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Burnaby, 2006

Summary: An indepth look at various characterizations of planar graphs including:
Kuratowski subgraphs, bridges, cycle spaces, and 2-bases.

1 Kuratowski’s Theorem

Definition 1.1. A Kuratowski subgraph is a subgraph homeomorphic to a subdivision of K5 or
K3,3, denoted SK5/SK3,3.

Lemma 1.2. Let G be a graph with cycle C and X, Y ⊆ V (G) then one of the following holds:

1. |X| = 1 or |Y | = 1

2. X = Y

3. ∃ vertices x1, y1, x2, x1 occuring in that order on C with xi ∈ X and yi ∈ Y for i = 1 . . . 2

4. ∃ vertices u, v ∈ V (C) 3 there are two paths, P and Q, from u to v with C = P ∪ Q and
X ⊆ V (P ), Y ⊆ V (Q)

Proof. Assume X and Y do not satisfy (1) or (2). Furthermore, assume x1 ∈ X\Y . Walk along C
in both directions until vertices y1, y2 ∈ Y are reached. Denote the y1y2-path on C not using x1 as
Q. If x2 ∈ X is in Q then (4). Else, (3).

Lemma 1.3. Let G be a 3-connected graph that does not contain SK5 or SK3,3 as a subgraph,
then G can be embedded in R2 3 all faces are convex and the unbounded face is the complement of
a convex set. In particular, all edges are straight line segments.

Proof. Show G′ = G//e has a convex embedding by induction on |G|. Let z denote the vertex
formed by contracting edge e ∈ E(G). Then, G′− z is 2-connected with a new face, C, bounded by
a cycle in G. Consider the two cases, C is the bounded face, and C is the unbounded face. Apply
Lemma 1.2 to obtain the desired result from Case 4.

Corollary 1.4. Every 2-connected planar graph has a convex embedding in R2.
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Lemma 1.5. Suppose G with |G| ≥ 4 has no SK5/SK3,3, but adding any edge between non-adjacent
vertices creates such a subdivision then G is 3-connected.

Proof. Proceed by induction on |G|. Clearly, G is 2-connected. Suppose G has cutset {x, y}, where
e = xy. Denote G = G1 ∩ G2 where G1 ∪ G2 = e. Observe that G1 and G2 are 3-connected. Let
zi be a vertex in the same face as edge e in Gi, i = 1 . . . 2. Adding the edge z1z2 in G yields the
desired contradiction.

Theorem 1.6. Kuratowski’s Theorem: Graph G is planar ⇐⇒ G does not contain SK5/SK3,3.

Proof. Apply Lemma 1.3 and Lemma 1.5.

Theorem 1.7. If G is a planar graph then G has a planar representation whose edges are all
straight lines.

2 Other Characterizations of Planar Graphs

Definition 2.1. Graph G contains K as a minor if K can be obtained from a subgraph of G by a
sequence of edge contractions.

Theorem 2.2. G is a planar graph ⇐⇒ it contains neither K5 nor K3,3 as a minor.

Observation 2.3. The following are direct consquences of previous results:

1. If G contains a subdivision of K then G contains K as a minor.

2. If G contains K5 as a minor then G contains either SK5 or SK3,3.

Definition 2.4. A chord of cycle C in graph G is an edge e ∈ E(G) with endpoints on C but
e /∈ E(C).

Definition 2.5. Let C be a cycle of graph G. A bridge of C is either a connected component H
of G− V (C) togehter with all edges joining H to C, or a chord of C.

Definition 2.6. The vertices of attachment of a bridge B on cycle C are the vertices V (C)∩V (B).

Definition 2.7. Two bridges B1 and B2 of cycle C overlap if:

1. B1 and B2 have three (or more) common vertices of attachment, or

2. C contains distinct vertices b1,1, b2,1, b1,2, b2,2 in the given order, where bi,j ∈ Bi for i, j =
1 . . . 2.

Definition 2.8. Bridges B1 and B2 skew-overlap if they exhibit Case 2 of 2.7.

Lemma 2.9. If C is a cycle of planar graph G with overlapping bridges B1 and B2 then B1 and
B2 lie in distinct faces with respect to C.

Proof. Suppose both B1 and B2 lie in the face face with respect to C (WLOG suppose they lie
on the exterior of C). Form graph G′ by adding an additional vertex, v, to the opposing face (the
interior) and placing edges from v to all vertices of attachment. This contradcts the planarity of G
by obtaining SK5/SK3, 3 in both cases of Defintion 2.7.
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Theorem 2.10. A graph G is not planar ⇐⇒ ∃ a cycle C in G that contains three (or more)
bridges, B1, B2, B3, that pairwise overlap.

Proof. As shown in Lemma 2.9 at most one overlapping bridge may reside in a given face of C to
retain planarity. By the Jordan Curve Theorem cycle C seperates the plane into two components.
Hence, C can have at most two overlapping bridges.

Theorem 2.11. Let G be a planar graph with x, y ∈ V (G). G+xy is not planar ⇐⇒ G contains
a cycle C 3 x and y are in distinct overlapping bridges of C.

Proof. (⇐) Given x and y reside in overlapping bridges, they reside is different faces in G seperated
by C. Thus, edge xy cannot be added while conserving planarity. (⇒) Given G + xy is not planar
∃K = SK5/SK3,3 with cycle C in K seperating x from y. Since C is also a cycle of G with x and
y seperated, x and y are distinct.

Definition 2.12. The overlap graph of cycle C in graph G has C-bridges as vertices and two such
vertices are adjacent if the corresponding bridges overlap.

Definition 2.13. The skew-overlap graph is a spanning subgraph of the overlap graph with vertices
adjacent ⇐⇒ the corresponding bridges skew-overlap.

