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Abstract 

The Wiener index of  a graph G is equal to the sum of distances between all 
pairs of  vertices of  G, It is known that the Wiener index of a molecular graph 
correlates with certain physical and chemical properties of a molecule. In the 
mathematical  literature, many good algorithms can be found to eompute  the 
distances m a graph, and these can easily be adapted for the caleulation of the 
Wiener indcx. An algorithm that calculates the Wiener index of  a tree in linear 
timc is givcn. It improves an algorithm of Canfield, Robinson and Rouvray. The 
question rcmains: is there an algorithm for general graphs that would eMculate the 
Wiener index without  calculating the distance matrix? Another  algorithm that 
calculates this index for an arbitrary graph is given. 

1. Introduction 

In recent research in mathematical chemistry, particular attention has been 
paid to so-called topological imlices. These are invariants which can be calculated from 
the underlying molecular graphs and hopefully exhibit good correlations with physical 
and chemical properties of the corresponding molecules. The reader is referred to the 
overview articles by Rouvray [ 1 2  14] and Motoc and Balaban [8] for further details. 
For basic concepts of graph theory, the reader is referred to [4,20]. 

One of the oldest and widely used indices is the Wiener index. It has been 
used to model various properties of chemical species. Wiener [21,22] used it for 
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biparametric correlations with the boiling point and some other thermodynamic 
parameters. Stiel and Thodos [18] used this index to predict critical constants, 
Rouvray and Crafford [16] correlated it with density, viscosity, and surface tension, 
Rouvray and Tatong explored prediction of the ultrasonic sound velocity in alkanes 
and alcohols [17], Papazova et al. [11] and Bonchev et al. [3] observed a relation 
x~ith ch rom atographic re ten tion times. 

The Wiener index can be defined for an arbitrary connected graph as follows. 
Without loss of generality, assume that G has vertices I, 2 . . . .  ,n. For each pair i,j 
of vertices, let dij denote the distance in G between i a n d / ;  i.e. the length of the 
shortest path between i and j. The distances dij form the so-called distance matrix 
D(G) = [dq] of the graph G. The Wiener index of G is the number 

~~ i n n 

- I E  Z ~t,; I«(G)=Z Z«;j : 
i = l  j = l  i = l  j = l  

In recent papers (Bersohn [2] and Müller et al. [9]), several algorithms for 
calculating W(G) for an arbitrary graph Gare  given. The computational complexity 
of the latter is of the order of O(n a log n), where n is the number of vertices of G. 

In the mathematical and computer science literature on combinatorial optimiza- 
tion, many excellent algofithms for computing D(G) can be found. These are the so- 
called shortest path algorithms, and in general solve even more complicated problems 
where edges are allowed to carry weights. The reader is referred to, for example, 
[1,7,10,19] for details. 

In this note, we compare various algorithms for computing W(G). In particular, 
the well-known BFS algorithm, adapted to compute W(G) for arbitrary connected 
graphs, proves to be fast enough for practical purposes. Also, an algorithm that calcu- 
lates the Wiener index of a tree in linear time is given. It improves an algorithm of 
Canfield, Robinson and Rouvray when programmed for the computer, or if used in 
hand-computations for small trees. 

2. General graphs 

One of the renowned algorithms which are mentioned in standard texts, say 
[1,7,10,19],  is the Floyd-Warshall algorithm. Its input is the adjacency matrix 
A(G) = [aq], where a/i = 1 ifvertices i and j are adjacent in G and äi] = 0 otherwise. 
Its output is the distance matrix D(G). The algorithm is very short. 

2.1. FW ALGORITHM 

(1) From the adjacency matrix A(G) form the matrix D(G) with the following 
properties: 
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(2) 

d [ i, j ] = a [ i, j ] if i is adjacent to j, or if i = j ; 

d [i, j] = n if i is not adjacent to 1 (n is the number of vertices of G). 

For each vertex m of G do 
for each vertex i of G different f r o m m  with d [i, m] < n do 

for each vertex j of G different f r o m m  do 
i f d [ i , m ]  + d [ m , / ]  < d [ i , j ]  t h e n d [ i , j ]  : = d [ i , m ]  +di to ,  j ] .  

The time complexity of this algorithm is O(n a). The algorithm is easy to program and 
is proved to be correct (see, for instance, [1,7,10]). In order to compute W(G) by 
applying formula (1), another O (n 2 ) additions are needed. 

