{B} consists of facial cycles (excluding one) of some planar embedding of G.

Proof. (\Rightarrow) First observe that if G is not planar then it does not have a 2-basis. (\Leftarrow) Given G is a 2-connectd planar graph. Let $C_{1} \ldots C_{r}$ denote the facial cycles of G, then $r=|G|-\|G\|+2=$ $1+\operatorname{dim}(Z(G))$. But $C_{1} \ldots C_{r-1}$ generates $Z(G)$.

All that remains is to show that every 2 -basis of \mathcal{B} corresponds to an embedding of G. Let \mathcal{B}^{\prime} be a 2-basis of G^{\prime}, the graph formed by subdiving each edge of G once. Construct $G^{\prime \prime}$ by adding a new vertex v_{C} in the interior of every cycle $C \in \mathcal{B}^{\prime}$ and connecting it to all vertices on C. Then $\mathcal{B}^{\prime \prime}$ is a 2-basis of $G^{\prime \prime}$, so $G^{\prime \prime}$ is planar. Deleting all v_{C} yield a planar embedding of G.

Corollary 3.11. If G is a plane graph whose faces are bounded by an even number of edges then G is bipartite.

Proof. Suppose G is not bipartite then it contains an odd cycle, C. By Theorem $3.10, C$ is the sum of facial cycles. Hence, one such cycle must be odd.

4 3-Connected Planar Graphs

Definition 4.1. A cycle is induced if it has no chords.
Definition 4.2. A cycle, C, of graph G is non-seperating if $G-V(C)$ is connected.
Theorem 4.3. Let G be a 3-connected planar graph. Cycle C is a facial cycle in some planar representation of $G \Longleftrightarrow C$ is induced and non-seperating.

Proof. (\Rightarrow) Given C is a facial cycle. If $e \in E(G)$ is a chord of of C then $G-e$ is disconnected, hence C contains only a single bridge. (\Leftarrow) By the Jordan Curve Theorem an induced non-seperating cycle is facial.

Theorem 4.4. (Whitney's Uniqueness Theorem) All 3-connected planar graphs have unique embeddings in \mathbb{R}^{2}.

Proof. Observe that Theorem 4.3 implies that the faces of a 3-connected planar graph are determined from the graph, without regard to any planar drawing. Since any two drawings of G have the same faces, the result follows.

Theorem 4.5. (Tutte's Non-seperating Cycles Theorem) If graph G is 3-connected and $e \in E(G)$ then G contains at least two induced non-seperating cycles Q_{1} and $Q_{2} \ni Q_{1} \cap Q_{2}=e$.

Corollary 4.6. Given graph G is 3 -connected. G is nonplanar $\Longleftrightarrow \exists e \in E(G) \ni e$ is contained in at least three induced non-seperating cycles.

Proof. Follows directly from Theorem 4.5.
Proposition 4.7. Let G be a 3-connected graph (which is not K_{5}). G is not planar \Longleftrightarrow it contains $S K_{3,3}$.

Proof. ($\Leftarrow)$ This trivially follows from Kuratowski's Theroem. (\Rightarrow) Given G is not planar, but not K_{5}. It must be that $S K_{5} \subseteq G$. Thus, G contains an $S K_{5}$-bridge, B, with vertices of attachment on at least 2 paths of $S K_{5}$ corresponding to edges in K_{5}. Any such drawing contains a $K_{3,3}$ subdvision.

[^0]: * Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.

