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We introduce and study an eigenvalue upper bound p(G) on the maximum cut mc (G) of a weighted graph. The 
function ~o(G) has several interesting properties that resemble the behaviour of mc (G). The following results are 
presented. 

We show that q~ is subadditive with respect to amalgam, and additive with respect to disjoint sum and 1-sum. 
We prove that ~(G) is never worse that 1.131 mc(G) for a planar, or more generally, a weakly bipartite graph 
with nonnegative edge weights. We give a dual characterization of ~o(G), and show that q~(G) is computable in 
polynomial time with an arbitrary precision. 
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1. Introduction 

Let G = ( V, E) be a weighted graph on n vertices with weight w e on the edge e. For each 
partition V = S U  ( V ~ S )  of V, we have the corresponding value Ei~s, j~v~s w0. The max- 
cut of G, denoted by mc(G),  is the number defined by 

m c ( G ) = m a x  ~ w i j .  (1) 
s c V  i~S 

j~V~S 

We introduce and investigate a number ~(G),  defined for every weighted graph G, which 
is alway s an upper bound on the max-cut mc(G), i.e. we have 

mc(G) ~< ~p(G). (2) 

The number q~(G) is defined as 

p ( G )  = min ll~rnax (L+diag(u))n (3) 
Eui =0 
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where L is the Laplacian matrix of the weighted graph G with n vertices, U = diag (u) is the 
diagonal matrix with entries ui on the diagonal and Amax is the maximum eigenvalue of the 
matrix L + U. The minimum is taken over all vectors u ~ Nn satisfying E ui = 0. Section 2 

contains the details of the definition and the proof of the inequality (2). 

Since the value q~(G) is obtained as the minimum of the function f ( u ) =  

lnAmax(L + diag(u)) ,  it is useful to study some properties off.  In Section 3 we show that 

f i s  convex, lipschitzian and has unique minimum. 
The main results are presented in Sections 4, 5 and 6. In Section 4 we give a dual 

characterization of ~(G) in terms of an optimality certificate, consisting of a family of 

eigenvectors. Though this certificate cannot be, in general, used for concrete computation 
of q~(G), it has theoretical applications. The bound p(G)  has several interesting properties. 

In many aspects, its behaviour resembles properties of mc(G),  and - -  perhaps due to this 

f a c t - -  it also seems to well approximate mc (G). One of such properties is proved in Section 
5. We show that q~(G) is subadditive with respect to amalgams, and, moreover, additive 

with respect to 1-sums and disjoint unions of graphs. The subadditivity allows us to establish 

that q~(G) never exceeds 1.131 mc(G) for planar, or more generally, weakly bipartite 

graphs. This result is given in Section 6. 
Since the max-cut problem is NP-complete [ 13], the computational aspects are also 

studied. The number ~(G) need to be rational. However, there is a polynomial time 

algorithm to compute it with arbitrary prescribed precision. The algorithm is obtained by 

an application of the ellipsoid method, in the form given by [ 14]. Section 7 contains the 

technical details. 
The method of optimization over the "varying diagonal" (we call it a "correcting 

vector", in order to underline the combinatorial meaning) has already been used in a paper 

by Donath and Hoffman [ 10] (see also [5] ) to obtain a lower bound on the equipartition 

problem. Their bound has been later improved by Boppana [ 6]. Since our eigenvalue bound 
is quite analogous to, or perhaps even simpler, than those on the equipartition problem, we 

believe that our contribution is in a deeper study of the combinatorial properties. In some 

sense, we were rather motivated by the work of Fiedler [ 11 ], who formulated an eigenvalue 
lower bound on the graph connectivity and studied its properties. Our bound q~(G) on the 

max-cut problem improves a previous simpler bound 

mc(G) ~< ¼A .... (L)n 

given by Mohar and Poljak [ 18], which corresponds to the choice u = 0. 

2. Definition of the upper bound q~(G) 

Consider a loopless graph G with vertex set V, each pair { i, j} of vertices is given a weight 
wij. The number of vertices is denoted by n, and the vertices are labelled with the integers 
1, 2 . . . . .  n. An ordinary (unweighted) graph is identified with a weighted graph where the 
weights are 1 on the edges and 0 on the non-edges. 
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We associate to a subset S of V the vector X s with n coordinates x,, = 1 if  v ~ S and xL, = - 1 
if v ~  V~S. 

We introduce the Laplacian matrix L = Lc with n rows and n columns. The matrix is 

symmetric and its entries are Lij = - wij for i C j  and L,  = E j ~  w~j. If  G is an ordinary graph, 

then the Laplacian can be expressed as La = d iag(d)  - A  where A is the adjacency matrix 

and d the vector of vertex degrees. We will occasionally also use notation L ( G )  instead of  

Lc. It will be always clear from the context whether G is a weighted or unweighted graph. 

We recall that the maximum eigenvalue A of a symmetric matrix M satisfies 

/ ~ T x  ) XTMX 

for every vector X. This inequality is called the Rayleigh principle (see for example [ 17 ] ). 

Let u = ul, u2 . . . . .  un be a vector o f n  reals and U = d iag(u)  the diagonal matrix on n rows 

and n columns with Ui~ = uz. We will call any vector u with E u~ >~ 0 a correcting vector (the 

entry ui is associated with vertex i) .  

