Topological Graph Theory^{*} Lecture 15-16 : Cycles of Embedded Graphs

Notes taken by Brendan Rooney

Burnaby, 2006

Summary: These notes cover the eighth week of classes. We present a theorem on the additivity of graph genera. Then we move on to cycles of embedded graphs, the three-path property, and an algorithm for finding a shortest cycle in a family of cycles of a graph.

1 Additivity of Genus

Theorem 1.1 (Additivity of Genus). Let G be a connected graph, and let B_1, B_2, \ldots, B_r be the blocks of G. Then the genus of G is,

$$g(G) = \sum_{i=1}^{r} g(B_i)$$

and the Euler genus of G is,

$$eg(G) = \sum_{i=1}^{r} eg(B_i).$$

Observation 1.2. In order to prove the theorem it suffices to prove that if $G = G_1 \cup G_2$, where $G_1 \cap G_2 = \{v\}$, then $g(G) = g(G_1) + g(G_2)$ and $eg(G) = eg(G_1) + eg(G_2)$.

Proof. We set

 $g(G) = \min\{g(\Pi) \mid \Pi \text{ is an orientable embedding of } G\}$ $g(G_1) = \min\{g(\Pi_1) \mid \Pi_1 \text{ is an orientable embedding of } G_1\}$ $g(G_2) = \min\{g(\Pi_2) \mid \Pi_2 \text{ is an orientable embedding of } G_2\}$

Let v_1, v_2 be vertices in G_1, G_2 respectively, distinct from v. Note that the local rotations of v_1, v_2 are independent, but the local rotation of v is not. So if we take Π an embedding of G and split it along v we obtain Π_1, Π_2 embeddings of G_1, G_2 respectively. Facial walks in G that do not pass from G_1 to G_2 remain unchanged in Π_1, Π_2 , however if a facial walk does pass from G_1 to G_2 then when we split we form an extra face. But we also have an extra vertex. So,

$$g(\Pi) = g(\Pi_1) + g(\Pi_2)$$

^{*} Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.

Claim: The min value of g(G) is attained at an embedding where the local rotation at the cut vertex v groups the edges from G_1 into a single block.

Assume that this is not the case. Then each facial walk must use "mixed angles" in pairs (by mixed angle we refer to the angle formed at v between two edges, one from G_1 and one from G_2). By considering the local rotations we see that we must traverse an odd number of negative signatures from v to v on any walk using mixed angles. Thus we have a 1-sided cycle in our embedding. However this is a contradiction as we assumed that Π was orientable. This proves the claim. It also proves that

$$g(G) = g(G_1) + g(G_2).$$

This proof can be repeated with minor changes to prove that,

$$eg(G) = eg(G_1) + eg(G_2).$$

This completes the proof.

2 Induced Embeddings

Given Π an embedding of G we wish to develop the notion of a corresponding embedding Π' of H a subgraph of G. Suppose that $e \in E(G)$ is not a cut-edge of G, then we can consider deleting e from G. Without loss of generality, we may assume that $\lambda(e) = +1$. If e is in two distinct facial walks, then we can see that G - e embeds in the same surface as G, this follows as G - e will have the same Euler characteristic as G. If e appears twice on one face, then G - e will embed in a simpler surface (the Euler genus will decrease by either 1 or 2). From this we can see that in the specific case of multigraphs, the embedding of the underlying simple graph cannot have larger genus, and never changes from orientable to non-orientable.

3 Cycles of Embedded Graphs

We start by giving an intuitive explanation of the classes of cycles we will consider. For example, say we are considering the surface S_3 , pictured below.

- C_1 bounds a disk on the surface. Such cycles are called contractible cycles.
- Cutting along C_2 separates the surface. Such cycles are called surface separating cycles.

- C_3 and C_4 are called surface non-separating cycles.
- Note that contractible cycles are also surface separating.

