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Abstract

Necessary and sufficient conditions are given for a toroidal map to
contain two disjoint essential cycles. The result is applied in the study
of embeddings of planar graphs into general surfaces.

1 Introduction

Dirac [D] (cf. also [L]) proved that a 3-connected graph G contains no two
disjoint cycles if and only if one of the following cases occurs: G is a wheel
Ky *C, (n > 3) with 3 or more spokes, G = K5, or G has at least 6 vertices
and contains vertices z,y,z € V(G) which cover all the edges of G, i.e.
G = K3k (k> 3) or G is a graph obtained from K3 by adding 1, 2, or 3
edges between the vertices in the color class of K3, containing 3 vertices.
Dirac’s result can be generalized to arbitrary graphs. Since the removal of
vertices of degree 0 or 1, and the suppression of vertices of degree 2 in a
graph do not change the number of cycles we may without loss of generality
treat only the case when the minimal vertex degree of the graph is at least 3.
A grapiu & with the minimal degree 3 or more does not contain two disjoint
cycles if and only if one of the following cases occurs:

a) G has a vertex € V(G) such that G — z is a forest,
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b) G has a vertex z € V(G) such that G — z is a simple cycle and G has

no loops at z, i.e., G is a wheel with the spokes allowed to be multiple
edges,

¢) G = K;s,or

d) there are vertices z,y,z € V(G) such that G — {z,y,z} is edgeless,
there are no loops at z,y,z and no parallel edges between {z,y,z}
and V(G)\{z,y, z}. (But parallel edges between z,y,z are allowed.)

In the study of the structure of embeddings of planar graphs on the torus
[MR] we bumped into the following problem: If a planar graph embedded
on the torus contains no two disjoint essential circuits, when is it possible
that the embedding is a closed-cell embedding? By an essential circuit we
mean a cycle of the graph which is not contractible on the surface.

Let G be a graph on a closed surface ¥. We say that G is embedded with
representativity v, and denote this by p(G') > . if every essential closed curve
on the surface intersects G in at least r points. Cf. [RV] for more details
on this invariant. Schrijver [S1] proved that a graph G embedded in the
torus with p(G) > r contains |3r/4| pairwise disjoint essential cycles. In
particular, if p(G) > 3 then there are 2 disjoint essential cycles. Although
this result is best possible, it is far from a necessary and sufficient condition
for a graph on the torus to contain 2 disjoint essential cycles. We solve this
problem by characterizing graphs embedded in the torus (=toroidal maps)
which do not admit 2 disjoint essential cycles (Theorems 3.1 and 3.2). A
short passage then leads to the answer on our original question about the
planar graphs on the torus. It should be pointed out that although the
outcome is similar to the Dirac’s result, the combinatorial obstructions to
disjoint cycles are not of much help in the torus case.

Let us mention that the same type of questions can be posed for graphs
on other surfaces. Moreover, we get a variety of problems which are of impor-
tance in the study of graph embeddings. For example, one may ask guestions
about the existence of disjoint essential cycles, pairwise homotopic or not
(and the homotopy class fixed, or not), disjoint pairwise homologic essential
cycles (homology class either fixed, or free), disjoint essential non-bounding
cycles, etc. It should be pointed out that the problem of the existence of
pairwise disjoint cycles of given homotopies has a “good characterization”

[S2].



2 Basic definitions and some auxiliary lemmas

Graphs in this paper may have loops and multiple edges. Let G be a graph
embedded in a closed surface £. Suppose that in ¥ there is a closed curve
7: S — T which bounds an open disk D. Let D := DU~(S!) be the closure
of D. We say that D is a k-patch if cr(y,G) := [{z € S' | v(2) € G}| = k.
Having a k-patch with £ = 0 or 1, the deletion of G N D from the graph
is called a k-reduction. Having a 2-patch with a path in G N D connecting
the vertices of G N @D across D, a 2-reduction is the operation replacing
G N D with an edge connecting the vertices of G N &D across D. Note that
using 2-reductions we can in particular eliminate all vertices of degree 2 in
G (except isolated vertices with an essential loop). Having a 3-patch with
{z,y,2} = GNOD such that in D N G there are paths between each pair
(z,v), (z,a),and (y, z) (all of them across D) the replacement of GND by a
new vertex w joined to z, y, z (as shown on Figure 2.1) is called a 3-reduction.
A k-reduction (k < 3)is non-trivial if the graph obtained after the reduction
~ is not isomorphic to G. In particular, the well-known AY -transformation is
a special case of a 3-reduction if the triangle of the transformation bounds
a face.

FIGURE 2.1 A 3-reduction

The following simple lemma (whose proof we omit) shows that 3-reductions
preserve the maximum number of pairwise disjoint essential cycles in a graph
on a surface.