L e m m a  1. We have 

m c ( G )  ~< JnAmax(L+ U) 

for  every correcting vector u. 

Proof .  We observe that the following identity holds: 

XTLX = ~ Wij (X  i --  Xj) 2 

for the Laplacian L and every vector X. In particular, with X = Xs corresponding to a subset 

S c V, we have 

X~LXs = ~  w i j ( X s , - X s j ) 2 = 4  ~ w,j 
i ~ S  
j f~S 

which is 4 times the value of  the cut induced by S. 

We also have X [  UXs = E ui(Xsi) 2 = E ui >~ 0 because Xsi = + 1. 

Let S induce a maximum cut. Then 

4 m c ( G )  = X [  LXs <~X[ ( L + U)Xs.  

Applying the Rayleigh principle to the vector Xs, we obtain that 

4mc(G)  < A,~,x(L+ U ) X ~ X  s = nAm,x(L+ U). [] 

Based on Lemma 1, we can introduce the upper bound q~(G) which is the main notion 

studied in the paper. We  define 

q~(G) = m i n  ¼nh . . . .  (L+ U), 
u 

the minimum being taken over all correcting vectors u (we will prove in the next section 
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that the minimum is actually attained for some u, and so that the notation is justified). Such 

a vector u realizing the minimum will be called an optimum correcting vector. 

The optimum correcting vector u obviously satisfied El <i<,z u~ = 0. 

We first state two properties of  q~, namely that q~ is (i) positive-homogeneous, and (ii) 

monotone. 

L e m m a  2. (i) If  each weight wij is multiplied by some positive real k, then q~ is also 
multiplied by k. 

(ii) I f  G and G' have the same vertices and the weight functions w and w' satisfy 

w U <<. w ~ for all pairs of vertices, then qff G) <~ ~(G' ). 

Proof.  The first property is obvious. Let us prove the second one. We note that for every 

vector u and every vector X the relation 

x T ( L G ,  q- U ) x - - X T ( L G  q- U ) X : X T ( L G  , -Lc)X>~O 

holds. []  

Observe that a trivial upper bound on mc(G)  is the sum of all nonnegative weights of 

edges. We show that our upper bound q~(G) is never worse than this trivial bound. 

Theorem 1. Let G be a weighted graph with weight function w. We have 

~ ) <  ~ we. 
We >~0 

Proof.  Set w,~ = m a x  (0, wu) for all pairs of vertices and let G' be the corresponding 

weighted graph. The second part of the lemma above says ~(G)  ~< qffG'). So we may 

assume that w is already non-negative. Set m = E w U, and consider the correcting vector 

defined by 

4m 
ui = - - - 2  ~2 wij. (4) 

n 
J 

We have, for every X, the relations 

4m x T ( L +  U ) X = - -  XTx - ~_, wa( Xi +Xj) 2 ~<4m XTx. 
n n 

Applying this to an eigenvector X associated to the largest eigenvalue "~max of Lq- U, we 
obtain Ama×(L-}- U) ~4m/n, and hence q~(G) ~<m. [] 

A simpler proof of  Theorem 1 will be proposed in Section 5. 
Let us remark that the proof of Theorem 1 relied on the "guess"  of a good correcting 

vector. Indeed an awkward choice of  a correcting vector may result in a poor bound. 
For example, consider the ordinary star K1. n-1 with the null correcting vector. Then 

¼nAmax(L(Kl.n-1)) = ¼n 2 while mc(Kl, n-  1) = n -  1 = qffKl, n-  l). 
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Fig. 1. The exact graph C8, 2 with mc = ~p = 12. 

We will call a weighted graph exact  if it satisfies m c ( G )  = q~(G). Clearly, a graph G is 

exact if and only if some _ 1-vector x belongs to the eigenspace of Amax(L + d iag(u) )  

where u is a correcting vector. Although ~ ( G )  provides a good upper bound for m c ( G ) ,  
exact graphs seem to be relatively rare. Still there are several interesting examples of  exact 

graphs. 
An immediate corollary of  Theorem 1 is that every weighted bipartite graph with positive 

weights is exact. Also the ordinary complete graphs with an even number of  vertices are 
exact. (Clearly, mc (Kzk)=  k 2 and on the other hand, with a null correcting vector, the 

maximum eigenvalue is 2k, hence q~ ~< k2.) 

An example is also given in Figure 1 (see [ 18, p. 349] ). 
Some construction of exact graphs will be given in Section 5. Further examples of  exact 

graphs can be found in [ 18 ] and [ 7]. We prove in [ 8] that the recognition of exact weighted 

graphs is NP-complete. The complexity of  the unweighted case is an open question. 

3. Properties of f  

It is advantageous to write the definition of q~(G) in the form q~(G) = m i n ,  f ( u )  where 

f(u) = 41-nAmax(L + U) and u is constrained by Z uif>0. 
In this section we establish some properties o f f  It is important to show tha t fa t ta ins  a 

minimum which is unique. Another useful property o f f ,  the convexity, has already been 

known (see [ 10, Theorem 1] or [9, Chapter 6] ). 

T h e o r e m  2. The func t ion  f has the fo l lowing  propert ies .  