Below is an outline of another general algorithm for computation of W(G). 
It is a little more involved, but its performance is better. 

2,2. BFS ALGORITHM 

(1) For each vertex i determine the BFS (Breadth First Search) tree T(i). For each 
vertex / compute eq = the distance from i to. / in T(i). 

(2) Since the distance dij is equal to the distance from i to / in T(i), eq = di/, 
detemaine B/(G) by the formula 

n i 

w(c,'l=Z Z%,. 
i = 1  i = l  

For the BFS algorithm, the reader may consult [19] or the appendix to this note 
where the complete realization is given. The time complexity of this algorithm is 
O(mn) ,  where m is the number of edges of G. For each vertex, the BFS tree is com- 
puted in O(m) steps. Note that chemical graphs have bounded degrees and thus 
m = O(n). Thus, for chemical graphs the running time of this algorithm is bounded 
by O(n 2 ). The reader is referred to sect. 4, where a comparison ofvarious algorithms 
is given. It is shown that the BFS algorithm out-performs many other '~gorithms and 
is thus recommended for chemical apptications. 

There is an obvious question. In order to determine W(G), do we need to 
compute the distance matrix D(G)? Of, more precisely, can we compute W(G) 
fastet than D(G)? Unfortunately, we do not know the answer to this question for 
general graphs. We do know that for certain families of graphs the answer to the 
latter question is yes. In the next section, we present a linear time algorithm for 
computing the Wiener index of a tree. Since D ( G ) h a s  O(n 2) entries, computation 
of W(G) for certain graphs can be fastet than computation of D(G) .  



270 B. M o h a r  a n d  T. P i sansk i ,  lg iener  i n d e x  o f  a graph  

3. T h e  Wiene r  i n d e x  o f  a t r ee  

The main result of this section is an algorithm for computing W ( T )  for an 
arbitrary tree T. This algorithm improves and simplifies a nice recursive algorithm of  
Canfield, Robinson and Rouvray [5]. The following observations are used in our 
algorithm. 

3.1 

3.2 

In a tree T there is a unique shortest path between any two vertices. 

Let w(e) denote the number of shortest paths of T that pass through the 
specified edge e C E ( T ) .  Then 

lg(T) : Z ,,'(«). 
e ~ E ( G )  

3.3 

If  T is a tree and e E E ( T ) ,  let n l (e  ) and n2(e ) denote the number ofvertices 
in each of  the two components of T -  te}, respectively. Then, w(e) = ~z~(e)n2(e ). 

Note also that for i = 1,2: n;(e) = I V(T)] - n 3_i(e).  (These results hold, more 
generally, in graphs that are not trees provided that e is a bridge of a graph.) 

A tree T on n vertices has n -  1 edges. It can always be represented as a 
r o o t e d  tree (and this will be assumed henceforth).  This means that avertex u o E V ( T )  

is distinguished and called the r o o t  of T. (Any vertex may be chosen for the root.) All 
other vertices are indexed as v 1 , v 2, . . . , v  n_  1 in such a way that each v i ( i  >1 1) has 
exactly one neighbor among vo, v~, . . . ,  v i_ 1 ' This unique neighbor is denoted by T i 
and called the pr«de«essor  of v i. 

Our algorithm for computing W(T) of an arbitrary tree T has the following 
steps. 

3.4. LT ALGORITHM 

(1) 
(2) 

(3) 
(4) 

(5) 

The (rooted) tree is input as an array T/, i = 1,2 . . . .  , n - 1. 

For each vertex compute (in linear time) its indegree ind(ui) = I{ ]lu i = Tj}I. 

Foml  a queue of  all leaves of  T, the vertices with ind(u/) = 0, 

Delete all leaves one after another and compute w(e) for the corresponding 
deleted edge. 

Compute lg (T)  using 3.2. 
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Each of the above steps requires at most linear time, hence the whole algorithm 
is linear. The appendix contains, among other things, Pascal realization of the above 
algorithm. 

The following example shows that the above algorithm can be efficiently used 
in hand calculations of  the Wiener index of  a tree. 

