Topological Graph Theory*
 Lecture 15-16 : Cycles of Embedded Graphs

Notes taken by Brendan Rooney

Burnaby, 2006

Summary: These notes cover the eighth week of classes. We present a theorem on the additivity of graph genera. Then we move on to cycles of embedded graphs, the three-path property, and an algorithm for finding a shortest cycle in a family of cycles of a graph.

1 Additivity of Genus

Theorem 1.1 (Additivity of Genus). Let G be a connected graph, and let $B_{1}, B_{2}, \ldots, B_{r}$ be the blocks of G. Then the genus of G is,

$$
g(G)=\sum_{i=1}^{r} g\left(B_{i}\right)
$$

and the Euler genus of G is,

$$
e g(G)=\sum_{i=1}^{r} e g\left(B_{i}\right)
$$

Observation 1.2. In order to prove the theorem it suffices to prove that if $G=G_{1} \cup G_{2}$, where $G_{1} \cap G_{2}=\{v\}$, then $g(G)=g\left(G_{1}\right)+g\left(G_{2}\right)$ and $e g(G)=e g\left(G_{1}\right)+e g\left(G_{2}\right)$.

Proof. We set

$$
\begin{aligned}
& g(G)=\min \{g(\Pi) \mid \Pi \text { is an orientable embedding of } G\} \\
& g\left(G_{1}\right)=\min \left\{g\left(\Pi_{1}\right) \mid \Pi_{1} \text { is an orientable embedding of } G_{1}\right\} \\
& g\left(G_{2}\right)=\min \left\{g\left(\Pi_{2}\right) \mid \Pi_{2} \text { is an orientable embedding of } G_{2}\right\}
\end{aligned}
$$

Let v_{1}, v_{2} be vertices in G_{1}, G_{2} respectively, distinct from v. Note that the local rotations of v_{1}, v_{2} are independent, but the local rotation of v is not. So if we take Π an embedding of G and split it along v we obtain Π_{1}, Π_{2} embeddings of G_{1}, G_{2} respectively. Facial walks in G that do not pass from G_{1} to G_{2} remain unchanged in Π_{1}, Π_{2}, however if a facial walk does pass from G_{1} to G_{2} then when we split we form an extra face. But we also have an extra vertex. So,

$$
g(\Pi)=g\left(\Pi_{1}\right)+g\left(\Pi_{2}\right) .
$$

[^0]Claim: The min value of $g(G)$ is attained at an embedding where the local rotation at the cut vertex v groups the edges from G_{1} into a single block.
Assume that this is not the case. Then each facial walk must use "mixed angles" in pairs (by mixed angle we refer to the angle formed at v between two edges, one from G_{1} and one from G_{2}). By considering the local rotations we see that we must traverse an odd number of negative signatures from v to v on any walk using mixed angles. Thus we have a 1 -sided cycle in our embedding. However this is a contradiction as we assumed that Π was orientable. This proves the claim. It also proves that

$$
g(G)=g\left(G_{1}\right)+g\left(G_{2}\right)
$$

This proof can be repeated with minor changes to prove that,

$$
e g(G)=e g\left(G_{1}\right)+e g\left(G_{2}\right) .
$$

This completes the proof.

2 Induced Embeddings

Given Π an embedding of G we wish to develop the notion of a corresponding embedding Π^{\prime} of H a subgraph of G. Suppose that $e \in E(G)$ is not a cut-edge of G, then we can consider deleting e from G. Without loss of generality, we may assume that $\lambda(e)=+1$. If e is in two distinct facial walks, then we can see that $G-e$ embeds in the same surface as G, this follows as $G-e$ will have the same Euler characteristic as G. If e appears twice on one face, then $G-e$ will embed in a simpler surface (the Euler genus will decrease by either 1 or 2). From this we can see that in the specific case of multigraphs, the embedding of the underlying simple graph cannot have larger genus, and never changes from orientable to non-orientable.

3 Cycles of Embedded Graphs

We start by giving an intuitive explanation of the classes of cycles we will consider. For example, say we are considering the surface \mathbb{S}_{3}, pictured below.

- C_{1} bounds a disk on the surface. Such cycles are called contractible cycles.
- Cutting along C_{2} separates the surface. Such cycles are called surface separating cycles.
- C_{3} and C_{4} are called surface non-separating cycles.
- Note that contractible cycles are also surface separating.