(i) f is Lipschitzian,  that is [f lu)  - f (  u' ) [ / [ u - u ' [ is bounded by some constant.  

(ii) f is convex.  

(iii) f at tains its m in imum exact ly  once unless all  the weights  are null. 

Proofi  Let u and u' be two vectors and U and U' the corresponding diagonal matrices. 
(i) Without loss of generality, one can assume f (u )  < f ( u ' ) .  Let Y be an eigenvector 
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for the highest eigenvalue of L +  U', with yTy= ¼n. We have YV(L+ U)Y<~f(u) and 

y T ( L +  U' )Y=f (u ' )  and thus 

O<~f(u ' ) - f (u)  = ~  (u~-ui)Yai <<. ¼ m a x l u ~ - u i  In. 
i 

Thusf i s  Lipschitzian. 

(ii) Let us give a short proof of  the convexity of f for convenience. Let t be some real 

between 0 and 1. Let u" = ( 1 - t) u + tu'. Let Y be an eigenvector for the highest eigenvalue 
of L +  U" with yTy= ¼ n. Then yT(L+U)Y<~f(u)  and y T ( L + U ' ) ~ f ( u ' ) .  By linear 

combination we obtain 

f(u") = yT(L + U") Y= ( 1 - t) yT(L + U) Y+ tyT(L + U') Y 

~< (1 - t) f(u) + tf(u') 

that is the convexity o f f  

(iii) Suppose that the minimum is attained at u and u', with u v~ u'. By convexity it is 

also attained at u" = ½ (u + u' ). Let Y be an eigenvector for the largest eigenvalue of L + U", 
with YTy=¼n. We then have yT (L+U)  Y<~¼Amax(L+U)n and yT(L+U')Y<~ 
¼ A ~ax (L + U' ) n. By averaging, we see that both inequalities are in fact equalities, thus Y is 

also eigenvector for the highest eigenvalue of L + U and for the highest eigenvalue of  L + U' 

which is the same real. Hence Y is an eigenvector for U' - U, with eigenvalue 0. The 

eigenspace H of L + U" is thus a subspace of the kernel K of U' - U. Let d = dim K. We 

have d < n since U v a U'. Let A' be the largest eigenvalue of  L + U" smaller than A (it exists 

since there are non-null entries out of the diagonal of the symmetric matrix L + U"). Let us 

define u * by u* = u ~' + ( A - A' ) ( d -  n) / n if the vector with only the ith coordinate non- 

null is in K and u* =ul' + ( A - A ' ) d / n  for the other indices i. Then U* and U" have the 

same trace. Let us compute the quadratic form with matrix L +  U*. Every vector Z is 

decomposed on Z~ that lies in H and Z2 orthogonal to H. Then 

ZT(L+ Cr')Z <<. 2tZT z, + A'Z~ Z2 

and 

Z T ( L +  U * ) z = Z T ( L +  l f ' ) Z +  ( A -  A') 
d - n  

zITZ1 
tl 

dA + ( n -  d) A' + ( a -  A') d Z~Z2 ~ ZTZ< AzTz. 
/// H 

Thus we have found a better choice for the system, which contradicts the minimality. 

We have proven that the minimum is attained at most once. Let us now prove that it is 

attained. If  max Iui] ~ w  with ~ ui>~0 then max u ~  and ~max(L-b U) >~ maxi(u~+ di), 
where d l= ~j,~ w 0 is the "weighted degree" of the vertex i (see Lemma 4 of Section 7). 
Now apply the usual compactness argument to the continuous functionfthat tends to infinity 
with u on the closed half-space ~ ui >~ 0. [] 

The convexity o f f  simplifies the possible forms of  the optimal correcting vector if the 
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weighted graph has a non trivial group of automorphisms (preserving the weights of  the 

edges).  

Corollary 1. Let u be the optimum correcting vector o f  a weighted graph G. I f  vertices i 

and j belong to the same orbit then ui = uj. In particular, if G is vertex-transitive, then the 

optimal correcting vector is the null vector. 

ProoL The proof is a routine use of  the convexity and group action. [] 

We use this corollary to compute q~ for various examples (some of them are collected in 

[7] ). As a consequence of this corollary, the previous upper bound of Mohar and Poljak 
[ 18] is not improved for the vertex-transitive graphs. 

We will use later in this paper some examples: 

• Ordinary complete graphs: 

mc(K2~) = k 2 = q~(K2~), 

mc(K2k+1) = k ( k +  1) < ¼ ( 2 k +  1)2= q~(Kzk+i). 

• Ordinary cycles: 

mc (C2~) = 2k = q~(C2k), 

( 2 _ _ ~ )  2 k +  1 25 + 5 f 5  
mc(C2~+l) = 2 k <  2 + 2  cos - - ~ - =  q~(C2k+l) ~ 3 ~ × 2 k .  

The value (25 + 5V/5)/32 = 1.130635... comes from the 5-cycle. 

4. A characterization of the optimal correcting vector 

In this section we give a criterium to check whether a correcting vector u is optimal. 

