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Abstract

Mohar, B., Some relattons between analytic and geometric properties of infinite graphs,
Discrete Mathematics 95 (1991) 193-219.

For locally finite mmfinite graphs the following analytic invariants and properties are considered:
the spectrum of the transition and difference Laplacian matrix, amenability and the Kazhdan
property (T). They are related to several geometric invariants, such as the isoperimetric
number, growth, the structure of the space of ends, etc. Usually, only the global behaviour of
invariants 1s important. It 1s shown how each of the above propertics has its ‘essential’
counterpart, e.g. the essential isoperimetric number, the essential spectrum, the essential
maximum degree, etc. These invaniants do not change 1if we add or delete finitely many cdges
in the graph.

1. Introduction

The main aim of this paper 15 to bring to attention some properties and
invariants of infinite locally finite graphs (with possible loops and multiple edges).
Several relations between some of these invariants are derived. We also
introduce, for each invanant considered here, its essential coyunterpart, which is a
similar quantity but with the property that it does not change if we add, or delete
finitely many edges from the graph. These ‘essential’ invariants describe the
global properties of graphs. If a finite piece of a graph looks arbitrarily ugly, it
does not affect the essential properties.

The considered invariants are classified as analytic (algebraic), or combinatorial
(geometric). In the first class we count the spectrum of several matrices associated
to graphs, the amenability, and the Kazhdan property (T). The last two of these
were originally introduced for locally compact topological groups, and it is
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suggested here how to define them for arbitrary graphs, so that they coincide on
Cayley graphs of finitely generated discrete groups with the classical parameters.
The related combinatorial invariants are the isoperimetric constants of graphs,
some numbers based on vertex degrees and the growth of graphs, and the
structure of the space of ends of graphs.

The paper intends to be something between introductory, expository, and
research. We believe that some ideas presented here are worthwhile deeper
investigation not only because of their applications in graph theory but also
because of their close relationship with some other areas of mathematics, e.g.
differential geometry, representation theory, random walks, stochastic processes,
etc.

2. Some geometric invariants

Graphs 1n this paper are undirected and locally finite.

Graphs G and H are said to be equivalent (by finite), or almost isomorphic, if
there 1s a bijection ¢ :V(G)— V(H) which maps adjacent, or non-adjacent pairs
of vertices of G to adjacent and non-adjacent pairs, respectively, in H, with
finitely many exceptions. Equivalently, H can be obtained from G by first
deleting and then adding finitely many edges, up to an isomorphism.

We shall denote by A(G) and 6(G) the maximal and minimal degrees of
vertices 1n G, respectively. They have their ‘essential’ counterparts, the essential
maximal degree A'(G) and the essential minimal degree 6'(G), which are defined

by

A'(G):=inf{ A(H) | H equivalent to G)
and

8'(G):=sup{S(H) | H equivalent to G}.

It may happen that A'(G) =« and 6'(G) =0, It is clear that A'(G) is equal to
the minimal value d for which there are only finitely many vertices of G with
degree >d. Similarly, 6(G) is the minimal d with infinitely many vertices of
degree d. It 1s obvious that 6'(G) < A'(G). These two quantities are defined in
such a way that no finite perturbation of G changes their values, i.e., if G and H
are equivalent then A'(G)= A'(H) and 6'(G)= 8'(H). Graph invariants with
this property are said to be essential. So, A’(G) and &’(G) are first examples of
essential graph invariants we met.

Let v € V((). Denote by B, (v) the set of all vertices of G at distance at most #
from v (the ball of radius n centered at v), and let b,(v):=|B,(v)|. If necessary
to expose the graph, we write b,(G,v), or B,(G,v). The graph G has
exponential growth (from the vertex v) if b,(v) = Cq” for some constants C > 0,
q > 1, and each n =0. It has polynomial growth if b,(v) < p(n) where p( ) is a
polynomial. G has subexponential growth if it does not grow exponentially.
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Note that the type of the growth is independent of v if G is connected. Let

£(G, v) :=limsup (b,(G, v))""

F—

and

(G, v) :=liminf (b, (G, v)"'".

If v and u are vertices in the same component of G then b, (u)<b, 4(v)=

b, ..4(u) where d = dist(u, v). It follows that €(G, v) and (G, v) are constant on
each component of the graph. Define

e(G) = sup{&(G, v) | v e V(G)}
and

1(G):=sup{1(G, v) | v e V(G)}.

By the above conclusion, the suprema may be taken on representatives of each
of the connected components only.

Lemma 2.1. If e is an edge of the graph G then &(G —e)=¢e(G) and
(G —e) < 1(G). If e is not a bridge then 1(G —¢e) = 1(G).

Proof. The proof of (G — e) = £(G) can be found in [13]. To verify the relations
for 7, let e = uv. Clearly, (G, v)=1(G —e, v) and ©(G, v) = t(G, u) = 1(G —
e, u). Consequently, 7(G) = (G — e). Assume now that e is not a bnidge. Then u
and v belong to the same component of G —e. Let d be the distance between u
and v in G —e. Clearly, b, (G, v) =< b,, (G — e, v). Therefore (G, v) =< 7(G —
e, v). The same holds for u instead of v. This implies that 7(G) < (G — e), so by
the converse inequality proved above, 7(G) = 1(G —e).

Note. It may happen that t(G — e) < t((). There are also cases where 7(G) > 1
and (G — e) = 1. Specific examples are not hard to construct.

Corollary 2.2. The numbers £(G) and t'(G) :=inf{1(H) | H equivalent to G} are
essential numerical graph invariants.

Proof. ¢ is essential by Lemma 2.1, since addition or deletion of edges does not
affect its value. On the other hand, 7' is essential since for G and G’ equivalent,

the set of graphs which are equivalent to G is equal to the equivalence class of
G’

Proposition 2.3. Let G be a graph and v € V(G). Then (G, v) > 1 if and only if
G has exponential growth at v.
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Proof. First, if b,(v)=Cq", ¢ >1, C>0, then clearly 1(G)= 1(G, v)=q > 1.
Conversely, if ©(G) > 1, pick v € V(G) such that (G, v) > 1. This imples that for
an arbitrarily small « > 0,

b (V)" = 1(G, v) — a (2.1)

for all but finitely many values of n. Take a:=3(1(G,v)—1) and gq:=
(G, v) — a>1 By (2.1), b,(v) = q" for all but finitely many », thus b,(v) = Cg”
tor some small enough C >0 and each n.

The isoperimetric number h(G) of G is the number
0X
h(G):=inf{||X|| | X <>, X#6, X c V(G)}

where 0X = {ee E(G)|e=vu, ve X, u ¢ X}. Sometimes we will have various
graphs on the same vertex set. To specify in which graph G the coboundary 6.X is
taken we use the subscript, e.g. 8;X. The essential isoperimetric number of G is

h'(G):=sup{h(G’)

It 1s clear that A'(G)=h(G). It is also immediate that hA(G)= 6(G) and
n'(G) = 0'(G). However, these inequalities need not be very tight since there are
easily constructed examples where 2'((G) =0 and 6'(G) ==. On the other hand
also

G’ equivalent to G}.

h'(G)< A(G) —2. (2.2)

This can be shown as follows: Let G’ be equivalent to G. Then it has only finitely
many vertices of degree greater than A'((). Therefore one can find an arbitrarily
large fimte X < V(G7) such that all vertices in X have degree at most A'(G) in
(G', and the subgraph (X) of G’ induced on X is connected. Then, in G’,

[0X| =< A'(G) - | X] - 2|E((X)) < A(G) |X]-2(IX] - 1),

which easily implies (2.2). Notice that this bound is best possible since for the
A-regular tree T,, h(T ) =h'(T,) = A - 2.