Now we formally define these notions. Let C be a two-sided cycle of a Π-embedded graph G. We may assume that $\lambda(e)=+1$ for all edges $e \in E(C)$. We can arbitrarily choose a "perspective" from which to view C. Now since C is two-sided we have a "left" and "right" side of C with respect to our perspective. This allows us to define:
$E_{L}:=$ the set of all edges incident to a vertex of C embedded on the "left" of C
$E_{R}:=$ the set of all edges incident to a vertex of C embedded on the "right" of C
$G_{L}(C):=$ the subgraph of G consisting of E_{L} and all vertices and edges in $G-C$ reachable from E_{L} $G_{R}(C):=$ the subgraph of G consisting of E_{R} and all vertices and edges in $G-C$ reachable from E_{R}

Definition 3.1. For a two-sided cycle C, if $G_{L}(C) \cap G_{R}(C) \subseteq C$, then we say that C is a surface separating cycle.

Proposition 3.2. Let C be a surface separation cycle of a Pi-embedded graph G. Consider the induced embeddings of $G_{L}^{\prime}:=G_{L}(C) \cup C$ and $G_{R}^{\prime}:=G_{R}(C) \cup C$. The sum of the Euler genera of the embeddings of G_{L}^{\prime} and G_{R}^{\prime} is eg (Π).

Proof. Claim \#1: Every facial walk of G is either a facial walk of G_{L}^{\prime} or a facial walk of G_{R}^{\prime}.
If a facial walk never reaches C, the claim holds trivially. Suppose we have a facial walk F tat intersects C. Since we take all signatures on C to be positive and all rotations to be equal, we can see that each time F enters C on a right edge, it will leave on a right edge (and vice versa). This proves the claim.
Claim \#2: C is facial in G_{L}^{\prime} and G_{R}^{\prime}.
This holds for the same reason as Claim \#1.
Thus the number of faces of G is two less than the sum of the number of faces in G_{L}^{\prime} and G_{R}^{\prime}. Now we simply apply Euler's formula to G, G_{L}^{\prime} and G_{R}^{\prime} to prove the proposition.

Definition 3.3. A cycle C of a Π-embedded graph G is Π-contractible if it is surface separating and the Euler genus of either the induced embedding of $G_{L}(C) \cup C$ or $G_{R}(C) \cup C$ is zero.

Note that this is equivalent to C bounding a disk on the surface.
Definition 3.4. If C is contractible and $G_{L}(C) \cup C$ has genus zero, then

$$
\begin{aligned}
\operatorname{int}(C)=\operatorname{int}(C, \Pi) & :=G_{L}(C) \\
\operatorname{Int}(C)=\operatorname{Int}(C, \Pi) & :=G_{L}(C) \cup C
\end{aligned}
$$

Now we can classify cycles of embeddings as:

4 Cutting Surfaces Along Cycles

Cutting a surface along a cycle C gives rise to a graph in which C is replaced by 2 cycles, C^{\prime} and $C^{\prime \prime}$ (both are copies of C). The edges on the left of C (with respect to some perspective) are incident with the corresponding vertices of C^{\prime}, the vertices on the right of C are incident with the corresponding vertices of $C^{\prime \prime}$. The graph that we obtain be performing this operation is isomorphic to $G_{L}(C) \cup G_{R}(C) \cup C^{\prime} \cup C^{\prime \prime}$. Embeddings of G induce embeddings of C^{\prime} and $C^{\prime \prime}$ as one might expect.

Proposition 4.1. If C is surface separating, then cutting along C gives two graphs isomorphic to G_{L}^{\prime} and G_{R}^{\prime} respectively, and $\operatorname{eg}\left(G_{L}^{\prime}, \Pi\right)+e g\left(G_{R}^{\prime}, \Pi\right)=e g(G, \Pi)$.
If C is two-sided, but not surface separating, then the graph obtained after cutting along $C . G^{\prime}$, is connected, and eg $\left(G^{\prime}, \Pi\right)=e g(G, \Pi)-2$.
If C is one-sided, then the graph G^{\prime}, obtained after cutting along C, is connected, and eg $\left(G^{\prime}, \Pi\right)=$ $e g(G, \Pi)-1$.

Note that in proposition 4.1, the orientability may change from non-orientable to orientable in the last two cases.

In the following drawings of the Projective Plane, Torus, and Klein Bottle we have the following:

- C_{1}, C_{2}, C_{4} and C_{7} are contractible
- C_{3}, C_{9} and C_{10} are one-sided
- C_{5} and C_{6} are non-contractible
- C_{8} is surface separating and non-contractible
- C_{11} is two-sided and non-separating

Note that the only surface separating cycles on the Torus are contractible, as the Torus is orientable. Also note that cutting along $C_{1} 1$ is the inverse operation of adding a twisted handle.

5 The Three-Path Property

Given vertices x, y of a graph G and internally disjoint $x y$-paths $P_{1}, P_{2}, \ldots, P_{r}$, we denote the cycle formed by paths P_{i}, P_{j} as $C_{i j}$.