Clearly, in case of  exact graphs, it is sufficient to present a subset S which induces a cut 
of  value lnAmax(L c + diag(u)  ). Then we already know that 

• u is th e optimum correcting vector; 
• S induces the max-cut; and 

• the vector Xs with coordinates 1 or - 1  is an eigenvector of L c + d i a g ( u )  for the 
eigenvalue h ... .  (L~ + diag(u)  ). 

Thus, we can see that Xs certificates the optimality of u in the case of  exact graphs. We 
will formulate a more general concept of  a certificate that can be used for all graphs. 

Let u be a correcting vector and ~ the eigenspace of A max (LG -~- diag (u ) ) .  We say that a 
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finite family (X(K), K ~ K) from ~ is an optimality certificate of the correcting vector u if 

~ , ~  K ( (X(K)  ) i )2  = 1 for every i = 1 . . . . .  n. The notion is justified by Corollary 2 below. 

We will use the linear form o-: u ~ Y'.i u~, the eigenspace go and the convex cone g~ 

generated by the linear forms .r~: u ~ Y'.i xZui for all x in the eigenspace g~. 

Theorem 3. The correcting term u realizes the minimum if and only if the form o- is in the 

cone ~ .  

Proof.  If o- is in the cone then, for every increment v with cr(L~) >/0, we have some 

x ~ w i t h  ~-x(V)>~0. Then if we normalize x to xVx=¼n we have f ( u + v ) > ~  

xX(L + U+ V ) x = f ( u )  + "rx(c, ) >~f(u). 

If  o" is not in the cone ~ ,  then some system v separates ~ and the form % that is ~r(v) > 0 

and z,(v) < 0 for all x v~ 0 in ~,  and we now prove that the minimum o f f  does not occur 

in u. 

Let us introduce the spheres ~cP r of vectors with xTx = r. These spheres are compact sets 

and their intersections with g~ and the orthogonal subspace ~ ±  are also compact. Let a < 0 

be the maximum of xTVx on  5 '~, (~g, let b be the maximum of [xTVy] with x e ~ ( ' / ~ l  

and y ~ g ± C3 &~ and let c be the maximum ofyTVy with y ~ ~ " N ~ .  Let A and/z be the 

largest and second largest eigenvalues of L + U. Let x + y be a vector in &~,/4 such that 

x ~  and y ~  ± 

Then 

(x + y)T(L + U + tV) (x + y) - ¼An <~ taxTx + 2tb~xTxyTy + (tc + I~-- A)yTy. 

If  0 < t < a (tz -- A) / (b 2 _ ca),  the quadratic form appearing on the right hand side, with 

matrix 

I 'a '~ ] 
tb tc+ i x - 1  ' 

is negative definite. So f (u  + tv) < f ( u )  on the open interval ] O, a ( l ~ -  A) / (b 2 - ca) [. [] 

Corol lary  2. A vec tor  u is optimum correcting vector i f  and only if  there exists an optimality 

certificate of  u. 

Proof.  If  o-~ c~, then or= E ~ t c  a~Zx(K~ where K is finite and vectors x(K) are in g~, and a~ 

are positive. Clearly, one may assume that the vectors x(K) are distinct and all aK are equal 

to one. Thus, (x(~) ,  K ~ K) is an optimality certificate. The converse implication is triv- 

ial. [] 

Let us remark that the optimality certificate need not be unique. The existence of  an 

optimality certificate has rather a theoretical importance than a computational use. We will 
use it in the next section to establish the additivity of  q~ on 1-sums and 0-sums. It may be 
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noted that every certificate can be replaced by a certificate consisting of at most n vectors 

o f ~ .  

Example.  For the ordinary triangle, we already know that u = 0 is the optimal correcting 
vector. The eigenvalues are 0 and 3. A certificate is the family of eigenvectors ( 1/V~) (0, 

~, - 1) ,  ( 1 / v ~ ) ( 1 ,  o, - l ) ,  ( 1 / v ~ ) ( 1 ,  - l ,  o ) .  

Corollary 3. Assume that G is not exact, and let u be the optimum correcting vector. Then 
the largest eigenvalue hm~x of L + U cannot be simple. 

Proof. Assume that hma x is simple, and let X be a corresponding eigenvector; we may 

assume that X has length v~n. Then the dimension of the eigenspace ~ is 1, and hence also 

the dimension of the cone ~ is 1. Since by Theorem 3 the form o-= (1, 1 . . . . .  1) = 

(u ~ Ei ui) belongs to ~ ,  it follows that ~ contains a vector with coordinates in { - 1, 1 }. 

Hence G is exact, a contradiction. [] 

The "dual characterization" by an optimality certificate corresponds, in general, to a 

subgradient characterization of a convex function. However we are not aware of any result 

that would directly yield our Theorem 3. A very close problem was studied by Overton 

[ 19] but his dual characterization has a more complicate form. 

5. The function q~ and amalgams of graphs 

In this section we prove the subadditivity of the bound ~p with respect to amalgams. 
Subadditivity is a crucial property and will be applied later to establish a result on planar 

graphs. In special cases, namely when the graphs to be amalgamated have 0 or 1 vertex in 

common, the inequality becomes an equality. 

