Math 821 - Combinatorics Homework Assignment \#2
 7/2/2007

To be handed by $15 / 2 / 2007$

1. Find some specific values (and possibly an infinite sequence of integers for which:
(a) Theorem BRC cannot be applied.
(b) Theorem BRC can be applied and this case does not follow by the corollary that v is the sum of two squares. (If you cannot find such examples, just discuss possible values of $v \leq 35$.)
2. Prove that every projective plane of order 7 is isomorphic to the Fano plane. Find (the smallest integer) v for which there exist two nonisomorphic $\operatorname{STS}(v)$.
3. We say that a projective plane $\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime}, \mathcal{I}^{\prime}\right)$ of order m is a subplane of a projective plane $(\mathcal{P}, \mathcal{B}, \mathcal{I})$ of order n if $\mathcal{P}^{\prime} \subseteq \mathcal{P}$, every line $B^{\prime} \in \mathcal{B}^{\prime}$ is contained in some line in $B \in \mathcal{B}$, and the incidence I^{\prime} is induced by the incidence relation I (with respect to the correspondence $B^{\prime} \mapsto B$). Prove that $m^{2} \leq n$ and give an example where $m^{2}=n$.
Show that if $m^{2}=n$, the following holds:
(a) For every point $p \in \mathcal{P} \backslash \mathcal{P}^{\prime}$ there exists a unique line $\ell \in \mathcal{B}^{\prime}$ through p.
(b) For every line $\ell \in \mathcal{B} \backslash \mathcal{B}^{\prime}$ there exists a unique point $p \in \mathcal{P}^{\prime}$ on ℓ.