Definition 5.1. Let \mathcal{C} be a family of cycles in $G . \mathcal{C}$ has the three-path property if: $\forall_{x, y \in V(G)}, \forall_{P_{1}, P_{2}, P_{3}}$ internally disjoint $x y$-paths, if $C_{12} \notin \mathcal{C}$ and $C_{23} \notin \mathcal{C}$, then $C_{13} \notin \mathcal{C}$.

Example 5.2. The following are examples of families with the three-path property:

1. $\mathcal{C}=\{\mathcal{C} \mid$ the length of C is odd $\}$
2. $\mathcal{C}=\left\{\right.$ cycles with and odd number of edges in $\left.E^{\prime}\right\}$, where $E^{\prime} \subseteq E(G)$
3. $\mathcal{C}=\{$ one-sided cycles of $\Pi\}$
4. $\mathcal{C}=\{$ non-contractible cycles of $\Pi\}$

We now give a short proof of 4 .
Proof. Take $x, y \in V(G)$ and P_{1}, P_{2}, P_{3} internally disjoint $x y$-paths. Assume that C_{12} and C_{23} are contractible. First we alter Π so that all signatures on C_{12} are positive. If $P_{3} \subseteq \operatorname{Int}\left(C_{23}\right)$ then the result is clear. Similarly, if $P_{1} \subseteq \operatorname{Int}\left(C_{23}\right)$ then the result is also clear. So we need only consider the case where P_{2} lies "between" P_{1} and P_{3}. Now we have that C_{13} is surface separating and $\operatorname{int}\left(C_{13}\right)=\operatorname{int}\left(C_{23}\right) \cup \operatorname{int}\left(C_{12}\right) \cup P_{2}$. It follows from Euler's formula that the genus of $\operatorname{Int}\left(C_{13}\right)$ is zero, and thus C_{13} is contractible. This completes the proof.

We now present an algorithm for finding a shortest cycle in \mathcal{C}, where \mathcal{C} has the three-path property.

Algorithm 5.3. Input: A graph G and a family of cycles \mathcal{C} with the three-path property.
For all $v \in V(G)$:
Build the breadth-first search spanning tree of G starting at v, T_{v}.
For every edge $e \notin E\left(T_{v}\right)$:
Let C_{e} be the unique cycle in $T_{v}+e$.
Choose a shortest of the cycles C_{e} to be C_{v}.
Choose C to be a shortest of the cycles C_{v}.
Return: C is a shortest cycle in \mathcal{C}.
Proposition 5.4. Algorithm 5.3 correctly finds a shortest member of \mathcal{C} in time $O(n q T+n q)$, where $n=|G|, q=\|G\|$, and T is the time complexity of $C \in \mathcal{C}$ queries.

Proof. For a vertex $v \in V(G)$ let T_{v} be the BFS tree built by Algorithm 5.3. Let $C \in \mathcal{C}, C=$ v_{0}, \ldots, v_{k-1}, and $v_{0} \in V(C)$ be selected subject to C being shortest in \mathcal{C} and then having minimum intersection with $T=T_{v_{0}}$. We prove that Algorithm 5.3 finds a cycle of length $|C|$.

Claim 1: $d_{G}\left(v_{0} v_{i}\right)=d_{C}\left(v_{0} v_{i}\right)$ for $i=0, \ldots, k-1$. Let i be smallest such that $d_{G}\left(v_{0} v_{i}\right) \neq$ $d_{C}\left(v_{0} v_{i}\right)$ and let P be the shortest path from v_{0} to $v_{i} . P$ contains a subpath P^{\prime} that connects two vertices $x, y \in V(C)$. Let A, B be the cycles, formed by P^{\prime} and $x C y, y C x . A$ and B are shorter than C, thus none of them is in \mathcal{C}. By the three-path-property, neither is C. This contradiction establishes the claim.

Claim 2: There exists $e \in E(C)$, incident with $v_{t}, t=\left\lfloor\frac{k}{2}\right\rfloor$, such that $C-e \subseteq T$. Let i be smallest such that $v_{i} v_{i+1} \notin E(T)$. By symmetry we may assume $i<t$. Let P be the path from v_{0} to v_{i+1} in T. The claim follows by the same argument as the previous one, using the fact that P has length $i+1$, implied by Claim 1 .

Since there is only one edge of C missing in T, this cycle is examined by the algorithm, thus the cycle that is chosen at v_{0} and subsequently in G has length at most $|C|$.

BFS tree can be found in time $O(q)$ and using it the length of the cycles can be compared in constant time. Thus there is at most $O(q T+q)$ time spent in the loop for each of the n vertices. The complexity follows.

Corollary 5.5. If \mathcal{C} satisfies the three-path property and membership in \mathcal{C} can be determined in polynomial time, then the above algorithm finds a shortest cycle in \mathcal{C} in polynomial time.

Note that Algorithm 5.3 can be applied to find a shortest one-sided cycle, non-contractible cycle, surface non-separating cycle, etc.

[^0]: * Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.