We describe now the amalgam of two weighted graphs G' and G". Let V' and V" be the 
vertex sets of G' and G" (the sets V' and V" may intersect). Let n', n" be the number of 

vertices and let w', w" be the weight functions of G' and G" respectively. Then the vertex 

set of the amalgam G is V-- V' W V" and its weight function w is defined by 

f wb + w~ i f i a n d j a r e b o t h i n V ' N V " ,  
wij --- w ~ if i, j are both in V' but not both in V", 

w~j if i, j are both in V" but not both in V', 
0 otherwise. 

In other words, the Laplacian matrix L of G is the sum of the suitably extended with 
zeroes Laplacian matrices L' and L" of G' and G". 

It is easy to see that the max-cut has the following properties. 

Lemma 3. If G is the amalgam of G' and G", then 

mc(G) ~<mc(G') +mc(G") .  (5) 
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I f  the amalgamated graphs G' and G" have at most one common vertex then 

mc(G) = mc(G ' )  + mc(G").  [] (6) 

The following theorem shows that ~ behaves in the same way. 

Theorem 4. I f  G is the amalgam of G' and G", then 

q~(G) < q~(G') + q~(G"). (7) 

I f  the amalgamated graphs G' and G" have at most one common vertex then 

q~(G) = q~(G') + q~(G~'). (8) 

Proof. The proof will consist of several steps, starting with some special cases. Let u' and 

u" be the optimum correcting vectors, and (x ' ( ¢ ' ) ,  ~ '  E K ' )  and (x"(K"), K"EK") opti- 

mality certificates for G' and G" respectively. (These certificates are defined in Section 5.) 

(i) Assume that V' = V". We show that the inequality (7) holds. Consider a (possibly 

not optimal) correcting vector u = u' + u". Let x be the eigenvector corresponding to the 
maximum eigenvalue of the matrix L(G ' )  + diag(u' + u") + L(G"). Assume x T x  = l I V  I . 

Using the Rayleigh principle, we have 

q~(G) ~ x T ( L ( G  ') + diag(u' + u") +L(G")x  

~< )t max(L(G') -? diag(u')  )xTx + a max(L(G") + diag(u") )xTx 

<~ ,p( G')  + ~( G"). 

(ii) Assume that V' (] V"= O. We show that the equality (8) holds. Let a '  and k" denote 
the maximum eigenvalue of L ( G ' ) +  diag(u')  and L(G")+ diag(u") respectively. We 

construct a correcting vector u by 

f u~ +ee' if i ~ V ' ,  (9) 
ui= l,u~' +ce" if iEV",  

with c~' and d '  real numbers such that n'c~' + n"c~" = 0 and k'  + c~' = k" + c~". The concate- 
nationofaneigenvectorx'forL(G') + diag(u')  and an eigenvector x " for L( G") + diag(u") 
is then an eigenvector x =  (x', x") for L(G) + diag(u) with eigenvalue ,~= a '  + c~'. It is 
easy to check that A is the largest eigenvalue of L(G)+diag(u )  and that 

¼ h ( n ' + n " ) =  L - ,  , ~ . . . . .  za n + z,~ n . Thus we already have proved the inequality (7). 
In order to show that the equality (8) holds, we check that the correcting vector u given 

by formula (9) is already optimum for G. To prove optimality of u, we will construct an 
optimality certificate (x~, K ~ K) for G and u, from the certificates of u' and u". 

Now K is the disjoint union of K' and K". x(K) is the concatenation x' (K), 0 if K E K' 
and the concatenation 0, x"(K) if K E K". The corresponding sum is the all-one vector. This 
proves that the chosen u realizes the minimum off. 
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(iii) Let G + v be obtained from G by adding an isolated vertex. Then q~( G + v) = q~(G). 

This follows immediately from part (ii).  
( iv) Let V' and V" be arbitrary, i.e. they may intersect and need not be identical. We 

show that the inequality (7) holds. One adds isolated vertices to graphs G'  and G" to obtain 

the vertex set of G. This does not change the bounds q~(G') and ~(G"). Then one applies 

part (i) .  
This concludes the proof of the first assertion in the theorem. 

(v)  Let V' and V" intersect exactly in one vertex. We show that the equality (8) holds. 

We already know the inequality (7) from part ( iv).  We will construct the optimum correc- 

tion vector u and a certificate of  optimality. 
The proof is similar to that of  part (ii).  Let M'=L(G' )+diag(u ' )  be the optimally 

corrected Laplacian of G' ,  n '  the number of vertices of G' and (x ' (K ' ) ,  K' ~ K ' )  the 

certificate of the minimum. We also consider the analogous objects for G". 

We introduce the correcting vector u for L ( G ) ,  

{ u~ + a '  if i~  V( G') \ V( G"), 
ui = ul' +~"  if i ~ V ( G " ) \ V ( G ' ) ,  

( 1 -n ' ) od  + ( 1 - n " ) d + u i + u ~ '  i f i ~ V ( G ' ) A V ( G " ) ,  

with ce' + A' = N ' +  A"= (1 - n ' )  ce' + (1 - n") N'. 
Then it is easily checked that the largest eigenvalue of L (G)  + diag (u) is (n'/V + n"A") / 

(n '  + n " -  1 ). Moreover the eigenvectors are constituted by "g lue ing"  an eigenvector x'  
and an eigenvector x" with the same coordinate on the common vertex i. 