Theorem 2.4. Let G be a connected locally finite graph with A'(G)<«. Then

1(G)—1
(G)+1

h(G)<h'(G)< A(G) (2.3)

Proof. The first inequality is obvious. By Lemma 2.1, 7(G) does not change by
adding fimtely many new edges to G since G is connected. Thus we may assume
that A((s) is arbitrarily close to A'(G), and so it is sufficient to show that

(G)—1

hG)< A'(G) - ey

(2.4)
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Choose a vertex v e V(G) and denote by s, :=b,(v)— b, _,(v). For n large
enough all vertices at distance n from v have degree at most A'(G), thus

A'(G)sps1 2|08, (V)| + 6B, (v)| = h(G) (bt + b,) = H(G)(2D, + 5,.1).
It follows that (A'(G) — h(G))s,, ., = 2h(G)b,, and hence
A'(G) + h(G)
"A(G) - h(G)
for each n large enough. Theretfore
A’(G)+h(G))”
A'(G)—h(G)/ "’

for some C >0 and each n = 1. So {(G) = (A (G) +h(G)/(A'(G) — h(G)). This
is equivalent to (2.4), so we are done.

bp1=b,+5.,=b

p=c

Corollary 2.5. If A’'(G)<<x and h'(G)>0 then t(G)>1, so G has exponential
growth in some of its components.

Note 2.6. There are graphs with exponential growth and with A'(G)=0. For
example, Cayley graphs of some soluble groups which are not nilpotent by finite
are known to grow exponentially but having 2'(G) =0, see [18]. On the other
hand, there are graphs with A'(G)=<« and A'(G) >0 and having polynomal
growth. Take, for example, the graphs having as vertices all integers and between
i and i + 1 having |i| + 1 parallel edges, —> <<i << +. This graph is easily seen to
have h(G) =h'(G) =1, but it grows linearly. If we want simple graphs, we may
add a vertex of degree two on each edge, or replace each vertex i by a clique of
order |i| + 1, and between any two consecutive cliques put a complete join. All of
this shows that Corollary 2.5 is best possible.

There are other possibilities to define 1soperimetric constants of graphs, by
taking other distances in graphs. Let us introduce only the transition isoperimetric
number s(G) of a graph G. If G is a graph with no edges then s(G):=0, and
otherwise

[0X |

s(G) = inf{S(X)

* X cV(G), X #0, |X| < x}

where S(X):= X, .xdeg(v) is the sum of the degrees of the vertices in X.
Clearly, 0=<s(G)<1. In contrast to h(G), the transition isoperimetric number
does not properly measure the connectivity of the graph since it may happen that
adding an edge to a graph strictly decreases 1its value. It is easily seen that
3(G)s(G) = h(G) = A(G)s(G). Therefore s(G) has advantage over h(G) in case
A(G) = = only. The essential transition isoperimetric number s'((G) i1s equal to the

supremum of all s(G'), where G’ is equivalent by finite to ;. A similar result as
Theorem 2.4 holds for s(G).
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Theorem 2.7, Let G be a connected locally finite graph. Then:
(a) Regardless of the degrees in G

- 1 +s(G) . o {IZ(G)—I
1(G) = \/1 ~3(G)’ Le. s(G)=s (G)EIE(G)-!- T (2.5)

(b) For a vertex v e V(G) let D, be the maximal degree of vertices at distance n
from v. If imsup,_.D)" =1 then

_ 1 +5'(G)
T 1-5(G)’

T(G)— 1
(G)+1

(() Le. s(G)=s'(G)= (2.6)
(c) If there is a constant M < > such that each vertex of G is contained in at most

M edge-disjoint cycles, then (2.6) holds.

Proof. If s'(G) =0 then all the statements of the theorem are clear. Thus we
assume that s'(G)>0. Choose an arbitrarily small n >0, 1 <s'(G). There is a
graph G, equivalent to G such that s(G;)=s'(G)~n>0. G, has finitely many
components and all of them are infinite. It is easily seen that one of the
components, say G, has s(G,)=s(G,). We shall prove that the claimed
Inequalities (2.5) and (2.6) hold in G,, for s(G,) in place of s'(G). Since
1(G) = 1((,) and s(G,) is arbitrarily close to s'(G), this will be enough. To make
the notation easier we will do all the calculations with the graph G (instead of
(s,), 1n particular we assume henceforth that G is connected.

Choose a vertex v e V(G). Let S, := B,(v)\B,_,(v). Then
S(Bn) o S(Bn—l) = S(Sn) = 'éBnl + IaBn—I' ”‘}"S(G)(S(Bn) + S(Bn—-l))

and so $(B,)=S(B,_1)(1 +s(G))/(1 —s(G)). It follows that for some constant
C>0

1+S(G))"‘ (2.7)

S(B”)EC'(l—s(G)

We now consider cases (a), (b), and (c).
(a) Since each edge with an end in B, has its other end in B,,, .

S(Bn) = ’Bnl ) IBn+1| = |Bn+1|2'

Combining this with (2.7) gives the lower bound (2.5) on 7(G).

(b) Choose any ¢ > 0. By the assumption on D,, there is n, such that for each
n=ny, D, <(1+€)" Let n; = n, be such that (1 + g)"1 = 5(B,,). Then for each
n=>n,

S(B)<(1+&)" |8, +---+(Q+ &) 5., +S(B,,)
=(1+£)"|S, +---+(1+&)-(1+ &)™ |S”]|+-*-+(l+e)"”|S"“|
=(1+&)"(|S,| + -+ 1S..]) = (1+ €&)"b,,.
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Now (2.7) imphes that

1 +S(G))"_

(1+5)”b”EC-(1_S(G)

Since € was arbitrary, this gives the required lower bound on z(G).

(c) Let G, be the subgraph of G induced on B, (v). Take a cycle C, in G, and
remove 1ts edges. Repeat this by choosing another, edge-disjoint cycle C,, remove
its edges, etc. until an acyclic graph 1s obtained. By our condition, the total
number of removed edges 1s at most M |B, |, and therefore

EGH=MI|B,|+(|B,|—1)<(M+1){B,|. (2.8)
We also have
5(B,) =2|E(G, 1) (2.9)

and now a combination of (2.7), (2.8), and {2.9) gives

C (1 +5(G))”
2(M + 1D \1 —s(G)

IBn+]| =

which implies (2.6).

Corollary 2.8. [fs'(G) >0 then 1(G) > 1, so G has exponential growth in some of
its components.

3. The spectrum

With a graph we may associate several matrices. For our purpose, only the
adjacency, the transition and the Laplacian matrix will be introduced. These
matrices have their rows and columns indexed by the vertices V(() of the graph.
No order of V(() i1s assumed, so a matrix in fact means a whole class of
permutation similar matrices with ordered rows and columns. Let ¢%(V) denote

the Hilbert space of complex vectors x = (x, ), cv(;, With coordinates indexed by
V = V((), and such that

Iel[*= 2, |x|* <.
veV
The inner product in ¢*(V) is defined (x,y)=1Y,.vx.9.. Our matrices act
naturally on €°(V) as linear operators.