3.5. EXAMPI.E 

Let T be the tree of  fig. 3.6. It is the graph of the molecule of  3,3,-dimethyl-4- 
isopropyloctane. The same tree was used as an illustrative worked example in [5] 
under the name 2,5-dimethyl-2-ethyl-4-propylhexane.  T has n = 13 vertices. For each 
edge e of  T, we detennine the number of  vertices in the smaller of  the two subtrees 
n 1 (e) and then add w(e) = n l (e) (n  - n  1 (e)) for each e from E(T) .  Then 

W(T) = 611(13 - 1)] + 212(13 - 2)] + 213(13 - 3)] + 5(13 - 5) + 6(13 - 6) 

= 6 × 1 2 + 2 x 2 × 1 1  + 2 × 3 x 1 0 + 5 × 8 + 6 x 7  = 258. 

2 
1 5 

o- 

3 
6 

1 

3 1 

. . . .  1I ° 
Fig. 3.6. The graph of the molecule of 3,3,-dimethyl- 
4-isopropyloctane. This is a tree Twith W(T) = 258. 

In passing, we mention that the LT algorithm can be extended to a linear time 
algorithm for computing the Wiener index of  graphs with bounded block size. 

4. Comparison of algorithms 

Table 4.1 gives the results of  practical tests performed for the following algo- 
rithms: F loyd-Warshal l  (FW), Matrix Multiplication (MM) algorithm of  Müller et al., 
Breadth-First Search (BFS) algorithm as described above, and Linear Time (LT) tree 

algorithm. 
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Table 4.1 

Comparison of four algorithms. Hefe, n is used to denote the number of vertices. 
The symbol T represents the fact that graphsused were trees. The symbol G denotes 
general graphs. The times are given in milliseconds and are averaged over various 
graphs. Clearly, the LT has the best performance for trees and the BFS for general 
graphs. 

n Tree/graph l:W MM BFS LT 

20 T 48 29 11 0.5 
40 T 391 157 38 0.9 
60 T 1265 424 84 1,3 
80 T 2800 897 150 1.8 

100 T 5145 1661 232 2.2 

20 G 45 38 20 
40 G 356 259 107 
60 G 1169 810 296 
80 G 2667 1866 536 

100 G 5040 3785 845 

5. T h e  case  o f  h e t e r o a t o m s  

The substitution of  carbon atoms in a molecular graph with heteroatoms 

corresponds to weighting the edges and vertices of  the graph. In this case, the BFS 

algorithm should be modified by applying the Dijkstra method [7,10] to compute  

the distances from a given vertex to all tAher vertices. 

On the other hand. out  algorithm LT carries to the weighted case with only a 

minor correction, lnstead of  w(e) = n 1 (e). n 2 (e), one should use the weighted formula 

w(e) = weight(e)./z 1 ( e ) .n  2 (e), 

and at the end add one half of  the weights ofvert ices to W(T) .  
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A p p e n d i x  

In this appendix, all four programs that are compared in sect. 4 are listed. The 
following statements should be included in the main program. 

const max = 101 ; { max number of vertices + I ] 

type vertices = 0 .. max; 
tree = array [vertices] of vertices; 
matrix = array [vertices, vertices] of integer ; 
queue : array [vertices] of vertices; 

function FloydWarshäll (D: matri×; n: verticés): integer; 

{ Calculates the Wiener index of a graph using the Floyd-Warshall 
a]gorithm. D is the distance matri×; at the time of cal]ing, D 
must be equal to the adjacency matrix of the graph; 
n is the number of vertices ] 

var i, j, m: vertices; 
W: integer; 

begin 
for i:=I to n do 

for j:=1 to n do 
if (D[i,j] = 0) and (i <> j) then D[i,j] := n; 

for m:=1 to n do 
for i:=I to n do if (i <> m) and (D[i,m] < n) then 
for j:=1 to n do if (j <> m) then 

if D[i,m] + D[m,j] < D[],j] then D[i,j] := D[i,m] + D[m,j]; 
{ D is equäl to the distance matrix of the graph ] 
W := 0; 
for i:=I to n do 

for j:=1 to i-I do W := W + D[i,j]; 
FloydWarshall := W 

end; { FloydWarshall ] 
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function C~ (D: matrix; n: integer): integer; 