From a certificate o-= ~ ~'x,(K,), it is possible to obtain a new one with the first vector x '  

satisfying x~ = 1 and the other ones satisfying x~ = 0. It suffices to replace the matrix X' 

with n rows and r = I K'  I columns representing the r eigenvectors x'  by the matrix X'P with 

P an orthogonal matrix with r rows and columns, the first column of which has coordinates 

PK1 =X~(~C). The same modification can be performed on the set of  vectors xT. 
One then builds a certificate for u by glueing the first vectors x '  and x" and completing 

each other x'  (resp. x") with n " -  1 zeroes (resp. n'  - 1 zeroes). [] 

Theorem 4 has several applications. The most important application to planar graphs will 
appear in Section 6. Here we present as corollaries some constructions of  exact graphs. 

Coro l la ry  4. For any weighted graph G, the bound q~( G) is at most the sum of the positive 
weights of its edges. 

Proof .  Let G be a graph with weight function w. For every edge e let Ge be the graph 
consisting only of this edge with weight we. Using subadditivity, we have ~o(G) ~< Y'.q)(Ge). 
Clearly 

( O  e if we/>0, 
q~(Ge) = if We < 0  ' []  

Coro l la ry  5. Any bipartite graph with non-negative weights is exact. 
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Proof. Let G be a bipartite graph with a non-negative weight function w. We have 
mc(G) < ~(G) <~ ~ We. Since the obvious cut already gives mc = L we, these three expres- 
sions are equal. [] 

Corollary 6. If all 2-connected components of G are exact, then G is exact. 

Proof. This can be proven by amalgamating these components and the remaining edges in 
such an order that the two parts to be amalgamated at each step have only one vertex in 

common. [] 

This corollary has the following generalization. 

Corollary 7. Let G and G' be a pair of exact graphs. Assume that the maximum cuts of G 

and G', respectiuely, can be realized by partitions which coincide on V(~ V'. Then the 

amalgam G" of G and G' is exact as well. 

Proof. We have a cut of G" by combining the compatible partitions of G and G'. This 
cut has value m c ( G ) + m c ( G ' ) = q ~ ( G ) + p ( G ' ) .  On the other hand we have 

q~(G") < q~(G) + q~(G') =mc(G)  +mc(G ' )  ~<mc(G") ~<q~(G"). [] 

The cartesian sum (G, k) X (G', k') of weighted graphs G, G' with weight functions w, 
w' on their edges and k, k' on their vertices is the graph with vertex set V× V' (and weight 
kikl, on the vertex (i, i ' ) ) ,  and weight function wukc on the edges (i, i ') ,  (j, i ') and 
k~ wuj, on the edges (i, i ') (i, j ' ) ,  the other edges having null weight. 

Corollary 8. If G and G' are exact and the weight functions on vertices k, k' are non- 

negatiue, then their cartesian sum is exact. 

Proof. This can be proven by amalgamating the n' copies of G (with weight function 
k~,w on G X { i' } ) and the n copies of G' (with the weight function kiw' on { i} × G' ). 

If optimal cuts of G and G' are given by S and S' then the cut of G X G' given by 
S X S' U (V~S) × ( V' \ S '  ) has the wanted value (see [ 18 ] ). 

~( ( O, k) X ( G', k') ) < ]~_~ ki~( G')  + ~_~ k~,~p( G) 
i i r 

can also be derived from the computation of the eigenvalues of 
K® (L' + U') + (L + U) ®K' where K and K' are the diagonal matrices corresponding to 
the weight functions k, k' on the vertex sets of G and G'. [] 
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6. Weakly bipartite graphs 

It is well known that the max-cut problem is polynomially solvable for planar graphs. We 
show that our bound ~(G) behaves well on planar graphs. The result is formulated in 

Corollary 6 below. 
We need to recall some definitions. 
The convex hull of characteristic vectors of bipartite subgraphs of a graph G is called the 

bipartite subgraph polytope and is denoted by PB( G). 
A graph G is called weakly bipartite (cf. [ 15] ) if its bipartite subgraph polytope PB (G) 

is described by the following system of inequalities: 

x~ ~< I c l - 1 for each odd cycle c, (10)  
e E c  

0~<xe ~< 1 for e ~E.  (11) 

Theorem 5. Let G be a weakly bipartite graph with non-negative weights. Then 

25 +5V/5 
q~(G) ~< mc(G). 

32 

Proof. The max-cut problem for any graph G with non-negative weights can be written as 
max{ wTxlx ~ Pu(G) }. Since G is assumed weakly bipartite, it is equivalent to the optim- 
ization problem 

max ~ W e X  e subjectto (10) and (11) .  (12)  
e ~ E  

Let C be the set of odd cycles in G. Using the duality of linear programming, there is a 
collection of non-negative coefficients ac, c ~ C and a collection of non-negative coefficients 

/3e, e ~ E such that 

/3e + ~ c~c >~ we for every edge e, (13)  
c ~ e  

/3~+ ~ ozc(]c ] - 1 ) = m c ( G ) .  (14) 
e ~ E  c ~ C  

For an odd cycle c c G and a positive coefficient a, let c~c be the weighted cycle with all 
edges bearing weight c~. Similarly let/3e denote the single edge considered as a graph with 
the weight/3. 