Lemma 2.1 Let G’ be obtained from G by a sequence of 0-, 1-, 2-, and
3-reductions and their inverses, and let C be a family of disjoint circuits
of G. Then G' contains a family C' of disjoint circuits which are pairwise
homotopic with respective circuits in C. Moreover, the representativity of G’
equals the representativity of G.



Let K be a subgraph of G. The vertices of K of degree different from 2
(in K) are called the main vertices of K, and the paths in K (possibly of
length 1) between main vertices, where all interior vertices are of degree 2 in
K, are called branches of K. If By is a connected component of G — V(K),
then the subgraph B of G consisting of By and all edges between By and
vertices in K (together with appropriate vertices of K) is called a relative K-
component, or a bridge of K. Another type of relative components (bridges)
of K are the edges (together with their endpoints) which are not in E(K')
but connect two vertices of K. If B is a relative /-component, each vertex
of V(B)NV(K) is called a vertez of attachment of B to K, and each edge
of B adjacent to a vertex of attachment is a foot of B.

If C is a cycle of G and By, B; are relative C-components then B; and
B; overlap (on C) if either they have three or more vertices of attachment
in common, or there are four distinct vertices of attachment z,, y; of By and
T4,y of By whose order on C' is 21,9, Y1, y2. f W = zoz129 ... 2k (2% = 20)
is a closed walk in G and C its underlying subgraph of G, then a relative
C-component is said to overlap with vertices z;,z; (¢ < j) on W if it has
vertices of attachment z,, x4 such that eitherp < i< g<jori<p<j<yq.
We refer to [V] for a more extensive treatment of relative components.

Let G be embedded in ¥ and W as above. Assume that W bounds an
open disk D. If F'is a face of GG contained in D then we say (with a possible
slight abuse of terminology if W has some repeated vertices) that F' contains
z; (0 <1< k) on its boundary if F contains on its boundary either the edge
z;_12;, the edge z;z;41 (indices modulo k), or an edge in D lying between
z;—1z; and z;z;41 according to the local rotation at z;.

Lemma 2.2 Let G be a graph embedded in a surface ¥ and W = zqzq...2%
a closed walk in G whose underlying graph C bounds an open disk D in X.
For ¢ < j there is a face in D containing z; and z; on its boundary if and
only if no relative C-component embedded in D U C overlaps with z; and z;
on W,

Proof. Ifaface F in D contains z; and z; then, clearly, no relative compo-
nent in d overlaps with z;,z;. Conversely, if none of the faces Fy, Fy, ..., Fs
in D containing z; on the boundary also contains z; then in the union of
their boundaries there is a path from a point z, to z, on W where without
loss of generality ¢ < p < 7 < ¢. This path is clearly contained in a relative
component which is thus overlapping with z;,z;. O



3 Disjoint essential circuits

In this section we will state our main results whose proofs are deferred until
Sections 5 and 6.

Theorem 3.1 Let G be a toroidal map with representativity p(G) < 1.
Then G contains no 2 disjoint essential cycles if and only if the embedding
of G has the structure as shown in Figures 3.1-3.2 (case p(G) = 0) or in
Figures 3.3-3.5 (case p(G) =1).

FIGURE 3.1 FIGURE 3.2

Y

X
FiGurE 3.3 FIGURE 3.4 FIGURE 3.5

Note: In Figures 5.3-3.5 it may be assumed that z, y, z are distinct vertices.
The exact meaning of “having the structure” is that there is a homeomor-
phism of the torus on the standard “flat” torus as represented in all appli-
cable figures (with proper standard side identifications) so that any edges of
G are embedded in the shaded parts. Note that Figure 3.3 and Figure 3.4
are dual to each other and that all the others are “self-dual” structures.

Theorem 3.2 Let G be a toroidal map with representativity p(G) > 2. If
G is 3-reduced then it contains no two disjoint essential cycles if and only




if either G = K5 embedded as in Figure 3.11, or there are distinct vertices
z,y,z € V(G) which cover all the edges and so that between any two vertices
u € {z,y,z} and v € V(G)\{z,y, 2z} there are no parallel edges.

FIGURE 3.6 K33 FIGURE 3.7 K34
FIiGure 3.8 K35 FIGURE 3.9 K3p
Ficgure 3.10 FiGure 3.11 K5



/

FiGure 3.12

Note. The actual cases coming out of Theorem 3.2 are depicted in Fig-
ures 3.6-3.12. We should add all their submaps (having p = 2). Note that
an edge deletion in Figures 3.6-3.9 gives rise (after a 2-reduction) to an edge
between z,y, z.

