Math 821 - Combinatorics Homework Assignment \#4
 14/3/2007

To be handed by $21 / 3 / 2007$

The questions are sorted roughly according to their difficulty, the number of marks for them will correspond to this.

Question 1: Show that a strongly regular graph is extremal in the following sense. Let G be a graph with v vertices, each of degree at most k. Suppose that any two adjacent vertices, respectively nonadjacent vertices, have at least λ, respectively μ, common neighbors. Then

$$
k(k-1-\lambda) \geq \mu(v-k-1)
$$

and equality implies that G is strongly regular.
Question 2: (left from class) An incidence structure $S=(P, B, I)$ (we call elements of P points and elements of B lines) is a generalized quadrangle if

1. For any two different points p, q, there is at most one line incident with both of them.
2. If a point p and a line L are not incident, there is exactly one point q and line L^{\prime} such that L^{\prime} is incident with both p and q, and q is incident with L.
3. There are two distinct points p, q such that no line is incident with both of them.
4. There are two distinct lines L, M such that no point is incident with both of them.

Prove that there are distinct lines $L_{1}, L_{2}, L_{3}, L_{4}$ and distinct points $p_{1}, p_{2}, p_{3}, p_{4}$ such that p_{i} is incident with L_{i} and L_{i+1} (indices modulo 4) for $i=1,2,3,4$.

Question 3: Show that a $\operatorname{SRG}(28,9,0,4)$ does not exist. Use only combinatorial arguments (no eigenvalues, algebra, ...).

Question 4: Let \mathcal{D} be a $2-(v, k, \lambda)$ design such that any two distinct blocks of \mathcal{D} have exactly l_{1} or exactly l_{2} points in common. Let G be the graph with the blocks of \mathcal{D} as vertices, and with two blocks adjacent iff they have exactly l_{1} points in common. Suppose G is connected.

1. Find eigenvalues of G.
2. Show that G is strongly regular and find its parameters.

Hint: You may use the following result: If a connected regular graph has exactly three distinct eigenvalues then it is strongly regular.

