Topological Graph Theory^{*} Lecture 3-4: Characterizations of Planar Graphs

Notes taken by Dan Benvenuti

Burnaby, 2006

Summary: An indepth look at various characterizations of planar graphs including: Kuratowski subgraphs, bridges, cycle spaces, and 2-bases.

1 Kuratowski's Theorem

Definition 1.1. A Kuratowski subgraph is a subgraph homeomorphic to a subdivision of K_5 or $K_{3,3}$, denoted $SK_5/SK_{3,3}$.

Lemma 1.2. Let G be a graph with cycle C and $X, Y \subseteq V(G)$ then one of the following holds:

- 1. |X| = 1 or |Y| = 1
- 2. X = Y
- 3. \exists vertices x_1, y_1, x_2, x_1 occuring in that order on C with $x_i \in X$ and $y_i \in Y$ for $i = 1 \dots 2$
- 4. \exists vertices $u, v \in V(C) \ni$ there are two paths, P and Q, from u to v with $C = P \cup Q$ and $X \subseteq V(P), Y \subseteq V(Q)$

Proof. Assume X and Y do not satisfy (1) or (2). Furthermore, assume $x_1 \in X \setminus Y$. Walk along C in both directions until vertices $y_1, y_2 \in Y$ are reached. Denote the y_1y_2 -path on C not using x_1 as Q. If $x_2 \in X$ is in Q then (4). Else, (3).

Lemma 1.3. Let G be a 3-connected graph that does not contain SK_5 or $SK_{3,3}$ as a subgraph, then G can be embedded in $\mathbb{R}^2 \ni$ all faces are convex and the unbounded face is the complement of a convex set. In particular, all edges are straight line segments.

Proof. Show G' = G//e has a convex embedding by induction on |G|. Let z denote the vertex formed by contracting edge $e \in E(G)$. Then, G' - z is 2-connected with a new face, C, bounded by a cycle in G. Consider the two cases, C is the bounded face, and C is the unbounded face. Apply Lemma 1.2 to obtain the desired result from Case 4.

Corollary 1.4. Every 2-connected planar graph has a convex embedding in \mathbb{R}^2 .

^{*} Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.

Lemma 1.5. Suppose G with $|G| \ge 4$ has no $SK_5/SK_{3,3}$, but adding any edge between non-adjacent vertices creates such a subdivision then G is 3-connected.

Proof. Proceed by induction on |G|. Clearly, G is 2-connected. Suppose G has cutset $\{x, y\}$, where e = xy. Denote $G = G_1 \cap G_2$ where $G_1 \cup G_2 = e$. Observe that G_1 and G_2 are 3-connected. Let z_i be a vertex in the same face as edge e in G_i , $i = 1 \dots 2$. Adding the edge $z_1 z_2$ in G yields the desired contradiction.

Theorem 1.6. Kuratowski's Theorem: Graph G is planar \iff G does not contain $SK_5/SK_{3,3}$.

Proof. Apply Lemma 1.3 and Lemma 1.5.

Theorem 1.7. If G is a planar graph then G has a planar representation whose edges are all straight lines.

2 Other Characterizations of Planar Graphs

Definition 2.1. Graph G contains K as a minor if K can be obtained from a subgraph of G by a sequence of edge contractions.

Theorem 2.2. G is a planar graph \iff it contains neither K_5 nor $K_{3,3}$ as a minor.

Observation 2.3. The following are direct consquences of previous results:

- 1. If G contains a subdivision of K then G contains K as a minor.
- 2. If G contains K_5 as a minor then G contains either SK_5 or $SK_{3,3}$.

Definition 2.4. A chord of cycle C in graph G is an edge $e \in E(G)$ with endpoints on C but $e \notin E(C)$.

Definition 2.5. Let C be a cycle of graph G. A bridge of C is either a connected component H of G - V(C) togehter with all edges joining H to C, or a chord of C.

Definition 2.6. The vertices of attachment of a bridge B on cycle C are the vertices $V(C) \cap V(B)$.

