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Lecture 15-16 : Cycles of Embedded Graphs

Notes taken by Brendan Rooney

Burnaby, 2006

Summary: These notes cover the eighth week of classes. We present a theorem on
the additivity of graph genera. Then we move on to cycles of embedded graphs, the
three-path property, and an algorithm for finding a shortest cycle in a family of cycles
of a graph.

1 Additivity of Genus

Theorem 1.1 (Additivity of Genus). Let G be a connected graph, and let B1, B2, . . . , Br be the
blocks of G. Then the genus of G is,

g(G) =
r∑

i=1

g(Bi)

and the Euler genus of G is,

eg(G) =
r∑

i=1

eg(Bi).

Observation 1.2. In order to prove the theorem it suffices to prove that if G = G1 ∪ G2, where
G1 ∩ G2 = {v}, then g(G) = g(G1) + g(G2) and eg(G) = eg(G1) + eg(G2).

Proof. We set

g(G) = min{g(Π) | Π is an orientable embedding of G}
g(G1) = min{g(Π1) | Π1 is an orientable embedding of G1}
g(G2) = min{g(Π2) | Π2 is an orientable embedding of G2}

Let v1, v2 be vertices in G1, G2 respectively, distinct from v. Note that the local rotations of v1, v2

are independent, but the local rotation of v is not. So if we take Π an embedding of G and split
it along v we obtain Π1,Π2 embeddings of G1, G2 respectively. Facial walks in G that do not pass
from G1 to G2 remain unchanged in Π1,Π2, however if a facial walk does pass from G1 to G2 then
when we split we form an extra face. But we also have an extra vertex. So,

g(Π) = g(Π1) + g(Π2).
∗ Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.
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Claim: The min value of g(G) is attained at an embedding where the local rotation at the cut
vertex v groups the edges from G1 into a single block.
Assume that this is not the case. Then each facial walk must use “mixed angles” in pairs (by mixed
angle we refer to the angle formed at v between two edges, one from G1 and one from G2). By
considering the local rotations we see that we must traverse an odd number of negative signatures
from v to v on any walk using mixed angles. Thus we have a 1-sided cycle in our embedding.
However this is a contradiction as we assumed that Π was orientable. This proves the claim. It
also proves that

g(G) = g(G1) + g(G2).

This proof can be repeated with minor changes to prove that,

eg(G) = eg(G1) + eg(G2).

This completes the proof.

2 Induced Embeddings

Given Π an embedding of G we wish to develop the notion of a corresponding embedding Π′ of H a
subgraph of G. Suppose that e ∈ E(G) is not a cut-edge of G, then we can consider deleting e from
G. Without loss of generality, we may assume that λ(e) = +1. If e is in two distinct facial walks,
then we can see that G − e embeds in the same surface as G, this follows as G − e will have the
same Euler characteristic as G. If e appears twice on one face, then G − e will embed in a simpler
surface (the Euler genus will decrease by either 1 or 2). From this we can see that in the specific
case of multigraphs, the embedding of the underlying simple graph cannot have larger genus, and
never changes from orientable to non-orientable.

3 Cycles of Embedded Graphs

We start by giving an intuitive explanation of the classes of cycles we will consider. For example,
say we are considering the surface S3, pictured below.

• C1 bounds a disk on the surface. Such cycles are called contractible cycles.

• Cutting along C2 separates the surface. Such cycles are called surface separating cycles.
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• C3 and C4 are called surface non-separating cycles.

• Note that contractible cycles are also surface separating.

Now we formally define these notions. Let C be a two-sided cycle of a Π-embedded graph G.
We may assume that λ(e) = +1 for all edges e ∈ E(C). We can arbitrarily choose a “perspective”
from which to view C. Now since C is two-sided we have a “left” and “right” side of C with respect
to our perspective. This allows us to define:

EL := the set of all edges incident to a vertex of C embedded on the “left” of C

ER := the set of all edges incident to a vertex of C embedded on the “right” of C

GL(C) := the subgraph of G consisting of EL and all vertices and edges in G − C reachable from EL

GR(C) := the subgraph of G consisting of ER and all vertices and edges in G − C reachable from ER

Definition 3.1. For a two-sided cycle C, if GL(C) ∩ GR(C) ⊆ C, then we say that C is a surface
separating cycle.

Proposition 3.2. Let C be a surface separation cycle of a Pi-embedded graph G. Consider the
induced embeddings of G′

L := GL(C) ∪ C and G′
R := GR(C) ∪ C. The sum of the Euler genera of

the embeddings of G′
L and G′

R is eg(Π).

Proof. Claim #1: Every facial walk of G is either a facial walk of G′
L or a facial walk of G′

R.
If a facial walk never reaches C, the claim holds trivially. Suppose we have a facial walk F tat
intersects C. Since we take all signatures on C to be positive and all rotations to be equal, we can
see that each time F enters C on a right edge, it will leave on a right edge (and vice versa). This
proves the claim.
Claim #2: C is facial in G′

L and G′
R.

This holds for the same reason as Claim #1.
Thus the number of faces of G is two less than the sum of the number of faces in G′

L and G′
R. Now

we simply apply Euler’s formula to G,G′
L and G′

R to prove the proposition.

Definition 3.3. A cycle C of a Π-embedded graph G is Π-contractible if it is surface separating
and the Euler genus of either the induced embedding of GL(C) ∪ C or GR(C) ∪ C is zero.

Note that this is equivalent to C bounding a disk on the surface.