Theorem 2.14. The following are equivalent:

1. graph G is not planar

2. the overlap graph of some cycle C is non-bipartite

3. the skew-overlap graph of some cycle C is non-bipartite

4. the skew-overlap graph of some cycle C contains a 3-cycle

Proof. Trivally, 4 → 3 → 2 → 1. We need only show 1 → 4. Proceed by induction on the number
of edges which need to be removed to obtain SK5/SK3,3. So ∃e ∈ E(G) 3 G − e is non-planar.
By induction G− e has a cycle C whose skew-overlap graph, H, contains 3-cycle T . Let H ′ be the
graph formed from H by identifying two vertices. Use these vertices, cycle C, and Lemma 2.9 to
obtain the desired result.

3 Algebraic Graph Theory

Definition 3.1. The cycle space of graph G denoted, Z(G), has E(G) ⊇ A ∈ Z(G) ⇐⇒ A
generates an Eulerian subgraph of G.

Definition 3.2. The symmetric difference of A,B ⊆ E(G) is defined, A + B = (A ∪B)\(A ∩B).

Observation 3.3. The symmetric difference of two sets is associative (A + B = B + A) and if
s ∈ S = S1 + · · ·+ Sk then s belongs to an odd number of Si.

Definition 3.4. The power set of E(G) denoted, P (E), is a vector space over GF (2) with operation
“+”.

Observation 3.5. dim(P (E)) = ‖G‖ = |E(G)|.
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Definition 3.6. Given a graph G and spanning tree T , a fundamental cycle of T is the unique
cycle, C(e, T ), formed by adding any non-tree edge in G to T .

Proposition 3.7. If G is a connected graph, then:

dim(Z(G) = ‖G‖ − |G|+ 1 = |E(G)| − (n− 1)

Proof. Construct a basis for Z(G) via a spanning tree, T . Then

{C(e, T ) : e ∈ E(G)\E(T )}

is a basis of Z(G), as the C(e, T ) are independent and, as a set, have the desired cardinality.

Proposition 3.8. Let G be a 2-connected planar graph then the set of all facial cycles of G generates
Z(G). Moreover, if any facial cycle is removed then we obtain a basis for Z(G).

Proof. It is sufficent to show every cycle is the sum of facial cycles inside the disk bounded by the
current identified cycle, C. The result follows from Euler’s Formula, ‖G‖ − |G|+ f = 2 ⇒ f − 1 =
|G| − ‖G‖+ 1 = dim(Z(G)).

Definition 3.9. A basis, B, of a cycle space is a 2-basis if every edge of G belongs to at most two
elements of B.

Theorem 3.10. (MacLane) Let G e a 2-connected graph. G has a 2-basis of Z(G) ⇐⇒ G is
planar. Moreover, if B is a 2-basis then B consists of facial cycles (excluding one) of some planar
embedding of G.

Proof. ( ⇒ ) First observe that if G is not planar then it does not have a 2-basis. ( ⇐ ) Given G
is a 2-connectd planar graph. Let C1 . . . Cr denote the facial cycles of G, then r = |G| − ‖G‖+ 2 =
1 + dim(Z(G)). But C1 . . . Cr−1 generates Z(G).

All that remains is to show that every 2-basis of B corresponds to an embedding of G. Let B′

be a 2-basis of G′, the graph formed by subdiving each edge of G once. Construct G′′ by adding a
new vertex vC in the interior of every cycle C ∈ B′ and connecting it to all vertices on C. Then B′′

is a 2-basis of G′′, so G′′ is planar. Deleting all vC yield a planar embedding of G.

Corollary 3.11. If G is a plane graph whose faces are bounded by an even number of edges then
G is bipartite.

Proof. Suppose G is not bipartite then it contains an odd cycle, C. By Theorem 3.10, C is the
sum of facial cycles. Hence, one such cycle must be odd.

4 3-Connected Planar Graphs

Definition 4.1. A cycle is induced if it has no chords.

Definition 4.2. A cycle, C, of graph G is non-seperating if G− V (C) is connected.

Theorem 4.3. Let G be a 3-connected planar graph. Cycle C is a facial cycle in some planar
representation of G ⇐⇒ C is induced and non-seperating.
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Proof. (⇒) Given C is a facial cycle. If e ∈ E(G) is a chord of of C then G−e is disconnected, hence
C contains only a single bridge. (⇐) By the Jordan Curve Theorem an induced non-seperating
cycle is facial.

Theorem 4.4. (Whitney’s Uniqueness Theorem) All 3-connected planar graphs have unique
embeddings in R2.

Proof. Observe that Theorem 4.3 implies that the faces of a 3-connected planar graph are deter-
mined from the graph, without regard to any planar drawing. Since any two drawings of G have
the same faces, the result follows.

Theorem 4.5. (Tutte’s Non-seperating Cycles Theorem) If graph G is 3-connected and
e ∈ E(G) then G contains at least two induced non-seperating cycles Q1 and Q2 3 Q1 ∩Q2 = e.

Corollary 4.6. Given graph G is 3-connected. G is nonplanar ⇐⇒ ∃e ∈ E(G) 3 e is contained
in at least three induced non-seperating cycles.

Proof. Follows directly from Theorem 4.5.

Proposition 4.7. Let G be a 3-connected graph (which is not K5). G is not planar ⇐⇒ it
contains SK3,3.

Proof. ( ⇐ ) This trivially follows from Kuratowski’s Theroem. ( ⇒ ) Given G is not planar,
but not K5. It must be that SK5 ⊆ G. Thus, G contains an SK5-bridge, B, with vertices of
attachment on at least 2 paths of SK5 corresponding to edges in K5. Any such drawing contains
a K3,3 subdvision.
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