Topological Graph Theory*
Lecture 15-16 : Cycles of Embedded Graphs

Notes taken by Brendan Rooney

Burnaby, 2006

Summary: These notes cover the eighth week of classes. We present a theorem on
the additivity of graph genera. Then we move on to cycles of embedded graphs, the
three-path property, and an algorithm for finding a shortest cycle in a family of cycles
of a graph.

1 Additivity of Genus

Theorem 1.1 (Additivity of Genus). Let G be a connected graph, and let By, Ba, ..., B, be the
blocks of G. Then the genus of G is,

and the Euler genus of G 1is,

Observation 1.2. In order to prove the theorem it suffices to prove that if G = Gy U Ga, where
G1 NGy = {v}, then g(G) = g(G1) + g(G2) and eg(G) = eg(G1) + eg(G2).

Proof. We set

9(G) = min{g(Il) | II is an orientable embedding of G}
9(G1) = min{g(II;) | II; is an orientable embedding of G;}
9(G2) = min{g(Ilz) | Il is an orientable embedding of G2}

Let v1,v9 be vertices in G1, G respectively, distinct from v. Note that the local rotations of v, vy
are independent, but the local rotation of v is not. So if we take Il an embedding of G and split
it along v we obtain IIy, ITy embeddings of G1, Gy respectively. Facial walks in G that do not pass
from G to G2 remain unchanged in I1y, I, however if a facial walk does pass from G to G5 then
when we split we form an extra face. But we also have an extra vertex. So,

g(IT) = g(IIy) + g(Iy).
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Claim: The min value of ¢(G) is attained at an embedding where the local rotation at the cut
vertex v groups the edges from (1 into a single block.

Assume that this is not the case. Then each facial walk must use “mixed angles” in pairs (by mixed
angle we refer to the angle formed at v between two edges, one from G; and one from Gs). By
considering the local rotations we see that we must traverse an odd number of negative signatures
from v to v on any walk using mixed angles. Thus we have a 1-sided cycle in our embedding.
However this is a contradiction as we assumed that II was orientable. This proves the claim. It
also proves that

9(G) = g(G1) + g(Ga2).

This proof can be repeated with minor changes to prove that,
eg(G) = eg(G1) + eg(Ga).

This completes the proof. ]

2 Induced Embeddings

Given IT an embedding of G we wish to develop the notion of a corresponding embedding I of H a
subgraph of G. Suppose that e € E(G) is not a cut-edge of G, then we can consider deleting e from
G. Without loss of generality, we may assume that A\(e) = +1. If e is in two distinct facial walks,
then we can see that G — e embeds in the same surface as G, this follows as G — e will have the
same Euler characteristic as G. If e appears twice on one face, then G — e will embed in a simpler
surface (the Euler genus will decrease by either 1 or 2). From this we can see that in the specific
case of multigraphs, the embedding of the underlying simple graph cannot have larger genus, and
never changes from orientable to non-orientable.

3 Cycles of Embedded Graphs

We start by giving an intuitive explanation of the classes of cycles we will consider. For example,
say we are considering the surface Sg, pictured below.

e (1 bounds a disk on the surface. Such cycles are called contractible cycles.

e Cutting along Cy separates the surface. Such cycles are called surface separating cycles.



e (5 and C}y are called surface non-separating cycles.

e Note that contractible cycles are also surface separating.

Now we formally define these notions. Let C be a two-sided cycle of a II-embedded graph G.
We may assume that A(e) = +1 for all edges e € E(C). We can arbitrarily choose a “perspective”
from which to view C'. Now since C'is two-sided we have a “left” and “right” side of C with respect
to our perspective. This allows us to define:

E; = the set of all edges incident to a vertex of C' embedded on the “left” of C

ERr = the set of all edges incident to a vertex of C' embedded on the “right” of C
Gr(C) := the subgraph of G consisting of Fy, and all vertices and edges in G — C reachable from FEy,
GRr(C) := the subgraph of G consisting of Er and all vertices and edges in G — C reachable from Eg

Definition 3.1. For a two-sided cycle C, if G(C) N Gr(C) C C, then we say that C is a surface
separating cycle.

Proposition 3.2. Let C be a surface separation cycle of a Pi-embedded graph G. Consider the
induced embeddings of G, := GL(C)UC and G := Gr(C) UC. The sum of the Euler genera of
the embeddings of G’ and G is eg(IT).

Proof. Claim #1: Every facial walk of G is either a facial walk of G’ or a facial walk of G;.

If a facial walk never reaches C, the claim holds trivially. Suppose we have a facial walk F tat
intersects C'. Since we take all signatures on C to be positive and all rotations to be equal, we can
see that each time F' enters C on a right edge, it will leave on a right edge (and vice versa). This
proves the claim.

Claim #2: C' is facial in G/, and G'y.

This holds for the same reason as Claim #1.

Thus the number of faces of G is two less than the sum of the number of faces in G, and G’;. Now
we simply apply Euler’s formula to G, G, and G'; to prove the proposition. O

Definition 3.3. A cycle C of a II-embedded graph G is II-contractible if it is surface separating
and the Euler genus of either the induced embedding of G1(C) U C or Gr(C) U C is zero.

Note that this is equivalent to C' bounding a disk on the surface.