It is worth mentioning the similarity of the obtained characterization
with the Dirac’s graphs containing no two disjoint cycles. The case of Figure
3.1 corresponds to forests (graphs without cycles, vs. maps without essential
cycles), Figures 3.2 and 3.4 imitate graphs with a vertex whose removal
yields a forest, Figure 3.3 is an analogy of the wheel, in Figure 3.11 we
have a K5, and all the other cases have the property that there is a set of 3
“vertices” whose removal leaves a “trivial graph”.

4 Planar graphs in the torus

The following corollary to the results of Section 3 is needed in [MR].

Theorem 4.1 Let G be a planar graph embedded in the torus with repre-
sentativity p(G) > 2. Then G contains no two disjoint essential cycles if
and only if there is a sequence of 0-, 1-, 2-, and 3-reductions transforming
G into the map in Figure 3.10.

Proof. By Lemma 2.1 reductions preserve the representativity. Therefore
we may use Theorem 3.2 and its proof in Section 6 which shows that the
only 3-reduced map with p > 2 and no two disjoint essential cycles, which
does not contain K33 or K5, is the map on Figure 3.10. O

The reductions can not increase degrees of vertices (except when intro-
ducing a new vertex of degree 3). Therefore the only non-trivial 3-reductions



leading to the map in Figure 3.10 must have been performed in discs around
the vertices of degree 3. Theorem 4.1 therefore clearly describes the struc-
ture of arbitrary planar graphs in the torus with representativity 2 and
without two disjoint essential cycles.

5 Proof of Theorem 3.1

Let G be a toroidal map containing no 2 disjoint essential cycles, and assume
that p(G) < 1. The case when p(G) = 0 is easy and we leave details to the
reader. So we assume now that p(G) = 1. Then there is an essential curve
v on the torus such that er(y,G) = 1. We may assume that v intersects G
at a vertex, say ¢ € V(G). Cutting the torus along v and redrawing it so
that v corresponds to the bottom and the top sides of the torus under the
usual representation we get the structure as in Figure 5.1.

X
| - A
D
B - B
X
(a) (b)

FIGURE 5.1

Let F' be the face of G containing y. Denote by A and B, respectively,
the part of the facial walk of F' lying in the upper and the lower part of the
drawing, respectively. Since p(G) > 0, these are well-defined. It is easy to
see that we may assume that G is 2-reduced. Then A and B are essential
cycles of G. Consider first the case of Figure 5.1(a). If besides = they have
another vertex y in common, we have the structure of Figure 3.3. Thus we
may assume that A N B = {z}. Consider the faces in D containing z at A
on the boundary. Take the modulo 2 sum of the edges of A together with
the boundaries of these faces. The obtained Eulerian graph is homologic
to A, so it contains an essential cycle C. If a face in D contains z at A



and at B, we have the structure of Figure 3.4 (after a suitable re-drawing).
Therefore we may assume that z ¢ C. Since BN C # 0 there is a vertex
y € B lying in a face of D together with = at A. A similar argument used
from “below” shows that there is a face in D containing z at B and a vertex
z € A. Clearly, y # z, and we have Figure 3.5.

It remains to consider the case of Figure 5.1(b). In this case A and B
have a vertex in common. Whether this vertex is equal to z or not, it turns
out that G fits the structure of Figure 3.3. The details are left to the reader.

Conversely, assume that G is embedded having the structure as in one
of the Figures 3.1-3.5. In the first case there are no essential cycles at all
in the second and fourth, each essential cycle contains z. Having Figure 3.3
each essential cycle either contains z or y (or both) but one containing z,
another y would cross. In the last case of Figure 3.5 each essential cycle
either contains z, or it contains both, y and z. But the first case prevents
the existence of a disjoint cycle through y, z, and vice versa. This completes
the proof. O

6 Proof of Theorem 3.2

In this section we will assume that G is a toroidal map. It is easily seen
that maps satisfying the conditions of Theorem 3.2 do not have 2 disjoint
essential cycles.

To prove the converse we will assume that p(G) > 2 and that G contains
no 2 disjoint essential cycles. We will also assume that G is 3-reduced.

FIGURE 6.1 A K33

Lemma 6.1 If G contains a submap homeomorphic to K33 as shown on
Figure 6.1, then G is a K34 (3 < k < 6) embedded as on Figures 3.6-3.9.