The adjacency matrix A(G) =|a,,| of the graph G has entries a,, equal to the
number of edges between vertices u and v. If D(G) denotes the diagonal matrix
with diagonal entries containing vertex degrees, d,, = deg(u), u € V(G), then the
matrix L(G):= D(G) — A(G) 1s called the difference Laplacian matrix of G. The
transition matrix, P(G) ={p,.,| has entries p,,, = a,,,/deg(u). This one is assumed to
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act on the Hilbert space ¢5(V) where the inner product is given by

<x’ y >d — EV "rla'.)?lf ng(U)

while the adjacency and the Laplacian matrix act on ¢*(V). With this convention
all three matrices define symmetric linear operators on the corresponding Hilbert
spaces. It will be assumed, whenever speaking about the Laplacian or the
adjacency matrix, that the graphs have bounded degrees, i.e., A(G)< x. This
will not be required in case of the transition operator. Under this assumption,
A(G), L(G) and P(G) are everywhere defined and self-adjoint linear operators
on the corresponding Hilbert space. Their spectra are real. If we denote the
spectrum of A(G), L(G) and P(G) by 04(G), 0,(G), and 0p(G), respectively,
then i1t 1s well known (cf., e.g. [15]) that

o.(G)c|—A4, A}, 0, (G)c0,24], and o,(G)c[-1, 1],

where A = A(G). The reader is referred to [15] for more details about the spectra
of infinite graphs. Let us add that in each case, the spectrum is the approximate
point spectrum in the corresponding Hilbert space; for example, A € 0,(G) if and
only if there is a sequence of unit vectors x"" such that

|L{(G)x" — x| =0 as n— =,

The vectors x™ may be assumed to have only real entries x.
The introduced spectra are closely related if G is regular. It is easily seen that

k-op(G)=0(G) =k — 0,(G)

where & 1s the valency and the equalities hold as equalities between sets.
For us there are two particularly important numerical invariants based on the
spectrum. Let us denote by

A(G) :=inf 6,(G)
and
P (G) :=sup 0p(G).

They can also be expressed as

}L,(G)=inf{<L§f)j;x> x € €4(V), x #0) (3.1)
and
0,(G) = sup{ <ng);;j>d € V), x #0). (3.2)

The ‘essential’ invariant corresponding to the spectrum is the essential spectrum of
A(G), L(G), or P(G), respectively. The essential spectrum of a self-adjoint
linear operator B on a Hilbert space consists of all those elements from the
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spectrum of B which are not 1solated eigenvalues of finite multiplicity. It 1s well
known (cf., e.g., [9, Section X.2]) that these are exactly those A€ o(B) which
remain in the spectrum if B is changed by any compact perturbation, i.e.
A e o(B + K) for every compact K. It follows that the essential spectrum is an
gssential graph invariant since equivalence by finite perturbes the graphs matrices
in finitely many entries only and thus presents only compact perturbations. The
elements of the essential spectrum are also characterized as the approximate
eigenvalues of infinite multiplicity [5] (cf. also [9]). This means that A is in the
essential spectrum of B if and only if there are pairwise orthogonal unit vectors
" n=1,2 3, ..., such that

|Bx‘™ — Ax"|| =0 as n—> =x.

We shall denote by A1((G) the infimum of the essential spectrum of L((), and
by p/(G) the supremum of the essential spectrum of P(G). Clearly, 4,(G) =
A{(G) and p,(G) = p(G). Later we shall need the following inequality:

A(G) + 8'(G)
2

"(G) = 1< A(G) (3.3)

if 0'(G)=1. The proot goes as follows: There are inhnitely many pairs u;, v,
of adjacent vertices, such that deg(uy;)=<0'(G) and deg(v;)< A'(G). Let
y( vy be their characteristic vectors (i.e., y'” has the coordinate of v, and
u, equal to 1/V2, all others 0). Then

deg(u,;) + deg(v;) — 2 _A(G)+ 0 (G)

1L(G {r')j (Y =
(L(G)y™, y) 5 ;

Since this happens for infinitely many pairwise orthogonal unit vectors y'”, an
element of the essential spectrum must be =(A'(G)+ 6'(G))/2 - 1. Since we
were not able to find this last statement mentioned 1n the available literature, we
give a short proof of it. We have to show that if (Lx'”, x'”?) <t for infinitely many
pairwise orthogonal unit vectors x' then there is some A=<t in the essential
spectrum of L. It is known {22] that for some compact symmetric operator K, the
spectrum of L + K is equal to the essential spectrum of L. Notice that since K 1s
compact, (Kx"”, x'?) — 0. Consequently

(L) = A (L + K)=inf{{(L + K)x, x) | [Ix]| = 1}

<inf{{Lx", x) + (Kx'", x'?}} =1t.

Theorem 3.1. Let G be a locally finite graph, and let A = A(G)<x, A" = A'(G).
Then

2

— A= A(G)

h(G) = 4(G) = 1(G) (3.4
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and

'2

— M(G)

h'(G) = M(G) —75— = A1(G). (3.5)

Proof. Let U be an arbitrary finite subset of V = V(G). Define x € ¢°(V) by
setting x, =1 if ve U, and otherwise x, = (1/A)n,, where n, is the number of

edges from v to vertices in U. Denote by W the set of those vertices of V\U
which have a neighbour in U. By (3.1),

A(G) lIx]I* = (L(G)x, x). (3.6)
It 1s easily seen that
(L(G)x,x)= 2, (x,—x,) (3.7)
uve E(()

and since x, — x, 1s nonzero only if v or u lies in W, we get from (3.6) and (3.7):

n;
Ml =m0+ S 5 S (n-xy

vrew vue E(()
n,\’ n,\°
< > (nl,(l—z) +(A—n, (Z)) (3.8)
ve W
n: 1
=D, n,— 2, —=|8U|—— D, n?
UEZW L;W ‘ﬂ ﬂ U;W

By rearranging this inequality and using the fact n; = n,,, one immediately gets

A-I—A A+/1
6U| — A, |U| = - 2 18U
reWw A
and 1t follows that
16U A?
—_— = ! 5

which implies (3.4) since U was arbitrary.

The proof of (3.5) needs some more care. Fix an arbitrarily small £ > 0. First
we shall prove that there exists a graph G,, which can be obtained from G by
adding finitely many edges, such that A,(G,) = A{(G) — &.

The only elements in the Laplacian spectrum of G which are smaller than
A1 = A(G) are 1solated eigenvalues of finite multiplicity. Let N be the span of the
eigenspaces of all those eigenvalues of L({) which are smaller than A} — £/2, and
let # := dim N <. Fix an orthonormal basis x'’, x®, . ..  x" of N. It should be
mentioned at once that for any x € ¢°(V) which is orthogonal to N

(L(Gyx, x) = (3= 5 ) Il (3.9
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Let U/ be a finite subset of V() such that foreachi=1,2, ..., n,
> (xR >1-6, ie., D (xP)Y?<, (3.10)
uelf ugl/

where 6 >0 1s some very small number to be fixed later. It will depend on &, n,
and G.

Let G, be the graph which is obtained from G by adding, for each vertex u € U,
m edges joining u to m new distinct neighbours which lie out of U. Denote by
L,:= L(G,) its Laplacian matrix. We shall prove that A,(G,)= A| — &, assuming
m is large enough. Notice that m may depend on ¢, n, and G.

Take an arbitrary x € £%(V), |lxjl =1. We shall prove that (L,x,x)=A—¢
which will imply, by (3.1) that A,(G,) = A} — &. It is easy to see that it may be
assumed that x, =0 for each v e V(G) (apply, for example, (3.7)). Write now
x =y + z where y agrees with x on U, and z agrees with x at other coordinates.