{ Matrix multiplication algorithm for computin 9 the Wiener 
index of a graph. Used by Muller et al. ] 

rar i, j, i, W: integer; 

begin 
for i:=I to n do for j =I to n do 

if (D[i,j] = 0) and i <> j) then D[i,j] := n; 
1 := I; 
repeat 
for j:=~ to n do 
for i:=l to n do begln 

if D[i,j] = 1 then beain 
for w::1 to n do 

if D[W,i]+l < D[W,j] then D[W,j] := D[W,i] + l; 
end; 

end; 
i:=i÷i; 

until 1 >= n-l; 
{ compute W ] 
W := O; 
for i:=I to n do for j:=1 to i-I do W := W + D[i,j]; 
MM : = W 

end ; { ~9~ ] 

function BFS (A: matcix; n:vertices): integer; 

{ Calculate the Wiener inde× by using the Breadth-First Seareh 
startin9 with each of the vertices. A is the adjaeency matrix 
of the graph, n is the number of vertices. ] 

rar i, j, k: vertices; 
first, last: vertices; { indices in the queue of open vertices ] 
open: queue; { queue of open vertices ] 
found: array [vertices] of boolean; { vertices already met ] 
dist: array [vertices] of integer; { distances from the root i ] 
w: integer; { Wiener index ] 

begin 

{ Form the queues of neighbours within the adjacency matrix~ 
The value A[i,j] = k will mean that the neJghbour of i which 
fol]ows j is the vertex k, and A[i,j] = 0 will still represent 
non-adjacency e×cept for A[i,i] being equal to the first 
neighbour of i ] 

for i:=I to n do begin 
k := i; 
for j:=l to n do if A[i,j] <> 0 then be9in 

h[i,j] := k; k := j 
end; 
A l l , i ]  := k 

end; 
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W := 0; [ The distances are added to w at the time of searching. ] 
for i:=I to n do beg]n { BFS with the root i ] 

{ initialize } 
ùfor j:=1 to n do found[j] := false; 
open[l] := i; last := I; first := I; 
dist[i] := O; found[i] := true; 
while last >= first do begin 

j := open[first]; first := first + I; W := w + dist[j]; 
{ open the neighbours of j ] 
k := A[j,j]; { first neighbour of j ] 
while k <> j do begin 

if not found[k] then begin 
last := last + I; open[last] := k; found[k] := true; 
dist[k] := dist[j] + I 

end; 
k := A[j,k] next neighbour of j ] 

end 
end 

end; [ for ] 
BFS := W dir 2 

end; { BFS ] 

procedure transform var A: matrix; var T: tree); 

{ Create the rooted tree representation of a graph with the 
adjacency matrix i. ] 

rar v, u: vertices; 
open: queue; 
first, last: vertlces; 

begin 
T[ 1 ] := 0; { vertex I is the root 
open[l] := I; last := I; first := I 
while last >= first do begin 

v := open[first]; 
first := first + I; 
for u:=1 to n do if (A[u,v] <> 0) and (u <> T[v]) then begin 

last := last + I; open[last] := u; T[u] := v 
end 

end 
end; { transform ] 

function W]tree (T: tree; n:ve[t]ces): integer; 

{ Calculates the Wiener index of a tree. ] 
{ The tree T is representeò as a rooted tree with root I. ] 

rar i, j, k, f: vertices; 
next: queue; [ queue of leaves ] 
ind: array [vertices] of integer; 
q: array [vertices] of integer; 
w: integer; 

[ indegrees ] 
{ q[i] = n~(i,T[i]) ] 
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begeh 
{ compute indegrees ] 
for i:=l to n do ~nd[~] :: O; 
for i:=l to n do ind[T[i]] := ind[T[i]] + I; 
{ form the queue of leaves ] 
f := O; 
for i:=l to n do 

if ind[i] = 0 then begin hext[i] := f; f := 
{ for each vertex determine w(i) } 
for i:=O to n do q[i] := O; 
for i:=l to n do begin 

j := f; k := T[f]; 
q[j] := q[j] + I; 
q[k] := q[k] + q[j]; 
f := next[f]; ind[k] := ind[k] ] ;  
if ind[k] : 0 then begin next[k] := f; f := 

end; 
{ Calculate the Wiener inde× ] 
w :: O; 
for i:=~ to n do w := W + q[i] ~ (n - q[i]); 
w1tree := w 

end; { Wltree ] 

i end; 

k end 
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