Let H be the weighted graph obtained as the amalgam of the weighted graphs c~cc, c ~ C 
and/3~e, e ~ E. By (13), the weight of each edge of His at least 1 and G is clearly a suhgraph 
of H. Thus we have q~(G) ~< ~o(H) by Lemma 2. 

Since H is obtained as the union of weighted subgraphs, using Theorem 4 we get 
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~(H) 4 ~q~(%c) + ~ q ~ ( ~ e )  

= ~.Olc@( C) "t- ~[~e@( e) 

25+5V~ 25 + 5 f 5  
~<~% 32 ( I c l - 1 ) +  3 ~  ~/3e 

25+5 1 ) 
3-2 (~ .  % ( i c l -  1 ) + ~ / 3  e 2 5 + 5 d  

32 

owing to 

2 5 + 5 ~  
q~(c) ~< 3 ~  (Icl  - 1 )  

for odd cycles and (14). This proves the theorem. [] 

- -  mc(G) 

Since every planar graph is weakly bipartite due to a result of Barahona ( [ 1 ], cf. [ 15 ] ), 
we have: 

Corollary 9. Every planar graph with nonnegative weights G satisfies 

25 + 5 ~  
q~(G) ~ < - -  me(G).  [] (15) 

32 

Some other subclasses of weakly bipartite graphs are given in [2] and [ 12]. However a 
general characterization of weakly bipartite graphs is not known. 

7. Existence of a polynomial algorithm 

In this section, we will show that the number q~(G) is efficiently computable for a weighted 
graph G with rational weights. More precisely, we prove that q~(G) can be computed with 
arbitrary prescribed precision ~ > 0 by a polynomial time algorithm. The term polynomial 
means that the number of steps of the algorithm is bounded by a polynomial in the number 
of bits which are necessary to encode the input data, which in our case consist of the integer 
n, the rational symmetric matrix of weights wij and a rational precision 6 > 0. These notions 
are precised in [ 14]. We just recall definitions and a theorem from that book. 

If K is a compact subset of ~" and ~ a positive real number, S(K, e) is the set of points 
y such that the closed sphere S(y, s) centered at y with radius e meets K, and S(K, - e) is 
the set of points y such that S(y, ~) is included in K. 

A centered body (K; n, R, r, a) is a n-dimensional set K of points such that 
S(a, r) cKcS (a ,  R). 
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Rational membership problem RMEM. Given a vector y e Q" and a convex compact set 

K c  ~",  decide whether y is in K. 

This problem is slightly stronger than the weak membership problem: 

Weak membership problem WMEM. Given a vector y e Q", a positive rational e and a 

convex compact set K c  Nn, either 

(i) assert y is S(K, e), or 

(ii) assert y is out of S(K, - e). 

Weak optimization problem WOPT. Given a vector c in Q" and a positive rational number 

6, either 
(i) find a vector y e  Q"  such that y e S ( K ,  6) and cTx<~cTy+ ~ for all x e S ( K ,  - ~), 

or 

(ii) assert that S(K, - e) is empty. 

Theorem 6 (Theorem 4.3.13 of [ 14] ). There exists an oracle-polynomial time algorithm 

that solves the following problem: 

Input: A rational number ~ > O, a centered convex body (K; n, R, r, ao) given by a weak 

membership oracle, and a convex function f: Nn _~ ~ given by an oracle that, for every 

x e Q" and 6 > O, returns a rational number t such that If(x) - t I ~ 6. 

Output:A vec toryeS(K,  6) such thatf(y) <~f(x) + e f o r a l l x e S ( K ,  - 6 ) .  [] 

Theorem 7. There exists a polynomial time algorithm which, for a given graph G with 

rational weights and a rational number 6 > O, computes a rational vector ~ and a rational 

number X such that 

(i) f ( a )  ~< X, 

(ii) a < f ( u )  + 6for all u. [] 

For simplicity, we will assume that all weights are between - 1  and 1. This is not 

restrictive since q~ is positive homogeneous. We also work with a graph on n > 2 vertices, 

since case of  n ~< 2 has no interest. 

We need an easy lemma from matrix theory. 

Lemma 4. Each diagonal entry mii of a real symmetric matrix M is a lower bound for the 

highest e igenvalue k max ( M) and the highest sum si = mii + Ej ~ i l mij [ is an upper bound for 

~max(M). [] 

We now have some lemmas to apply the theory developed in [ 14]. 

Let us define the polyhedron K0 c N", 

Ko u ui>~OAVi, u i ~ 3 ( n - 1 )  , 
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and let ~7 be the optimum point, i.e. f ( t i )  = q~(G). 

Lemma 5. The optimum point ~ & in Ko. 

Proof.  Each diagonal entry d~ of L is between 1 - n and n - 1 and each other entry is between 

- 1 and 1. Hence Amax(L) ~ 2 n -  2 and the entries d~ + uz are less than 2 n -  2 at the mini- 

mum. Hence at the minimum the terms ui are at most 3n - 3. [] 

We choose B = 4 n - 2 ,  a o = ( 0  . . . . .  0, 2n) T, r = l ,  R = 3 ( n - 1 )  2. Let K={(u , t ) [  
hmax(L+ U) <~ t<~B} (this set is denoted as G(f, Ko) in [ 14] ). 