Definition 2.7. Two bridges B_1 and B_2 of cycle *C* overlap if:

- 1. B_1 and B_2 have three (or more) common vertices of attachment, or
- 2. C contains distinct vertices $b_{1,1}, b_{2,1}, b_{1,2}, b_{2,2}$ in the given order, where $b_{i,j} \in B_i$ for $i, j = 1 \dots 2$.

Definition 2.8. Bridges B_1 and B_2 skew-overlap if they exhibit Case 2 of 2.7.

Lemma 2.9. If C is a cycle of planar graph G with overlapping bridges B_1 and B_2 then B_1 and B_2 lie in distinct faces with respect to C.

Proof. Suppose both B_1 and B_2 lie in the face face with respect to C (WLOG suppose they lie on the exterior of C). Form graph G' by adding an additional vertex, v, to the opposing face (the interior) and placing edges from v to all vertices of attachment. This contradcts the planarity of G by obtaining $SK_5/SK3, 3$ in both cases of Definition 2.7.

Theorem 2.10. A graph G is not planar $\iff \exists$ a cycle C in G that contains three (or more) bridges, B_1, B_2, B_3 , that pairwise overlap.

Proof. As shown in Lemma 2.9 at most one overlapping bridge may reside in a given face of C to retain planarity. By the *Jordan Curve Theorem* cycle C separates the plane into two components. Hence, C can have at most two overlapping bridges.

Theorem 2.11. Let G be a planar graph with $x, y \in V(G)$. G + xy is not planar $\iff G$ contains a cycle $C \ni x$ and y are in distinct overlapping bridges of C.

Proof. (\Leftarrow) Given x and y reside in overlapping bridges, they reside is different faces in G separated by C. Thus, edge xy cannot be added while conserving planarity. (\Rightarrow) Given G + xy is not planar $\exists K = SK_5/SK_{3,3}$ with cycle C in K separating x from y. Since C is also a cycle of G with x and y separated, x and y are distinct.

Definition 2.12. The *overlap graph* of cycle C in graph G has C-bridges as vertices and two such vertices are adjacent if the corresponding bridges overlap.

Definition 2.13. The *skew-overlap graph* is a spanning subgraph of the overlap graph with vertices adjacent \iff the corresponding bridges skew-overlap.

Theorem 2.14. The following are equivalent:

- 1. graph G is not planar
- 2. the overlap graph of some cycle C is non-bipartite
- 3. the skew-overlap graph of some cycle C is non-bipartite
- 4. the skew-overlap graph of some cycle C contains a 3-cycle

Proof. Trivally, $4 \to 3 \to 2 \to 1$. We need only show $1 \to 4$. Proceed by induction on the number of edges which need to be removed to obtain $SK_5/SK_{3,3}$. So $\exists e \in E(G) \ni G - e$ is non-planar. By induction G - e has a cycle C whose skew-overlap graph, H, contains 3-cycle T. Let H' be the graph formed from H by identifying two vertices. Use these vertices, cycle C, and Lemma 2.9 to obtain the desired result.

3 Algebraic Graph Theory

Definition 3.1. The cycle space of graph G denoted, Z(G), has $E(G) \supseteq A \in Z(G) \iff A$ generates an Eulerian subgraph of G.

Definition 3.2. The symmetric difference of $A, B \subseteq E(G)$ is defined, $A + B = (A \cup B) \setminus (A \cap B)$.

Observation 3.3. The symmetric difference of two sets is associative (A + B = B + A) and if $s \in S = S_1 + \cdots + S_k$ then s belongs to an odd number of S_i .

Definition 3.4. The *power set of* E(G) denoted, P(E), is a vector space over GF(2) with operation "+".

Observation 3.5. dim(P(E)) = ||G|| = |E(G)|.

Definition 3.6. Given a graph G and spanning tree T, a fundamental cycle of T is the unique cycle, C(e, T), formed by adding any non-tree edge in G to T.