If ||y||*= 6 then we do the following calculation: Let x =p + g where pe N
and g L N. By (3.9), (Lq, q) = (A —&/2)||q||* while {(Lp, p) can be estimated
as follows: If p = L7, ax” then ||p|*= X, |&;|* and

ol = [{x, x| =D xxP+ D x,xP <yl + x| V&=2VS. (3.11)

uel/ uvegl)

In the last inequality we applied the Cauchy—Schwartz inequality and (3.10).

Consequently, ||p||*<4nd = £/2A(G) if we choose &:=¢/8nA(G). Therefore
lg|l® = |lx|”= |lpll°>1— €/2A(G). Using this estimate, the fact that (Lp, g) =
(Lg, p) =0, and (3.3) we get

(Lyx,x)={(Lx,x)=(Lp,p)+(Lq, q)

£ E E
(> (5155
= (25 a1 > (4 =5 ) (1= 50 ) = 4= e

The other possibility to consider is the case when || y||° > & = £/8nA(G). In this
case let B:=L,— L(G) and let F;=FE(G)\E(G). If z=p+qg where p=
yn o axPeN, g L N, then we see as in (3.11) that

;| = [{z, xPY| < V6 || 2|

and hence ||p||><nd ||z||%, so |lg|I*> (1 — nd) ||z||*>. Therefore

(Lyz,z)=(Lz,z)=(Lp,p)+(Lg,q) = (li *5) gl > (A =€) 1z]|1%. (3.12)



204 B. Mohar

Finally,
(ler x) — (Llyr ,V) +2<L|y, Z) + <L12: Z)
Z(A— &) |lz[I*+ (By, y) +2{L,y, z)

— (}L; - 8) HZ”E + 2 (yu *_yv)z +2 z (yu _ytr)(zu o Zv)

L e F e ()

=M =) lzIP+m DX y2—-2 D .z,

tee U/ uve ()

= (A=) |lx[P+(m—ADyIIP=2 > v,z

urre i

where Fi = F U do,U < E(G),), and it is assumed that u € U, v ¢ U. It remains to
show that

(m =) IyII*=2 2 y.z, =0 (3.13)

v el

By the Cauchy-Schwartz inequality and assuming that each edge uv € F,, u e U,
has different endvertex v ¢ U, we estimate

(Z «"”Z*-')QE 2 Wl 2zl =sm+ AG) Iyl (AG) + 1) Iz~

e K i e F av e i

This inequality and the assumption {|y||*> & imply that

(m—2A)IyIF=2 > yuz

el

=(m— ADVE—2Vm + A(G)VAG)+1VI—-6. (5-14)

Obviously, the last expression is =0 if m is large enough. It should be added that
m depends on Aj, A(G) and 6 = 48(g, n, A(G)) but not on x. This finally
establishes (3.13), and thus we succeeded to show {(L,x,x)=A|—¢, and
consequently that A, (G,) = A; — &.

It 15 clear that adding edges to a graph can not decrease the isoperimetric
number. Therefore there exists a graph G, which can be obtained from G, by
adding finitely many edges so that A(G,)=h'(G) — e. Clearly, also A,(G,) =
AM(G) = A — &

Let X' < V(G,) be the set containing all vertices of degree greater than A'(G)
and all their neighbours. Let G; be the graph obtained from G, by adding m
parallel edges between any two vertices of X, where m = A'(G) | X|.

Choose a finite U, = V(G;) such that |8, U|/|U | <h(Gy)+e If UNX=¢
then let U:= U, otherwise let U:=U,UX. So U either contains X, or it is
disjoint from X. Therefore no vertex adjacent to U in G, has degree greater than
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A'(G). 1t 1s easily seen that in each case
166,Ul _186,Ul _[86,Uy
U] Ul | Ui

since m = A'(G) | X]|.

Now we may repeat the first part of the proof for the graph Gj;, using A'(G)
instead of A. Notice that in (3.8) we need the fact that n, = A'(G) for each vertex
v adjacent to U. This completes the proof since #((G;) and A(G3) are arbitrarily
close to their essential values.

<h(G)+e<h(G)+e (3.15)

[t is interesting that A(G) is also bounded above by a function of A,(G). This
inequality, given in Theorem 3.2, is called the strong discrete Cheeger inequality,
from its close relation to a well-known Cheeger inequality [4] (cf. also {3]) from
the theory of differential operators on Riemannian manifolds. A weaker version

of (3.16) is proved in {13].

Theorem 3.2. For an arbitrary locally finite graph G with bounded degrees,
h(G) = VA(G)(2A(G) — Mi(G)) (3.16)

and

h'(G) = VAI(G)(24'(G) — 2i(G)) . (3.17)

Proof. The spectrum is closed, so A, = A(G) € 0,(G). For each small enough
£ >0 there is a vector x € €5(V(G)) with finite support (only finitely many x,, are
nonzero) and with ||x|| = 1 such that

(Lx, x) <A+ &= A(G). (3.18)
If
ni= 2 |xi—x

utre F((r)
then it can be shown by the summation per partes (see, e.g., [13]) that
n=h(G). (3.19)
On the other hand

2
7= (S -x) = (3 bl b - xl)
uvel

2

1

uvre B
< D, (o +x) 2 (. —x)
U e £ uHuver
= > (224 22— (x, —x,)) - {Lx, x)
e (3.20)
= (2 > deg(v)x2— {Lx, x)) - {Lx, x)
velV

< 2A(G) |Ix|I* = {Lx, x)){Lx, x)
<2A(G)(A + €)= (A, + €)2
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In the first inequality we used the Cauchy-Schwartz inequality, while in the last
on¢ we needed (3.18). Since £ was arbitrarily small, it follows that h*(G) < n’ <
2A(G)A, — Ay and the proof of (3.16) is done.

To prove (3.17), let G, be a graph obtained from G by adding finitely many
edges and such that A(G,) = h'(G) — € where £ >0 is arbitrarily small again. As
we know from the proof of Theorem 3.1, there is a graph (; obtainable from G,
by addition of finitely many edges such that M(G,) = A(G) — &. Since h(G,) =
h(G,), we have h(G)=h'(G) — &

Let X be the set of vertices of G, having degree >A’(G). The set X is clearly
hinite. Since A{ = A{(G) = A1(G,) is in the essential spectrum, there are arbitrarily
many unit vectors x', i=1,2, ... such that {(L(G,)x”, x?) <A’ + ¢, and such
that (x'’, x") =0 for i #j. Let us take N =|X|+ 1 such vectors x". They are
linearly independent, so any nontrivial linear combination is nonzero. On the
other hand, there exist ay, a,, . .., ay with some a; # 0 such that ¥, a.x® =: x
has coordinate x,, = 0 for each v € X. Clearly, if we demand that ¥ a?= 1. then

' _ N . N
0= (3 ax. Y ax)= ¥ a2=1
I—1 {— 1 r =1
The vectors x' may also be assumed to satisfy || L(G,)x" — AxW) < ¢e/N. Then

(L(Gy)x, X) = i i “ﬂ;‘(li(Gz)«’f”}p x)

i=1j=1

N NN
z o (Ajx® xDY 4 » 2 a;a; (L(G)x — A1 xtD ) x)
i=1 i=1 =1

A

NN
A+ 2 2l [IL(G)x ) — A xD) - |ix))
i=1 ;=1

A

N N

AM+—2 2 e <A+

i—1j=1

Now we may carry out the same calculation as to obtain (3.19) and (3.20), this
time for G,. The inequality deg(v)x? < A’ (G)x? is clearly satisfied, and the only
remaning fact to verify is A{ + ¢ < A’(G). But we have shown this by (3.3) for any
graph with 6'(G) = 1. The remaining case 6'(G) =0 is unimportant since in this
case h'(G)=0and A, =0, so (3.17) is trivial.