Now we formally define these notions. Let C be a two-sided cycle of a Π -embedded graph G. We may assume that $\lambda(e) = +1$ for all edges $e \in E(C)$. We can arbitrarily choose a "perspective" from which to view C. Now since C is two-sided we have a "left" and "right" side of C with respect to our perspective. This allows us to define:

- E_L := the set of all edges incident to a vertex of C embedded on the "left" of C
- E_R := the set of all edges incident to a vertex of C embedded on the "right" of C

 $G_L(C)$:= the subgraph of G consisting of E_L and all vertices and edges in G - C reachable from E_L

 $G_R(C)$:= the subgraph of G consisting of E_R and all vertices and edges in G - C reachable from E_R

Definition 3.1. For a two-sided cycle C, if $G_L(C) \cap G_R(C) \subseteq C$, then we say that C is a surface separating cycle.

Proposition 3.2. Let C be a surface separation cycle of a Pi-embedded graph G. Consider the induced embeddings of $G'_L := G_L(C) \cup C$ and $G'_R := G_R(C) \cup C$. The sum of the Euler genera of the embeddings of G'_L and G'_R is $eg(\Pi)$.

Proof. Claim #1: Every facial walk of G is either a facial walk of G'_L or a facial walk of G'_R .

If a facial walk never reaches C, the claim holds trivially. Suppose we have a facial walk F tat intersects C. Since we take all signatures on C to be positive and all rotations to be equal, we can see that each time F enters C on a right edge, it will leave on a right edge (and vice versa). This proves the claim.

Claim #2: C is facial in G'_L and G'_R .

This holds for the same reason as Claim #1.

Thus the number of faces of G is two less than the sum of the number of faces in G'_L and G'_R . Now we simply apply Euler's formula to G, G'_L and G'_R to prove the proposition.

Definition 3.3. A cycle C of a Π -embedded graph G is Π -contractible if it is surface separating and the Euler genus of either the induced embedding of $G_L(C) \cup C$ or $G_R(C) \cup C$ is zero.

Note that this is equivalent to C bounding a disk on the surface.

Definition 3.4. If C is contractible and $G_L(C) \cup C$ has genus zero, then

$$int(C) = int(C, \Pi) := G_L(C)$$

$$Int(C) = Int(C, \Pi) := G_L(C) \cup C$$

Now we can classify cycles of embeddings as:

4 Cutting Surfaces Along Cycles

Cutting a surface along a cycle C gives rise to a graph in which C is replaced by 2 cycles, C'and C'' (both are copies of C). The edges on the left of C (with respect to some perspective) are incident with the corresponding vertices of C', the vertices on the right of C are incident with the corresponding vertices of C''. The graph that we obtain be performing this operation is isomorphic to $G_L(C) \cup G_R(C) \cup C' \cup C''$. Embeddings of G induce embeddings of C' and C'' as one might expect.

Proposition 4.1. If C is surface separating, then cutting along C gives two graphs isomorphic to G'_L and G'_R respectively, and $eg(G'_L, \Pi) + eg(G'_R, \Pi) = eg(G, \Pi)$.

If C is two-sided, but not surface separating, then the graph obtained after cutting along C. G', is connected, and $eg(G', \Pi) = eg(G, \Pi) - 2$.

If C is one-sided, then the graph G', obtained after cutting along C, is connected, and $eg(G', \Pi) = eg(G, \Pi) - 1$.

Note that in proposition 4.1, the orientability may change from non-orientable to orientable in the last two cases.

In the following drawings of the Projective Plane, Torus, and Klein Bottle we have the following:

- C_1, C_2, C_4 and C_7 are contractible
- C_3, C_9 and C_{10} are one-sided
- C_5 and C_6 are non-contractible
- C_8 is surface separating and non-contractible
- C_{11} is two-sided and non-separating

Note that the only surface separating cycles on the Torus are contractible, as the Torus is orientable. Also note that cutting along C_1 is the inverse operation of adding a twisted handle.

5 The Three-Path Property

Given vertices x, y of a graph G and internally disjoint xy-paths P_1, P_2, \ldots, P_r , we denote the cycle formed by paths P_i, P_j as C_{ij} .

