Math 821 - Combinatorics
 Final Assignment
 28/3/2007

To be handed by Thursday April 4, 2007 (5 p.m.)

Question 1 Let k and l be fixed natural numbers. Let $n(k, l)$ be the maximal n, such that there exist sets $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ satisfying the following conditions

1. $\left|A_{i}\right|=k,\left|B_{i}\right|=l$ for all $i=1,2, \ldots, n$.
2. $A_{i} \cap B_{i}=\emptyset$ for all $i=1,2, \ldots, n$.
3. $A_{i} \cap B_{j} \neq \emptyset$ for all $i \neq j, i, j=1,2, \ldots, n$.

Determine $n(k, l)$.
[Hint: Let $X=\bigcup_{i} A_{i} \cup \bigcup_{i} B_{i}$. Consider all permutations of X and distinguish them according to the position of elements of A_{i} and of B_{i} for various i.]

Question 2 A blocking set in a projective plane X is a set S of points of the plane, such that S meets every line of X, but S does not contain any line of X. Prove the following claims:

1. The Fano plane has no blocking set, but any larger plane contains a blocking set.
2. A blocking set in a plane of order q contains at least $q+\sqrt{q}+1$ points.
3. If the bound from 2 is attained, then the blocking set is a subplane of order \sqrt{q}. Such blocking set exists whenever q is a square.
4. A blocking set in a plane of order q contains at most $q^{2}-\sqrt{q}$ points.
5. Let S be a blocking set in a plane of order q and suppose S is minimal (that is, after removing any point of S the resulting set is not blocking). Then $|S| \leq q \sqrt{q}+1$.

Question 3 Let Ω denote the set of all partitions of a set of nine elements into three triples. If π and σ are two of these partitions, define their product
to be the partition whose cells are all possible nonempty intersections of the cells of π with those of σ. Define two elements of Ω to be adjacent if their product contains exactly seven cells. Show that the graph on Ω with this adjacency relation is strongly regular, and determine its parameters.

Question 4 Two Latin squares of the same size are said to be orthogonal to each other if for each pair of symbols (a, b) there is exactly one position in which the first square has a and the other b. A collection of Latin squares of the same size is said to be mutually orthogonal if every pair of squares in it is orthogonal.

Suppose that A_{1}, \ldots, A_{r} is a set of r mutually orthogonal Latin squares of size n. Let Ω be the set of n^{2} cells in the array. For $\alpha \neq \beta$ in Ω, let $(\alpha, \beta) \in R_{1}$ if α and β are in the same row or are in the same column or have the same letter in any of A_{1}, \ldots, A_{r}; otherwise $(\alpha, \beta) \in R_{2}$.

1. Find the size of R_{1}. Hence find an upper bound on r.
2. Show that these definitions of R_{1} and R_{2} make an association scheme on Ω. It is called the Latin-square type association scheme $L(r+2 ; n)$. When does it have only one associate class?