Z | m

There are similar relations between s(G) and p,(G).

Theorem 3.3. If G is a locally finite graph then

1 - p(G)
1 - V/p(G)

where V=1/A(G)=0, and
s'(G)=1- p{(G). (3.22)

s(G) = (3.21)
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Proof. Set p, = p,(G). Let A be a finite subset of V(G). Define x € €*(V) as
follows: x, :=1 if v€ A, and otherwise let x, :=n,/p, deg(v), where n, 15 the
number of neighbours of v in the set A. Then a straightforward calculation gives

2

n:
(x, x)g=S(A)+ 2, -
I v A ﬂ% deg(v)

and

(P(G)x, x) 4= S(A) — |6A| + 2, 2, anx.

weA vgA

= S(A) — |6A +2 2, x,n,.

veA

Combining these inequalities with (3.2) gives

2

7
X, X)yy=p1S(A)+ -
P 1 = p1S(A) I; 0, deg(v)

2
nl]‘

= (P(G)x, x), = S(A) — |0A| +2 D,
ven P1deg(v)

and after rearranging

| , n: v v
6A] = S(A)Y1 = p) = =— > n, =—|bAl
ved P1deg(v)  pPiaoga £

Since A was arbitrary, this implies (3.21).
To prove (3.22), take G, to be a graph equivalent by finite to G and with
o(G)) = p(G) + &. Then, by (3.21)

s'(G)=s(G)=1-p(G)=1-p((G) - ¢

This implies (3.22) since £ was arbitrarily small.

Theorem 3.4. If G is a locally finite graph then
s(G)=V1 - p,(G) (3.23)

and

s'"(GY< V1 - pi(G). (3.24)

Proof. The first inequality can be found in [13]. To prove (3.24), take any £ >0,
and let G, be a graph equivalent by finite to G with s(G;)=s'(G) — €. Then by
(3.23)

s'(G) —e=s(G) = V1-p,(G)=<VI1-pi(G).

The inequality (3.24) is now obvious.
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4. Amenability

In this section we shall shortly exhibit the notion of amenability of infinite
graphs. This concept was classically introduced as a property of locally compact
groups. We refer to [16, 17] for more information.

Let I"be a locally compact group. By L™(I') we denote the set of all functions
I'— R which are bounded a.e. with respect to the Haar measure A(.) on I The
group I' is amenable if L™(I') has an invariant mean, i.e. a linear functional
m: L”(I')— R which satisfies the following conditions:

(i) For fe L™(I), if f =0 (a.e.) then m(f) = 0.

(1) m(xr) =1, where yxr is the constant 1 function on .

(i) It is [-invariant, i.e., m(g-f)=m(f) for every gel. (Note that
(g - /)(x)=f(g 'x).)

By a theorem of Felner [6], the amenability is equivalent to the following
condition:

(F) Given £>0 and a compact set K c I there is a Borel set U < I' of positive
finite measure A(U) < « such that

AMkU A U) < eA(U)

tor all £ € K, where A denotes the symmetric difference of sets.

For a discrete group the Haar measure counts the number of elements of the
set. Then 1t is easy to see that (F) is equivalent to

(F') For every £ >0 and finite K < I' one can find a finite set / = I" such that

KU A U< ¢ |U|.

Lemma 4.1. Let I' be a group generated by a finite set of generators S =

&1, - - ., &}. Then I'is amenable if and only if for every £ > 0 there is a finite set
Uc I such that |SU\U| < g|U]|.

Proof. (=) Let K:=SU {e}, where e is the identity in I Then KU A U =
SUNU. We are done by the amenability of I'

(&) Choose e >0 and a finite Kc T, K={k,, k,, ..., k. }. It may be assumed
that e ¢ K. If k, can be written as a word of length /(i) in terms of S U S, let

£, .= £
Y2 (0

and let U c I' be a set for which |SU\U|< ¢’ |U|, where &' = min g;. For each
generator g, €3, |g,U\NU| =< |SU\U| < ¢’ |U|. From this we also see that g U N
Ul>(1—¢£)|U], therefore also |g;/'UNU|>(1-¢')|U|, so |g'U\NU|<€'|U]|.
It follows that |k, U\U|<<I(i)e'|U|=<(&/2t)|U|. This implies that |[KU\U|<
(e/2) |U|. Since |KU|={U|, we get |[KUA U|<¢ |Uj.
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Corollary 4.2. A finitely generated infinite group I is amenable if and only if the
Cayley graph Cay(I, S) with respect to some (and hence for every) finite
generating set S has the isoperimetric number h(Cay(I', §)) = 0.

By Corollary 4.2 it follows trnivially that every finitely generated group with
polynomial or subexponential growth is amenable. The converse 1s not true. For
example, all soluble groups are amenable but some of them have exponential
growth. Although finite graphs are out of our main concern, let us mention that
every finite group 1s amenable (take U =1T).

Corollary 4.2 was observed betore by several authors. Its importance lies in the
fact that it gives a possibility to extend the notion of amenability to graphs in such
a way that a hnitely generated group I 1s amenable if and only if it has an
amenable Cayley graph. So, let us call a graph G amenable if s(G)= 0. We use
s((G) =0 instead of A(G) = 0 to cover the case of graphs with unbounded degrees.

The case of graphs with bounded degrees was investigated in detail by Ger] and
we refer to his works [7-8] where several conditions equivalent to the amenability
of graphs are derived.

The following result 1s a direct consequence of Corollary 2.8.

Proposition 4.3. A graph with subexponential growth is amenable.

At the end of this section we shall consider amenability of infinite covers of
finite graphs. Let B be a given finite graph, and let p: (G — B be a graph covering
projection. s there any relation between A(G) and A(B), or A,(G) and A,(B)? It
turns our that there are some obvious relations, but their converse depends on
the fundamental groups of & and B. Let us mention that results of the same type
as following here are known in the setting of Riemannian mamfolds, cf. |1, 2].

Recall that a graph mapp:G— B 1s a covering projection if it 1s a local
isomorphism, 1.e., the edges incident to any vertex v e V(() are mapped
bijectively onto the edges incident with p(v). For each b e V(B), the set
p (b)) = V(G) is called the fibre of b. It can be shown that all fibres have equal
cardinalities if B is connected (which we shall assume henceforth).

We need some more definitions concerning finite graphs. If K 1s a finite graph
then we define i1ts Laplacian and the transition matrix in the same way as we do in
the infinite case. The Laplacian L(K) 1s positive semidefinite and its smallest
eigenvalue 1s A, = 0 with a corresponding eigenvector 1 having all entries equal to
1. The second smallest eigenvalue of L(K) plays the role of A, in the infinite case,
so we denote it by A,(K). It i1s known that A,(K) >0 if and only if K is connected.
Similarly, let p,(K) be the second largest eigenvalue of P(K), while the largest is
always equal to 1 and has 1 as an eigenvector. Similarly, the isoperimetric
numbers A((G) and s(G) of finite graphs are defined as for infinite graphs, as the
minimum of the isoperimetric quotients [0X|/|X]| and [8X|/S(X), respectively,
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where in the first case X is limited by the condition that [ X| =<} |V (G), and for
s(G) we take only all those sets for which |S(X)| <3 |S(V(G))| = |E(G)|.