Definition 3.4. If C is contractible and GL(C) ∪ C has genus zero, then

int(C) = int(C,Π) := GL(C)
Int(C) = Int(C,Π) := GL(C) ∪ C

Now we can classify cycles of embeddings as:
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contractible
↗

surface separating
↘

↗ non-contractible
cycles

↘ two-sided
↗

surface non-separating
↘

one-sided

4 Cutting Surfaces Along Cycles

Cutting a surface along a cycle C gives rise to a graph in which C is replaced by 2 cycles, C ′

and C ′′ (both are copies of C). The edges on the left of C (with respect to some perspective) are
incident with the corresponding vertices of C ′, the vertices on the right of C are incident with the
corresponding vertices of C ′′. The graph that we obtain be performing this operation is isomorphic
to GL(C) ∪ GR(C) ∪ C ′ ∪ C ′′. Embeddings of G induce embeddings of C ′ and C ′′ as one might
expect.

Proposition 4.1. If C is surface separating, then cutting along C gives two graphs isomorphic to
G′

L and G′
R respectively, and eg(G′

L,Π) + eg(G′
R,Π) = eg(G,Π).

If C is two-sided, but not surface separating, then the graph obtained after cutting along C. G′, is
connected, and eg(G′,Π) = eg(G,Π) − 2.
If C is one-sided, then the graph G′, obtained after cutting along C, is connected, and eg(G′,Π) =
eg(G,Π) − 1.

Note that in proposition 4.1, the orientability may change from non-orientable to orientable in
the last two cases.

In the following drawings of the Projective Plane, Torus, and Klein Bottle we have the following:

• C1, C2, C4 and C7 are contractible

• C3, C9 and C10 are one-sided

• C5 and C6 are non-contractible

• C8 is surface separating and non-contractible

• C11 is two-sided and non-separating
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Note that the only surface separating cycles on the Torus are contractible, as the Torus is ori-
entable. Also note that cutting along C11 is the inverse operation of adding a twisted handle.

5 The Three-Path Property

Given vertices x, y of a graph G and internally disjoint xy-paths P1, P2, . . . , Pr, we denote the cycle
formed by paths Pi, Pj as Cij.

Definition 5.1. Let C be a family of cycles in G. C has the three-path property if:
∀x,y∈V (G), ∀P1,P2,P3 internally disjoint xy-paths, if C12 /∈ C and C23 /∈ C, then C13 /∈ C.

Example 5.2. The following are examples of families with the three-path property:

1. C = {C | the length of C is odd}
2. C = {cycles with and odd number of edges in E′}, where E′ ⊆ E(G)

3. C = {one-sided cycles of Π}
4. C = {non-contractible cycles of Π}
We now give a short proof of 4.

Proof. Take x, y ∈ V (G) and P1, P2, P3 internally disjoint xy-paths. Assume that C12 and C23 are
contractible. First we alter Π so that all signatures on C12 are positive. If P3 ⊆ Int(C23) then the
result is clear. Similarly, if P1 ⊆ Int(C23) then the result is also clear. So we need only consider
the case where P2 lies “between” P1 and P3. Now we have that C13 is surface separating and
int(C13) = int(C23) ∪ int(C12) ∪ P2. It follows from Euler’s formula that the genus of Int(C13) is
zero, and thus C13 is contractible. This completes the proof.

We now present an algorithm for finding a shortest cycle in C, where C has the three-path
property.
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Algorithm 5.3. Input: A graph G and a family of cycles C with the three-path property.
For all v ∈ V (G):

Build the breadth-first search spanning tree of G starting at v, Tv.
For every edge e /∈ E(Tv):

Let Ce be the unique cycle in Tv + e.
Choose a shortest of the cycles Ce to be Cv.

Choose C to be a shortest of the cycles Cv.
Return: C is a shortest cycle in C.

Proposition 5.4. Algorithm 5.3 correctly finds a shortest member of C in time O(nqT +nq), where
n =| G |, q =‖ G ‖, and T is the time complexity of C ∈ C queries.

Proof. For a vertex v ∈ V (G) let Tv be the BFS tree built by Algorithm 5.3. Let C ∈ C, C =
v0, . . . , vk−1, and v0 ∈ V (C) be selected subject to C being shortest in C and then having minimum
intersection with T = Tv0 . We prove that Algorithm 5.3 finds a cycle of length | C |.

Claim 1: dG(v0vi) = dC(v0vi) for i = 0, . . . , k − 1. Let i be smallest such that dG(v0vi) �=
dC(v0vi) and let P be the shortest path from v0 to vi. P contains a subpath P ′ that connects two
vertices x, y ∈ V (C). Let A, B be the cycles, formed by P ′ and xCy, yCx. A and B are shorter
than C, thus none of them is in C. By the three-path-property, neither is C. This contradiction
establishes the claim.

Claim 2: There exists e ∈ E(C), incident with vt, t =
⌊

k
2

⌋
, such that C − e ⊆ T . Let i be

smallest such that vivi+1 �∈ E(T ). By symmetry we may assume i < t. Let P be the path from v0

to vi+1 in T . The claim follows by the same argument as the previous one, using the fact that P
has length i + 1, implied by Claim 1.

Since there is only one edge of C missing in T , this cycle is examined by the algorithm, thus
the cycle that is chosen at v0 and subsequently in G has length at most | C |.

BFS tree can be found in time O(q) and using it the length of the cycles can be compared in
constant time. Thus there is at most O(qT + q) time spent in the loop for each of the n vertices.
The complexity follows.

Corollary 5.5. If C satisfies the three-path property and membership in C can be determined in
polynomial time, then the above algorithm finds a shortest cycle in C in polynomial time.

Note that Algorithm 5.3 can be applied to find a shortest one-sided cycle, non-contractible
cycle, surface non-separating cycle, etc.
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