Lemma 6. We have S( ao, r) c K  cS(  ao, R) for the L= distance. 

Proof.  The first inclusion is a consequence of max(ui)+l-n<~Amax(L)<~ 
max(ui)  + 2 n - 2  that gives Amax~<2n- 1 if all ]ui] ' s  are at most 1 and 2 n +  1 < 4 n - 2 .  
The second one comes from the inequalities ui<~3n-3 and F.iui>~O that together 

give - 3 ( n - 1 ) 2 < ~ u ~ 3 ( n - 1 ) ~ 3 ( n - 1 ) :  and 2n-3(n-1)a<l-n<~Ama× and 
4 n - 2 < 2 n + 3 ( n - 1 )  2. [] 

We also notice that Amax(L + U) ~<4n - 4  if u is in K o. 

Lemma 7. The rational membership problem RMEM is polynomially solvable for K. 

Proof.  Besides the easy tests u i~3n -3 ,  ~,iui>/O and t~B,  we have to decide whether 
Amax(L + U) ~< t. This is equivalent to check whether t I -  (L + U) is positive. This can be 

done by checking that the principal subdeterminants are non-negative. Thus the problem 

reduces to computing these n determinants. At last, the computation of the determinant is 

polynomial on the size of the matrix (see [ 14, Corollary 1.4.9 ] ). []  

In particular, we can solve (WOPT)  for the minimization of t subject to (u, t) ~ K with 

e < 1. This gives us a pair (~7, i) ~ S (K, e) such that i~< t + e for all (u, t) ~ S (K, - e).  

Let (u ' ,  t ' )  ~K.  Then there exists (u, t) ~S(K, - e) with the L~-distance of (u, t) and 
(u ' ,  t ' ) at most 2e. This comes from the choice of  Ko, and the slow variations of A m a x  ( we 

can see that I Arnax( L + U) - A . . . .  (L + U' )  I ~ I u -  u'  I like in Theorem 2). 
Hence the true minimum of Amax is between i +  8 and { -  3e. 
Note that f being Lipschitzian gives slightly improved results in comparison with the 

general theory of [ 14]. 

8. Final remarks 

A natural question is how well the eigenvalue bound q~(G) approximates the actual value 
of the max-cut m c ( G ) ,  and comparison of the eigenvalue bound with other approaches. 
These questions motivate our further work on this topics. 
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An important property is that q~(G) provides a bound which is asymptotically optimal, 

because the expected value of the ratio q~(G) /mc (G) tends to 1 for random graphs G with 
constant edge probabilities. 

Let G,,, p denote the random graph on n vertices with edge probability p. We have the 
following result. 

Theorem 8. Letp, 0 < p  < 1, befixed. Then 

lim ~(Gn,p) 1. 
n+~ mc(Gn,p) 

Proof. Let e denote the number of edges of Gn, p and d the average degree. We have 

mc(Gn, p) > ½ e = ¼ nd, since this is true for every graph. In order to estimate ~(Gn, p), we 
need a result of Juhfisz [ 16, Proposition 3]. He proved that, for a random (0, 1 )-matrix A 

with fixed densityp of l 's ,  all the eigenvalues A but the maximum one A max are of magnitude 
Ihl ~<O(nl/2+~). 

Assume that the correcting vector u is chosen so that the optimized Laplacian 

matrix L+diag(u )  takes the fo rm d l - A  (where d is the average degree). Then 
Amax(L q- diag(u) ) = d -  Amax(A ) = dq- O(n l/2+e), and hence 

~( Gn,p) <~ ¼n( d+O(nl l2+~) ). 

We have 

l i r a  q~(Gn'p-----~) <~ lim ¼n(d+O(nl l2+~))--  1. [] 
n ~  mc(G,,p) n - ~  lnd 

The asymptotic optimality of q~(G) contrasts with the asymptotic behaviour of the bound 
from [3, 4] (computed by linear programming), for which the ratio p ( G ) / m c ( G )  tends 

to 4 on the graphs with fixed edge probabilities, and to 2 on a class of sparse graphs (see 

[ 22] ). A concrete class of sparse graphs with the latter property are the Ramanujan graphs 
[20]. Moreover, the eigenvalue bound is never worse than 1.131 multiple of the linear 
programming bound for a nonnegatively weighted graph (see [ 20] ). 

On the other hand, the worst case ratio of q~(G)/mc(G) (for G unweighted) is not 
known. The so far worst known case is with G =  C5 where the ratio takes value 1.131 .... 

We conjecture that this value might be true for all graphs. A collection of graph-theoretic 
examples supporting the conjecture is given in [7]. 

Computational experiments with the bound p(G)  are reported in [21]. The current 
version of the program deals with instances of sizes up to 20.103 vertices and 2.10 6 edges. 

As a by-product, the code also produces a cut as a lower bound. This cut is typically slightly 
larger than a cut found by repeated local search in the same amount of time. The typical 
gap between the upper and lower bound is about 5%. 

A version of the code computes the exact value of mc(G) by the branch and bound 
strategy, using some theoretical results from [ 8] for the data initiation in subproblems. 
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