Assume that B is a fixed connected finite graph. If G is a finite covering of B
then the Laplacian spectrum o, (G) contains ¢,(B). See e.g. [14] for details. In
particular, A,(G) =< A,(B). If G is infinite this is not necessarily true any more. It
might happen that 4,(G) > A,(B). For example, the k-regular tree T, covers any
connected k-regular graph. It is well known that 4,(T;) = & — 2Vk — 1 but (finite)
k-regular graphs may have their second smallest eigenvalue arbitrarily close to
zero. Similarly, h(G) = h(B) for finite covers G of B, while for G infinite it may
happen that 2(G) > A(B). It is also possible that £(G) is arbitrarily close to zero
even for fintte covers G of B. The next results make the situation clear.

Proposition 4.4. Let p:G— B be a graph covering, where B is a finite connected
graph, and G is an infinite graph. Pick a spanning tree T in B, and let H be the
graph obtained from G by contracting each component of p~'(T) to a single point.
Then

h(G) n(H) < 2|E(B)| = |V(B)| + 1) - h(G). (4.1)

S V(B

Proof. Choose an £>0. Let U be a finite subset of V(H) such that |8,,U| <
(h(H) + €) |U|. For each u e V(H) let T, be the set of vertices of G which are
contracted to u, and let U:=\J{T,|ueU}. Then |U|=|V(B)|-|U| and
185U| = |64 U|. Therefore

P

<15 Ol 16U < 14
H(G) 10110601 =18, U1 < (h(H) + &) [U| = s (h(H) + ¢)

which implies the first inequality of (4.1) since & can be arbitrarily small.

Take now a finite X < V(G) such that |65X| =< (h(G)+ €)|X|. Then let
X,cV(H) be the set of all ue V(H) for which T, N X #@. Clearly, |X,| =
| X|/|V(B)|. For each edge in 6,X,; with a vertex ue X, and the other end
outside X, there is at least one edge in 6,.X which has one of its ends in T,,. This
1s clear if 7, c X, and if T, ¢ X then such an edge lies in T,,. Since degy(U) <
2|E(B)\NE(T)|, it follows that |8,X,|=2|65X| - |[E(B)\E(T)|. Consequently,

|6HXII 5.;2 ,V(B)| ' |5GX| ] |E(B)\E(T)|
| X4 | X|

= 2(h(G) + €) |V(B)| - |[E(B)\E(T)|.

h(H) =

which implies the second inequality of (4.1).

Proposition 4.4 by itself is not a very surprising result, but it turns into a very
useful result if we give another interpretation to the graph H. Denote by 7,(.) the
fundamental group of a graph. Fixing the spanning tree 7 of B, and a base vertex
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beV(B), m,(B) is generated by the fundamental cycles (with respect to T).
These are defined as follows: For each edge e € E(B)\E(T) there 1s a unique
cycle in T + e. Let v, be the closed walk in T + e which starts at our chosen base
vertex b, leads to the cycle, goes once around it (in one of the possible
directions), and returns to b. The corresponding elements in x,(B) are denoted
by the same symbol ¥, and called fundamental cycles. Let Sy :={y. | e € E(B)\
E(T))}.

The fundamental group 7,(G) embeds naturally as a subgroup in m,(B). The
embedding is just the induced monomorphism p,:7,(G)— 7m,(B). Let I':=
Cay(m,(B), Sy) be the Cayley graph of 7,(B) with respect to the fundamental
cycles as the generators. It is isomorphic to the infinite 2 |Sr|-regular tree. Let
I := p.(7,(G)) = m,(B), and denote by I'/I] the quotient graph of I with respect
to the action of I on V(I'). Such quotients of Cayley graphs are called Schreier
coset graphs. The vertices of I'/ I} are the right cosets of 7,(B)/I; and I and I 5
are joined by an edge if [y = I8 (or vice versa) for some y € 5. Notice that
/T is finite if and only if I has finite index in s,(B). If I} 1s a normal subgroup
of m,(B) then I'/I7 is just the Cayley graph of m,(B)/I| with respect to 5.

Corollary 4.5. Let G be a connected infinite graph and B a connected finite graph.
If p:G— B is a graph covering projection then G is amenable if and only if the
quotient graph '/ I} = Cay(m(B), S;)/p.(7,(G)) is amenable.

Proof. In view of Proposition 4.4 it suffices to show that the quotient graph
G,:=I'/I is isomorphic to the graph H. Notice that A(G)= A(B)<<®, so
s(G) =0 is equivalent to A(G) = 0.

Let 7,(G) = ,(G, b) be the fundamental group of G with respect to the base
vertex b € p~'(b). Take a closed walk W in B with base point b, and let W denote
its lift to G such that the initial point of W is b. The terminal point of W, say b,,
is by the homotopy lifting property of covering spaces equal for all walks W’
which are homotopic to W in B. The mapping which assigns with each W the
corresponding point b, € p~'(b) = V(H) therefore determines a map ¢ :7,(B)—
V(H). It is easy to see that under this mapping closed walks W;, W, based at b
have the same image if and only if [W))[W,]™' =[W,W; '] e I,. Therefore ¢
induces a bijection ¢:m,(B)/I,— V(H). To prove that ¢ determines a graph
isomorphism between G, and H it suffices to see that the fundamental cycles
v, € Sy determine, via ¢, the edges in H.

The graphs H and G, are both 2 |S;|-regular (loops are counted twice). Choose
a vertex I a € V(G)) and an edge 7 in G, incident to I, which corresponds to
the generator 7, € S7. The other end of 7 is Iay,.. Let W be a closed walk in B 1n
the homotopy class a, and W its lift to G with initial point b. If its terminal point
is b, then ¢(I;a) = b,. The lift of Wy, to G leads through b, and after that it uses
the lift of y, which has all its edges, except the edge ¢ e p~'(e), in copies of T. It
is clear that the ends of é are in copies of T labelled b, = ¢(I1&) and
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b, = ¢(Iay,). If we extend now ¢ to the edge map ¢(n):=¢é, this obviously
determines a graph isomorphism G, — H.

Let us notice that most of the arguments in the above proof can easily be
deduced from the general theory of covering spaces {12, pp. 161-164].

It should be mentioned that Proposition 4.4 yields more than just the result
stated 1n Corollary 4.5. It gives explicit lower bounds on A(G) in terms of
h(I'/I7). This is important if we want to have some applications of it. For
example, the result of the next section (Theorem 5.1) show that for certain
groups all their quotients have the isoperimetric number uniformly bounded away
from zero. Using these to play the role of Cay(s,(B), S;)/I;, this might give a
method to produce many covers G over B with the isoperimetric number
bounded below by a positive constant. We shall leave the detailed discussion of
this phenomenon for further works. Cf. also [2].

5. The Kazhdan property (T)

Group representations are used not only to make abstract groups ‘visible’ but
also to make analytic methods accessible to do the analysis on groups. Let I'be a
group. It H 1s a Hilbert space and p:I'— Aut(H) is a homomorphism (where
Aut(H) are all invertible linear mappings H — H), then the pair (H, p) is called a
representation ot I'. A trivial representation sends each group element y € I' to the
identity of Aut(H). The representation is unitary if p(y) is a unitary transforma-
tion for each y e I'. It is irreducible it p(I') has no nontrivial invariant subspaces.

A locally compact group I' has the Kazhdan property (T) (or is said to be a
Kazhdan group) if there exist an € > 0 and a compact subset K of I' such that for
every nontrivial irreducible unitary representation (h, p) of I and every ve H\
{0}, llplk)v —v]| > ¢ ||v]| for some k € K. To be more specific we also say that I’
is (K, €)-Kazhdan, or Kazhdan for K and ¢.

An equivalent definition of property (T) is: I' is Kazhdan if and only if there
are £ >0 and a compact K c I" such that for every unitary representation (H, p)
of I' which has some (K, ¢)-invariant vectors (Jue H: ||p(k)v —v|| <
¢ ||lvli, Vk € K) has in fact some nonzero I-invariant vectors (v e H, v # (0 and
p(g)v=v for every ge I').