Definition 3.4. If C is contractible and G (C) U C has genus zero, then

int(C) = int(C,11) = GL(C)
Int(C) = Int(C,1I) = GL(C)UC

Now we can classify cycles of embeddings as:
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4 Cutting Surfaces Along Cycles

Cutting a surface along a cycle C gives rise to a graph in which C is replaced by 2 cycles, C’
and C” (both are copies of C'). The edges on the left of C' (with respect to some perspective) are
incident with the corresponding vertices of C’, the vertices on the right of C' are incident with the
corresponding vertices of C”. The graph that we obtain be performing this operation is isomorphic
to GL(C) U GRr(C)U C" U C”. Embeddings of G induce embeddings of C' and C” as one might
expect.

Proposition 4.1. If C is surface separating, then cutting along C' gives two graphs isomorphic to
G, and G’ respectively, and eg(G’,1I) + eg(G', II) = eg(G,II).

If C is two-sided, but not surface separating, then the graph obtained after cutting along C. G', is
connected, and eg(G',11) = eg(G, 1) — 2.

If C is one-sided, then the graph G', obtained after cutting along C, is connected, and eg(G',11) =
eg(G,II) — 1.

Note that in proposition 4.1, the orientability may change from non-orientable to orientable in
the last two cases.

In the following drawings of the Projective Plane, Torus, and Klein Bottle we have the following:

e (1,5, Cy4 and C7 are contractible

C3,C9 and C4g are one-sided

C5 and Cg are non-contractible

Cy is surface separating and non-contractible

C11 is two-sided and non-separating
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Note that the only surface separating cycles on the Torus are contractible, as the Torus is ori-
entable. Also note that cutting along C71 is the inverse operation of adding a twisted handle.

5 The Three-Path Property

Given vertices x,y of a graph G and internally disjoint xy-paths Py, Ps, ..., P, we denote the cycle
formed by paths P;, P; as Cj;.

Definition 5.1. Let C be a family of cycles in G. C has the three-path property if:
v91:,y€V(G)7 vP1,P2,P;), internally disjoint zy-paths; if Ch2 ¢ C and Co3 ¢ C, then Ci3 ¢ C.

Example 5.2. The following are examples of families with the three-path property:
1. C = {C | the length of C' is odd}
2. C = {cycles with and odd number of edges in E'}, where E' C E(G)
3. C = {one-sided cycles of II}
4. C = {non-contractible cycles of II}
We now give a short proof of 4.

Proof. Take z,y € V(G) and Pi, P, P5 internally disjoint zy-paths. Assume that C1o and Cas are
contractible. First we alter II so that all signatures on Co are positive. If P; C Int(Csy3) then the
result is clear. Similarly, if P; C Int(Cs3) then the result is also clear. So we need only consider
the case where P, lies “between” P; and P3. Now we have that (i3 is surface separating and
int(Ci3) = int(Cas) Uint(Ch2) U Py. Tt follows from Euler’s formula that the genus of Int(Ci3) is
zero, and thus Ci3 is contractible. This completes the proof. O

We now present an algorithm for finding a shortest cycle in C, where C has the three-path
property.



Algorithm 5.3. Input: A graph G and a family of cycles C with the three-path property.
For all v € V(G):

Build the breadth-first search spanning tree of G starting at v, T,,.

For every edge e ¢ E(T,):

Let C, be the unique cycle in T, + e.

Choose a shortest of the cycles C, to be C,,.
Choose C to be a shortest of the cycles C,.
Return: C' is a shortest cycle in C.

Proposition 5.4. Algorithm 5.3 correctly finds a shortest member of C in time O(nqT +nq), where
n=|G|, ¢=|| G|, and T is the time complexity of C € C queries.

Proof. For a vertex v € V(QG) let T, be the BFS tree built by Algorithm 5.3. Let C' € C, C =
vo, .-+, Vk—1, and vg € V(C) be selected subject to C' being shortest in C and then having minimum
intersection with 7' = T,,,. We prove that Algorithm 5.3 finds a cycle of length | C'|.

Claim 1: dg(vov;) = deo(vov;) for i = 0,...,k — 1. Let ¢ be smallest such that dg(vov;) #
dc(vov;) and let P be the shortest path from vy to v;. P contains a subpath P’ that connects two
vertices z,y € V(C). Let A, B be the cycles, formed by P’ and xCy, yCx. A and B are shorter
than C, thus none of them is in C. By the three-path-property, neither is C'. This contradiction
establishes the claim.

Claim 2: There exists e € E(C), incident with vy, t = L%J, such that C —e C T. Let i be
smallest such that v;v;1+1 € E(T). By symmetry we may assume i < t. Let P be the path from vy
to v;41 in T'. The claim follows by the same argument as the previous one, using the fact that P
has length ¢ + 1, implied by Claim 1.

Since there is only one edge of C missing in 7', this cycle is examined by the algorithm, thus
the cycle that is chosen at vy and subsequently in G has length at most | C'|.

BFS tree can be found in time O(q) and using it the length of the cycles can be compared in
constant time. Thus there is at most O(¢T + ¢q) time spent in the loop for each of the n vertices.
The complexity follows. O

Corollary 5.5. If C satisfies the three-path property and membership in C can be determined in
polynomaal time, then the above algorithm finds a shortest cycle in C in polynomial time.

Note that Algorithm 5.3 can be applied to find a shortest one-sided cycle, non-contractible
cycle, surface non-separating cycle, etc.



