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Lecture 16-17 : Width of embeddings

Notes taken by Drago Bokal

Burnaby, 2006

Summary: These notes cover the ninth week of classes. The newly studied concepts
are homotopy, edge-width and face-width. We show that embeddings with large edge-
or face-width have similar properties as planar embeddings.

1 Homotopy

It is beyond the purpose of these lectures to deeply study homotopy, but as we will need this
concept, we mention it briefly. Two closed simple curves in a given surface are homotopic, if one
can be continuously deformed into the other. For instance, on the sphere any two such curves are
(freely) homotopic, whereas on the torus S1 × S1 we have two homotopy classes: S1 × {x} and
{y} × S1. Formally:

Definition 1.1. Let γ0, γ1 : I → Σ be two closed simple curves. A homotopy from γ0 to γ1 is a
continuous mapping H : I × I → Σ, such that H(0, t) = γ0(t) and H(1, t) = γ1(t).

The following proposition may be of interest:

Proposition 1.2. Let C be the family of disjoint non-contractible cycles of a graph G embedded in
a surface Σ of Euler genus g, such that no two cycles of C are homotopic. Then | C | ≤ 3g − 3, for
g ≥ 2, and | C |≤ g, for g ≤ 1.

2 Edge-width

Definition 2.1. Let Π be an embedding of a graph G in a surface Σ of Euler genus g. If g ≥ 1 we
define the edge-width of Π, ew(G,Π) = ew(Π), to be the length of the shortest Π-non-contractible
cycle in G. If g = 0, we define ew(G,Π) = ∞.

In this section we study embeddings with large edge-width and show that they have similar
properties as planar embeddings. In this sense edge-width measures degeneracy of the embedding
– the smaller the edge-width, the larger the degeneracy. First we use a gentle homological argument
to prove that the edge-width is well-defined for g ≥ 1, i.e. that there is at least one non-contractible
cycle.
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Let f be the number of faces, q the number of edges and n the number of vertices of Π. Then
f = q−n+2−g. The cycle space Z(G) has dimension q−n+1 and its subspace B(G), spanned by
facial walks, has dimension f − 1 (one face can be expressed as sum of all the others, but otherwise
there is always an edge that is covered only once by a subset of faces). Thus the quotient space
Z(G)/B(G) has dimension g. Since all the contractible cycles are in B(G) (they are sums of faces
lying in their interior), there must be at least g ≥ 1 Π-non-contractible cycles in G.

An embedding Π is a large edge-width embedding (LEW-embedding), if ew(Π) is strictly larger
than the length of any Π-facial walk. Examples of such embeddings are surface triangulations
without non-contractible triangles.

Theorem 2.2. Let Π,Π′ be two embeddings of G of genera g, g′, respectively. If Π is an LEW-
embedding, then g′ ≥ g and if g = g′, then the surfaces of Π and Π′ are the same.

Proof. Let f (f ′) be the number of faces of Π (Π′) and let l1, . . . , lf (l′1, . . . , l
′

f ′) be the lengths of
faces of Π (Π′). Set m = maxi li. We prove the claim by induction on ‖ G ‖.

If g = 0 the claim is trivial, so we assume g ≥ 1. If G has a vertex of degree 1 we remove it
and obtain G1. The induced embedding Π′

1 is still a LEW-embedding, and the claim follows by
induction.

Assume Π has a contractible cycle C, shorter than some face of Π. Then define G1 to be
the graph with the non-C vertices of the interior of C removed. Since C is short, the Π-induced
embedding of G1 is a LEW-embedding, and the claim follows by induction.

Now we may assume that every non-facial cycle of Π is longer than every facial cycle of Π. Then
∑

li = 2 ‖ G ‖=
∑

l′i implies f ′ ≤ f , since all cycles of G that are not facial walks of Π have length
at least m. Thus g′ ≥ g with equality if and only if f = f ′ and li = l′i after a suitable permutation.
But then the facial cycles of Π′ are the facial cycles of Π and the embeddings are equivalent.

This theorem has the following corollaries that show the behavior of LEW-embeddings to be
similar to planar embeddings.

Corollary 2.3. If G is a 2-connected graph with a LEW-embedding Π, then every facial walk of Π
is a cycle.

Corollary 2.4. If G is a 3-connected graph with a LEW-embedding Π of minimum Euler genus,
then Π is the only minimum-Euler genus embedding of G (up to equivalence of embeddings).

3 Face-width

Face-width is another measure of local planarity. Another name that was initially used for it is
representativity of an embedding.

Definition 3.1. Let Π be an embedding of a graph G of Euler genus g ≥ 1, and let k be the
smallest integer such that there exist k Π-facial walks, containing a Π-non-contractible cycle in
their union. We define fw(G,Π) = k to be the face-width of Π. If the Euler genus of Π is 0, we
define fw(G,Π) = ∞.

Let C be the shortest Π-non-contractible cycle of G. Each edge on the cycle corresponds to at
most one facial walk, thus we observe the following:
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Figure 1: The vertex-face graph Γ(G,Π) (dashed edges) of a graph G (solid edges) in torus.

Observation 3.2. fw(G,Π) ≤ ew(G,Π).

Lemma 3.3. Let Π be an embedding of G and let eg(Π) ≥ 1, fw(G,Π) ≥ 2. Then every facial
walk W of G contains a Π-contractible cycle C and W ⊆ Int(C).