The property (T) was introduced by Kazhdan in [10] as a tool for studying
discrete subgroups of Lie groups of finite co-volume. Examples of infinite
Kazhdan groups are all semi-simple Lie groups with all factors having R-rank =2,
and all their cofinite-volume discrete subgroups, e.g. SL(n, Z), n =3, but not
SL(2, Z). Let us mention also that free groups are not Kazhdan groups.

We restrict ourselves to finitely generated (discrete) groups. (It can also be
shown that 1f a countable discrete group has property (T), then it is finitely
generated. )
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(1) A finite group is Kazhdan. To see this, let (H, p) be a unitary
representation such that there exists a ve H, ||v|| =1, and {|p(k)v — v|| <1 for
cach k€ K:=1. Let

= Z otk
Then
15— v]| —I— 2. (plkyy —v)| <1
so o #0. But
p&)T = grp(g)p(k)v = '—grp(gk)v =0,

for every g € I' So I' is Kazhdan (for K = I'and £ = 1).

(i) Let I' have property (T) for ¢ K. If K' 2K is finite (compact) and
0 << &' =< g then I has property (T) for &', K'.

(1) A countable discrete group with property (T) 1s finitely generated.
Therefore we may assume by (ii) that K generates I'.

(iv) If I" has property (T) for £, K, where K generates I', then I has property
(T) for £, K' where K’ is any other generating set and &£ = &'(K') >0 some
constant depending on K', K and &. To prove this, express each k € K as a word
in the alphabet K’ U (K')™' and denote by /(k) its length. Let L = max{/(k) | k ¢
K}. Let (H, p) be a unitary representation of I' and assume that there exists a
vector v € H, ||[v]| = 1, such that ||[p(k')v —v]|| < &/L for all k' € K’. Take now an

arbitrary k e K and let k = k) k,,_, -+ - k{ where k! e K' U(K") ' and n < L. Tt will
be assumed for the sake of easier notation that K’ = (K’)”'. This may be done
since the representation is unitary and hence [[p(k)v —v|| = ||p(k~ DHv — v]||. We
will use induction on n to show that | p(k)v —vj|| = ||p(k, - --kDv —v|| <
(e/L)n. This is true by our assumption if n = 1. Otherwise
tplky - - - kv — vl = [[p(kp—y - - - kv — plk,” vl
<|lptki-i- - kv —vl +{lptk, v — v
£ En
Ts—(n—1)+-—=—
(n YV rr=7

[t follows that any (K, £')-invariant vector v is (K, &)-invariant, and hence I’
has property (T) with respect to K’, ¢’ where &' := /L,

One of the fundamental properties of Kazhdan groups determines that such
groups are something opposite to amenable groups, 1n a very strong sense. Let us
recall that A;, p,, and the 1soperimetric numbers 2 and s for finite graphs were
introduced 1n Section 4.
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Theorem 5.1. Let I' be an infinite group generated by a finite set S, and let
G = Cay(I, S) be its Cayley graph with respect to S. If T is (S, €)-Kazhdan and I
is a proper subgroup of I then the quotient graph G/I; has

2
: |
pGIE) <1~ and MGIL)= ¢, (5.1)

where k :=|SUS™'|. If no generator in S has order 2 then (5.1) can be improved
to p(G/N)<s1—¢€*lk and L (G/T;) = €.

Proof. Denote by G,:= G/I], and assume first that G, is infinite. Let p be the
right regular representation of I' in H := ¢*(I'/I) = ¢*(V(G))), i.e., for velT,
p(y) is a permutation matrix indexed by V(G,) = I'/T; and having entries

I af Lay =116,

P(}’)ﬁmﬁﬁ - {{} otherwise.

It 1s easily seen that (H, p) is a unitary representation of I'. If a vector x € H is
fixed by each p(y), y eI, it must have all entries equal since I' is transitive on
V(G,), so x =0. Since I'is (S, £)-Kazhdan we conclude that for each x # 0 there
1S some s € S such that

lo(s)x — x| = & ||x][. (5.2)

The graph G, is regular of valency k. Its Laplacian matrix is easily seen to be
equal to

L=L(G)= 2 (I-p() (5.3)

resSus-!

Let x € €(V(G),)) be a unit vector and s a corresponding element from S such
that (5.2) holds. Since p(s) is unitary, it follows by using (5.2) that

(x = p(s)x, x) + (x — p(s ), x)
= (x = p(s)x, x) + {p(s)x — x, p(s)x) (5.4)

= |lx ~ p(s)x|> = &2

Consequently, by (5.3)

(Lx, x) = E;ﬂ«f*m®ﬁmw
= 1((x — po)x, 1) + (x — (s~ )x, x)) = e

Note that we need the factor 3 to cover the case s =s'. Now (3.1) says that

A(Gy) = €°/2, and p(G,) = (k — MG/ k=1— e°/(2k).

If G, is finite we undertake a similar way. Matrices p(y) are the same as before
but they are assumed to act as automorphisms of the subspace H® of ¢2(V(G))),
where

(5.5)

H'={x e XV(G)) |x 11},
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1.€., the orthogonal complement of the eigensubspace of 4, =0 as the eigenvalue
of L(G,). Then (H", p) is a unitary representation. Relations (5.2)—(5.5) also
hold if xeH", |x||=1, and we are done by the fact that A,(G,)=
inf{{Lx, x) | xeH, ||x]|=1)}.

Let us mention an important example of a non-Kazhdan group which has a
similar property as stated in Theorem 5.1 for Kazhdan groups. The modular
group I = PSL(2, Z) 1s a quotient of a non-Kahdan group SL(2, Z), and thus it is
not Kazhdan. Its congruence subgroups

b
I, = {(: d) e PSL(2, 7) \ a,d=1(modn), b, c=0 (mod n)](

have the property that for each n=2, A(Cay([l, S)/I,))=¢>0 for some
explicitly known &, which follows from the Selberg’s Theorem [19], cf. also [11].
This 1s an advantage in various applications over the examples of Kazhdan groups
tor which no explicit values of € are known.

Corollary 5.2. If G = Cay([I, S) is the Cayley graph of a Kazhdan group then G
has exponential growth, and so do all the quotients G /I where I is any subgroup
of I' of infinite index. Moreover, T(G/I) is uniformly bounded away from 1.

Proof. The Kazhdan group I'is (S, £)-Kazhdan for some & > 0. By the preceding
theorem, A (G/I) = &°, thus by Theorem 3.1, h(G/I}) = 1€ Theorem 2.4 now
completes the proot.

It seems that the property of G stated in Theorem 5.1 is characteristic for
Cayley graphs of Kazhdan groups. We use it to define what a graph with Kazhdan
property (T) will be.

Let & be a graph and I' = Aut((G). The pair (G, I') is said to have Kazhdan
property (T) 1f there exists an ¢ > 0 such that for every subgroup I of I', which is
not transitive on V((G), the graph G/IT has s(G/I)= ¢ Here G/I; is the
directed graph whose vertices are the orbits Iv, v € V(G), of the action of I on
V(G), and In the direction from the orbit ITv to Iu there are as many directed
edges as the number of neighbours of the vertex v in Iu, Although A,(G,) or
p1(G)) make sense for directed quotients G, := G/I; of undirected graphs (but
this s not so obvious), we use in our definition the requirement that s(G,) is
umformly bounded away from zero. By the results of Section 3 this is equivalent
to the condition that p,(G;) is uniformly bounded away from 1. It should be
mentioned that for a directed graph G|, the transition isoperimetric number s(G,)
1s defined in the same way as for undirected graphs. However, |6X| counts the
number of edges with the initial point in X and the terminal point outside X, and
S(X) is the sum of the out-degrees of vertices in X. We must require I not to be
transitive on V((G) to exclude the quotients with one vertex, for which the
iIsoperimetric number 1s undefined.
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It I' s a Kazhdan group for (§, ¢) where § generates I', then the pair
(Cay(I', S), I') has the Kazhdan property (T).