Definition 5.1. Let \mathcal{C} be a family of cycles in G. \mathcal{C} has the *three-path property* if: $\forall_{x,y\in V(G)}, \forall_{P_1,P_2,P_3}$ internally disjoint *xy*-paths, if $C_{12} \notin \mathcal{C}$ and $C_{23} \notin \mathcal{C}$, then $C_{13} \notin \mathcal{C}$.

Example 5.2. The following are examples of families with the three-path property:

- 1. $C = \{C \mid \text{the length of } C \text{ is odd}\}$
- 2. $C = \{ \text{cycles with and odd number of edges in } E' \}, \text{ where } E' \subseteq E(G)$
- 3. $C = \{ \text{one-sided cycles of } \Pi \}$
- 4. $C = \{\text{non-contractible cycles of }\Pi\}$

We now give a short proof of 4.

Proof. Take $x, y \in V(G)$ and P_1, P_2, P_3 internally disjoint xy-paths. Assume that C_{12} and C_{23} are contractible. First we alter II so that all signatures on C_{12} are positive. If $P_3 \subseteq Int(C_{23})$ then the result is clear. Similarly, if $P_1 \subseteq Int(C_{23})$ then the result is also clear. So we need only consider the case where P_2 lies "between" P_1 and P_3 . Now we have that C_{13} is surface separating and $int(C_{13}) = int(C_{23}) \cup int(C_{12}) \cup P_2$. It follows from Euler's formula that the genus of $Int(C_{13})$ is zero, and thus C_{13} is contractible. This completes the proof.

We now present an algorithm for finding a shortest cycle in C, where C has the three-path property.

Algorithm 5.3. Input: A graph G and a family of cycles C with the three-path property. For all $v \in V(G)$:

Build the breadth-first search spanning tree of G starting at v, T_v .

For every edge $e \notin E(T_v)$:

Let C_e be the unique cycle in $T_v + e$.

Choose a shortest of the cycles C_e to be C_v .

Choose C to be a shortest of the cycles C_v .

Return: C is a shortest cycle in C.

Proposition 5.4. Algorithm 5.3 correctly finds a shortest member of C in time O(nqT+nq), where n = |G|, q = ||G||, and T is the time complexity of $C \in C$ queries.

Proof. For a vertex $v \in V(G)$ let T_v be the BFS tree built by Algorithm 5.3. Let $C \in C$, $C = v_0, \ldots, v_{k-1}$, and $v_0 \in V(C)$ be selected subject to C being shortest in C and then having minimum intersection with $T = T_{v_0}$. We prove that Algorithm 5.3 finds a cycle of length |C|.

Claim 1: $d_G(v_0v_i) = d_C(v_0v_i)$ for i = 0, ..., k - 1. Let *i* be smallest such that $d_G(v_0v_i) \neq d_C(v_0v_i)$ and let *P* be the shortest path from v_0 to v_i . *P* contains a subpath *P'* that connects two vertices $x, y \in V(C)$. Let *A*, *B* be the cycles, formed by *P'* and xCy, yCx. *A* and *B* are shorter than *C*, thus none of them is in *C*. By the three-path-property, neither is *C*. This contradiction establishes the claim.

Claim 2: There exists $e \in E(C)$, incident with v_t , $t = \lfloor \frac{k}{2} \rfloor$, such that $C - e \subseteq T$. Let *i* be smallest such that $v_i v_{i+1} \notin E(T)$. By symmetry we may assume i < t. Let *P* be the path from v_0 to v_{i+1} in *T*. The claim follows by the same argument as the previous one, using the fact that *P* has length i + 1, implied by Claim 1.

Since there is only one edge of C missing in T, this cycle is examined by the algorithm, thus the cycle that is chosen at v_0 and subsequently in G has length at most |C|.

BFS tree can be found in time O(q) and using it the length of the cycles can be compared in constant time. Thus there is at most O(qT + q) time spent in the loop for each of the *n* vertices. The complexity follows.

Corollary 5.5. If C satisfies the three-path property and membership in C can be determined in polynomial time, then the above algorithm finds a shortest cycle in C in polynomial time.

Note that Algorithm 5.3 can be applied to find a shortest one-sided cycle, non-contractible cycle, surface non-separating cycle, etc.