Proof. By induction on r. If W is a cycle then C = W = Int(C). Otherwise W contains a closed
subwalk W ′ = vu1 . . . urv, such that u1, . . ., ur appear only once in W ′.1

If r = 1 we apply induction to the graph G − u1. Otherwise, since fw(G,Π) ≥ 2, the subwalk
W ′ is a contractible cycle. If Int(W ′) contains W ′, then W ′ is the cycle we seek. Otherwise we
apply induction to the graph G − Int(W ′).

The face-width can be defined in another way using the face-vertex graph, which we already
defined for plane graphs (cf. Lecture notes, week 4); for general surfaces it is defined in the same
way:

Definition 3.4. Let Π be an embedding of G and let F be the set of facial walks of Π. The
vertex-face graph Γ(G,Π) has vertices V (Γ) = V (G)∪F , a vertex v ∈ V (G) is incident with f ∈ F
if and only if v ∈ f , and these are all the incidences of Γ(G,Π).

Example of a vertex-face graph is presented in Figure 1. The graph G, drawn with solid edges,
is embedded in the torus. The vertices of Γ(G,Π) corresponding to F are drawn as squares, and
its edges are drawn as dashed lines.

It is obvious that Γ(G,Π) is a bipartite graph, embedded in the same surface as G and that all
the faces of the corresponding embedding ΠΓ have length 4: each face corresponds to an edge of G.

Proposition 3.5. . Let G be a graph and Π its embedding. Then fw(G,Π) = 1

2
ew(Γ(G,Π),ΠΓ).

Proof. Let C be the shortest non-contractible cycle in ΠΓ. The union of facial walks, corresponding
to all |C|/2 vertices of C ∩ F contain a Π-non-contractible cycle. If a subset of these cycles would
contain a Π-non-contractible cycle, then there would be a shorter non-contractible cycle in ΠΓ.

Proposition 3.5 has two interesting corollaries:

Corollary 3.6. Face-width of an embedding can be computed in polynomial time.

1Exercise: prove that there is a subwalk W
′ = vu1 . . . urv, such that u1, . . ., ur appear only once in W .
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Corollary 3.7. Let G∗, Π∗ be the dual graph and embedding of G, Π. Then fw(G∗,Π∗) = fw(G,Π).

In the sequel we study local planarity properties of embeddings with large face-width. First we
introduce two operations on an embedded graph G. If v ∈ V (G), then G − v is the graph G after
removing the vertex v and all edges emanating from v. The dual of this operation is shrinking a
face: if W is a facial walk in G, then G/W is the graph G after contraction of all the edges of W .
The following two lemmas show that these operations have only minor impact on the face-width of
an embedding. For the proof just observe that both operations correspond to contracting all edges
incident with one vertex of Γ(G,Π), apply Euler formula to establish the claim about the same
surface and Proposition 3.5 for the inequality.

Lemma 3.8. Suppose fw(G,Π) ≥ 2. Let v ∈ V (G), G′ = G − v, and Π′ be the induced embedding
of G′. Then G′ is Π′-embedded in the same surface and fw(G,Π) − 1 ≤ fw(G′,Π′) ≤ fw(G,Π).

Lemma 3.9. Suppose fw(G,Π) ≥ 2. Let W be a facial walk of G, G′ = G/W , and Π′ be the induced
embedding of G′. Then G′ is Π′-embedded in the same surface and fw(G,Π) − 1 ≤ fw(G′,Π′) ≤
fw(G,Π).

For a vertex v ∈ V (Γ(G,Π)) we define the graphs Bi(v) inductively as follows: (i) B0(v) = {v}
and (ii) Bi(v) equals the union of all the facial walks sharing at least one vertex with Bi−1(v).

Proposition 3.10. If fw(G,Π) ≥ k, then for every vertex v ∈ V (G) there exist disjoint cycles Ci,
i = 1, . . . ,

⌊

k−1

2

⌋

, such that

(a) every Ci is contractible and Int(Ci) contains Int(Ci−1),

(b) Int(Ci) contains Bi,

(c) Ci ⊆ Bi(v) \ Bi−1(v).

Proof. For k ≤ 2 then claim is trivial. For k = 3 we take C1 to be the non-contractible cycle of
the facial walk of G − v not present in G, which exists by 3.3. We proceed by induction using the
following claim:

Claim: Let i ≤
⌊

k−1

2

⌋

. Then every cycle in Bi(v) is contractible. Let C = u1, . . . , ut be a
cycle in Bi(v). For every j = 1, . . . , t there exists a path Pj from uj to v using at most i facial
walks and not intersecting Pj−1, Pj+1. The cycle Dj = ujPjvPj+1uj+1 meets at most 2i < k facial
walks and is contractible, thus it can be in B(G) expressed as the sum of the faces in Int(Dj). Now
C =

∑

j Dj and is contractible.
Let G,Π, v satisfy the assumptions. Let W be the new facial walk in G−v that is not present in

G, and let G′ = (G−v)/W with the induced embedding Π′, with w the vertex corresponding to W .
Then fw(G′,Π′) ≥ fw(G,Π)−2 by Lemmas 3.8 and 3.9 and by induction there exist Π′-contractible
cycles C2, . . . , Ck around w in G′, which satisfy (a)–(c) and are disjoint from C1 in G. Together
with C1 they establish the claim.

We conclude with two propositions that further relate the embeddings with large face-width to
planar graphs.

Proposition 3.11. Let G be a Π-embedded graph, eg(Π) ≥ 1. Then all Π-facial walks are cycles,
if and only if G is 2-connected and fw(G) ≥ 2.

Proposition 3.12. Let G be a Π-embedded graph, eg(Π) ≥ 1. Then all Π-facial walks are cycles
and any two facial walks are either disjoint, share a vertex or share an edge, if and only if G is
3-connected and fw(G) ≥ 3.
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