Note that the quotient graphs G/I, are regular quotients, i.e. the natural
projection p:G— G/I,, p(v) = v, is a regular covering projection. This means
that p 1s a covering projection (i.e. a local isomorphism between directed graphs),
and it is regular (the group of covering transformations, which contains I, is
transitive on each fibre p~'(Iv) = Lv < V(G)).

A graph G 1s said to be e-Kazhdan if for every regular covering p:G — G,
where G 1s a directed graph with at least two vertices, s(G,) = €. Let us stop with
some open problems.

(1) Suppose that we know that the pair (G, I') is Kazhdan. Give any results to
estimate the corresponding € from below. Notice that upper bounds on € can be
given in terms of A,(G), or t(G). The importance of this question lies in the fact
that there are several known families of Kazhdan groups but no explicit estimates
on ¢ are known.

(2) How can one ‘see’ the Kazhdan property? Infinite Kazhdan groups (and
their quotients) have exponential growth. But the converse is far from being true.
What other geometric properties are shared by Kazhdan pairs (G, I')?

(3) It would be extremely important to get nontrivial examples of Kazhdan
graphs. At the moment 1t seems that any infinite Kazhdan graph with rich
automorphism group should be classified as a ‘nontrivial’ example.

6. Almost symmetric graphs and ends of graphs

In this section we present a short proof of a result relating the amenability and
the ends of graphs (Proposition 6.2). Such a result does not hold without further
restrictions on graphs since there are easily constructed examples of amenable, or
non-amenable graphs (even trees) having arbitrary space of ends. Let us mention
that Proposttion 6.1 below is somehow implicit already in the classical work of
Stallings [21] (for Cayley graphs), but we have not found it stated in the available
literature. It was proved by Soardi and Woess [20] that a locally finite vertex
transitive graph G with infinitely many ends has h(G) > 0. Our Proposition 6.2 is
an obvious generalization of this result to ‘almost symmetric’ graphs.

A locally fimte graph G is said to be almost (vertex) symmetric if there is a
constant DD < and a vertex v € V(G) such that for each u € V(G) there is an
automorphism ¢ € Aut(G) such that dist(u, o(v)) =< D. For a connected graph G
this 1s equivalent to saying that Aut(G) has only finitely many orbits on V(G). It
is clear that an almost symmetric graph G has A(G) = A'(G) <. Similarly, one
can prove that h(G) =h'(G), 4{(G) = A{(G), and p,(G) = pi(G).

For an arbitrary graph G one may define the space of ends of G, Ends(G), as
follows: Let Q(G) be the set of all one-way-infinite paths in G. Call two such
paths A and B equivalent, A ~ B, if for each finite subgraph C of G, the infinite
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parts of A\C and B\ C belong to the same connected component of G\C. Le.,
no finite subgraph can separate A and B. The equivalence classes Q(G)/~ are
the ends of G, denoted by Ends(G). There is a natural topology in Ends(G). Pick
a vertex 1n each of the components of G, and let C, (n=0) be the induced
subgraph of ( containing all those vertices which are at distance at most n from
some of the chosen vertices. For an end w € Ends(G), let U, be the set of all
those ends which have representative paths in the same component of G\C,, as
w. The sets U, define then a decreasing sequence of basis neighbourhoods of w.
With this topology Ends((G) becomes a compact metrizable space. It can be
shown that for a connected graph G the space Ends(G) is homeomorphic to a
closed subset of the Cantor set, and conversely—for an arbitrary closed subset 4
of the Cantor set there are graphs with Ends((') homeomorphic to A.

It w;, w,, ..., w, are distinct ends of GG, then, since the Cantor set is totally
disconnected, there is a finite set C < V() such that G\ C pairwise separates the
ends w;. In particular, G\ C has at least k infinite components. Let us denote the

number of infinite components of G\C by c¢..(C). Notice that if C' > C then
c.(C') = c.(C).

Proposition 6.1. Let G be a locally finite connected almost vertex symmetric
graph. Then Ends(G) contains either 0, 1, 2, or infinitely many ends. In the latter
case, Ends(G) is homeomorphic to the Cantor set, and is thus uncountable.

Proof. Assume that G has more than two ends. Fix veV(G), and let
B,:=B,(v) be the ball of radius n centered at v. Let D be the constant
corresponding to G from the definition of almost symmetric graphs. For some
N>D, c.(By_p) =3 since G has more than two ends. If u is a vertex at distance
2N —D +1 from v and lies in one of the infinite components of G\B,,_,, then
there is a vertex w’ at distance d from v, 2N —-2D <d=<2N+ 1, and an
automorphism o of G such that o(v) =u’. Clearly,

Cx(Bn-p(u')) = co(Bn_p(v)) = 3.
One of the components of G\By _p(u’) contains B, _,(v). Therefore
Cx{By-p(u') U By_p(v)) = 4.

We repeat this for some « in each of the infinite components, and it follows that
Co(Bin_p+1) = 6. By the same method we see that c.(Bsy_p.2) =12, etc. In
general,

cm(B(Zr+l)N~—£}+r) =32

Thus G has infinitely many ends. Moreover, it follows that the space of ends of G
ts homeomorphic to the ends space of some locally finite infinite tree without

vertices of degree two, and this is known to be homeomorphic to the Cantor
set.
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Proposition 6.2. Let G be a locally finite, connected almost vertex symmetric
graph.

(a) If G has infinitely many ends then h(G) > 0.

(b) If G has exactly two ends then h(G) = 0.

Proof. (a) Let B, :=max{|B,(v)| | ve V(G)}, and let N, D be as in the above
proof. Let X be an arbitrary finite subset of V(G). If | X| <28y then

18X 1
= A
X 4PN

Otherwise let X, :={u e X | By(u) ¢ X} and X,:={ueX|Byu)c X} If
| X,| = |X|/2 then we estimate {0.X| as follows: For each u € X, there is an edge
e € 0X at distance at most N form u. Any edge e € X corresponds in this way to
at most 8, distinct vertices of X,. Therefore

8X|_ X\ _ 1
X~ Bu X 2Bx

In the remaining case |X,|=|X|/2. In this case we first make sure that X,
contains at least t:= ||X,|/B.n] disjoint N-balls, i.e. there are vertices
u,, U, ..., u, 1in X, which are pairwise at distance at least 2N + 1. Next we see,
by the same method as in the proof of Proposition 6.1, that c.({__, Ba(;)) =1.
Consequently, ¢c.(X) =c.(X;) =1, and so

X[ { X| ‘} x|

0X ar;ﬂ = = .
oXl1=1= 1817 1280 = 4pon

In the last inequality we use the assumption that |X|=48,,. It follows that in
each case |0X|/|X| is bounded away from 0, so A(G) > 0.

(b) Let U be a finite subset of V((G) such that c.(U)=2. If o is an
automorphism of & which sends a vertex u € U (arbitrarily) far away from U,
then a finite component of G\(U U o(U)) contains (arbitrary) many vertices but
only constantly many edges on its boundary. Thus obviously A(G) = 0.
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