Math 821 – Combinatorics Final Assignment 28/3/2007

To be handed by Thursday April 4, 2007 (5 p.m.)

Question 1 Let k and l be fixed natural numbers. Let n(k, l) be the maximal n, such that there exist sets A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n satisfying the following conditions

- 1. $|A_i| = k$, $|B_i| = l$ for all i = 1, 2, ..., n.
- 2. $A_i \cap B_i = \emptyset$ for all $i = 1, 2, \ldots, n$.
- 3. $A_i \cap B_j \neq \emptyset$ for all $i \neq j, i, j = 1, 2, \dots, n$.

Determine n(k, l).

[*Hint*: Let $X = \bigcup_i A_i \cup \bigcup_i B_i$. Consider all permutations of X and distinguish them according to the position of elements of A_i and of B_i for various i.]

Question 2 A *blocking set* in a projective plane X is a set S of points of the plane, such that S meets every line of X, but S does not contain any line of X. Prove the following claims:

- 1. The Fano plane has no blocking set, but any larger plane contains a blocking set.
- 2. A blocking set in a plane of order q contains at least $q + \sqrt{q} + 1$ points.
- 3. If the bound from 2 is attained, then the blocking set is a subplane of order \sqrt{q} . Such blocking set exists whenever q is a square.
- 4. A blocking set in a plane of order q contains at most $q^2 \sqrt{q}$ points.
- 5. Let S be a blocking set in a plane of order q and suppose S is minimal (that is, after removing any point of S the resulting set is not blocking). Then $|S| \leq q\sqrt{q} + 1$.

Question 3 Let Ω denote the set of all partitions of a set of nine elements into three triples. If π and σ are two of these partitions, define their product

to be the partition whose cells are all possible nonempty intersections of the cells of π with those of σ . Define two elements of Ω to be adjacent if their product contains exactly seven cells. Show that the graph on Ω with this adjacency relation is strongly regular, and determine its parameters.

Question 4 Two Latin squares of the same size are said to be *orthogonal* to each other if for each pair of symbols (a, b) there is exactly one position in which the first square has a and the other b. A collection of Latin squares of the same size is said to be *mutually orthogonal* if every pair of squares in it is orthogonal.

Suppose that A_1, \ldots, A_r is a set of r mutually orthogonal Latin squares of size n. Let Ω be the set of n^2 cells in the array. For $\alpha \neq \beta$ in Ω , let $(\alpha, \beta) \in R_1$ if α and β are in the same row or are in the same column or have the same letter in any of A_1, \ldots, A_r ; otherwise $(\alpha, \beta) \in R_2$.

- 1. Find the size of R_1 . Hence find an upper bound on r.
- 2. Show that these definitions of R_1 and R_2 make an association scheme on Ω . It is called the Latin-square type association scheme L(r+2; n). When does it have only one associate class?