Proposition 3.7. If G is a connected graph, then:

$$dim(Z(G) = ||G|| - |G| + 1 = |E(G)| - (n - 1)$$

Proof. Construct a basis for Z(G) via a spanning tree, T. Then

$$\{C(e,T) : e \in E(G) \setminus E(T)\}$$

is a basis of Z(G), as the C(e,T) are independent and, as a set, have the desired cardinality. \Box

Proposition 3.8. Let G be a 2-connected planar graph then the set of all facial cycles of G generates Z(G). Moreover, if any facial cycle is removed then we obtain a basis for Z(G).

Proof. It is sufficient to show every cycle is the sum of facial cycles inside the disk bounded by the current identified cycle, C. The result follows from *Euler's Formula*, $||G|| - |G| + f = 2 \Rightarrow f - 1 = |G| - ||G|| + 1 = dim(Z(G))$.

Definition 3.9. A basis, \mathcal{B} , of a cycle space is a *2-basis* if every edge of *G* belongs to at most two elements of \mathcal{B} .

Theorem 3.10. (MacLane) Let G e a 2-connected graph. G has a 2-basis of $Z(G) \iff G$ is planar. Moreover, if \mathcal{B} is a 2-basis then \mathcal{B} consists of facial cycles (excluding one) of some planar embedding of G.

Proof. (\Rightarrow) First observe that if G is not planar then it does not have a 2-basis. (\Leftarrow) Given G is a 2-connectd planar graph. Let $C_1 \ldots C_r$ denote the facial cycles of G, then $r = |G| - ||G|| + 2 = 1 + \dim(Z(G))$. But $C_1 \ldots C_{r-1}$ generates Z(G).

All that remains is to show that every 2-basis of \mathcal{B} corresponds to an embedding of G. Let \mathcal{B}' be a 2-basis of G', the graph formed by subdiving each edge of G once. Construct G'' by adding a new vertex v_C in the interior of every cycle $C \in \mathcal{B}'$ and connecting it to all vertices on C. Then \mathcal{B}'' is a 2-basis of G'', so G'' is planar. Deleting all v_C yield a planar embedding of G.

Corollary 3.11. If G is a plane graph whose faces are bounded by an even number of edges then G is bipartite.

Proof. Suppose G is not bipartite then it contains an odd cycle, C. By Theorem 3.10, C is the sum of facial cycles. Hence, one such cycle must be odd. \Box

4 **3-Connected Planar Graphs**

Definition 4.1. A cycle is *induced* if it has no chords.

Definition 4.2. A cycle, C, of graph G is non-separating if G - V(C) is connected.

Theorem 4.3. Let G be a 3-connected planar graph. Cycle C is a facial cycle in some planar representation of $G \iff C$ is induced and non-separating.

Proof. (\Rightarrow) Given C is a facial cycle. If $e \in E(G)$ is a chord of of C then G-e is disconnected, hence C contains only a single bridge. (\Leftarrow) By the Jordan Curve Theorem an induced non-separating cycle is facial.

Theorem 4.4. (Whitney's Uniqueness Theorem) All 3-connected planar graphs have unique embeddings in \mathbb{R}^2 .

Proof. Observe that Theorem 4.3 implies that the faces of a 3-connected planar graph are determined from the graph, without regard to any planar drawing. Since any two drawings of G have the same faces, the result follows.

Theorem 4.5. (Tutte's Non-separating Cycles Theorem) If graph G is 3-connected and $e \in E(G)$ then G contains at least two induced non-separating cycles Q_1 and $Q_2 \ni Q_1 \cap Q_2 = e$.

Corollary 4.6. Given graph G is 3-connected. G is nonplanar $\iff \exists e \in E(G) \ni e$ is contained in at least three induced non-separating cycles.

Proof. Follows directly from Theorem 4.5.

Proposition 4.7. Let G be a 3-connected graph (which is not K_5). G is not planar \iff it contains $SK_{3,3}$.

Proof. (\Leftarrow) This trivially follows from *Kuratowski's Theroem.* (\Rightarrow) Given G is not planar, but not K_5 . It must be that $SK_5 \subseteq G$. Thus, G contains an SK_5 -bridge, B, with vertices of attachment on at least 2 paths of SK_5 corresponding to edges in K_5 . Any such drawing contains a $K_{3,3}$ subdvision.