Proof.  Let K be the given submap of G homeomorphic to K3 3. First we
will prove that we may assume K has no local bridges, i.e., bridges attached
to a single branch of K. We define

o(K) = [V(E) + ) [V(B\V(K) (1)
B

where the sum runs over all local bridges of K. Assume that among all
possible choices for K we take the one with minimal ¢(K). Suppose now
that K haslocal bridges. Since G is 2-reduced, there must be a local bridge B
which overlaps with a non-local bridge B’. Let B be attached at the branch
e of K, and let p,r be its “leftmost” and the “rightmost” attachment on e.
Since B’ overlaps with B, it has an attachment q on e which lies between
p and 7. Denote by K’ a submap of G obtained from K by replacing the
segment from p to r on e by a pathin B. Then K" is a submap homeomorphic
to K33. It is easy to see that ¢(K') < ¢(K') since at least g does not
contribute in (1) any more. This contradicts the minimality of K.

FIGURE 6.2

Let B be a bridge of K. Then the attachments of B are restricted to
two adjacent branches of K (including their endvertices), or B is attached
to 3 vertices of the bipartition of K33. This can be seen as follows. We may
assume that B is embedded in the “central” face (). Suppose first that B is
attached to an interior vertex z of a branch e of K. Then any attachment
on a branch not adjacent to e gives rise to 2 disjoint essential cycles in
K UB C G. If a vertex of attachment z is a main vertex then, similarly,
B can not be attached to the vertex y of @ opposite z or to a vertex in
an open branch at y. Since z is any vertex of attachment of B, one easily
verifies that the above claim about attachments must be satisfied.

10



Suppose now that there is a bridge of K attached to two adjacent
branches of K. Since G is 3-reduced and K contains no local bridges, there
is a branch uv of K and bridges A, B of K attached as shown on Figure
6.2. Then G has 2 disjoint essential cycles (thick cycles in Figure 6.2). It
follows that every bridge of K is attached to the main vertices only (to at
least 3 of them) since the graph is 3-reduced. But the 3-attached bridges
can be 3-reduced, each to a single vertex. If two such bridges are attached
to different triples of main vertices of K one easily finds 2 disjoint essential
cycles. Finally, up to symmetries there are only four possibilities for G as
exhibited in Figures 3.6 -3.9. O

From now on we exclude the above case. We will first prove that G
contains a submap K homeomorphic to K4 shown in Figure 6.3.

FiGure 6.3 K,

Lemma 6.2 Let G be a toroidal map with representativity 2 such that there
are no two disjoint essential cycles in G. If the embedding is 3-reduced then
G contains a submap K homeomorphic to K4 whose embedding is shown on
Figure 6.3.

The proof will start by a sequence of claims interlaced by introduction
of notation and some small comments. In all of the claims we will assume
the conditions of the Lemma and all the previous definitions and results.
Moreover we will assume that G' contains no submap homeomorphic to the
map in Figure 6.3.

Since p(G) > 2 and G is 2-reduced, every face of G is bounded by a
(simple) cycle of G. It follows, in particular, that there is a closed disk D in
the torus which is a union of (closed) faces of G and is maximal in the sense
that no other such disk properly contains D. Denote by C the boundary of

11



D, and let K = G N D be the subgraph of G lying in D. Clearly, C is a
cycle of G.

A (closed) face of G is an outer face if it is not contained in D. If F'is an
outer face having an edge in common with D then F N D is not connected
since otherwise D U F' would be a disk contradicting the maximality of
D. Therefore C separates the boundary cycle of F' into two or more paths,
Py, Py, ..., each of them joining two vertices on C and having no intermediate
vertex on C. For each i denote by C; a cycle obtained from P; and a segment
on C between the endpoints of P; (there are two choices). These cycles are
called fundamental cycles of F' with respect to D.

Claim 1. Every fundamental cycle of an outer face F' sharing an edge with
D is essential.

Proof. If it bounds a disk D’, then this contradicts the maximality of D
since DU D' is a disk. O

Let e = zu, f = yv be distinct feet of the same bridge B of K, where
z.y € V(C) are vertices of attachment. Choose a path in G — K joining
u and v and a segment of C joining 2 and y (the segment is assumed to
be trivial if z = y), and denote by C(e, f) the cycle obtained by taking the
two edges e, f, the path and the segment. As in the proof of Claim 1, the
maximality of D yields:

Claim 2. If 2 # y then C(e, f) is essential.

Claim 3. No component of G — K contains an essential cycle.

Proof.  Suppose that L is a component of G — K containing an essential
cycle S. Let F' be an arbitrary outer face of G sharing an edge with D. Let
C1,C3 be two of its fundamental cycles. Clearly, none of them can cross S
since out of 9D, C, and C; follow the boundary of a face. Therefore C,
and C; are heth homotopic to S. Since €7 and C, are disjoint out of D,
each of them can touch S only from one side, one of them from “the left”,
the other from “the right” if we imagine S to be “vertical”. Now. any other
outer face F' # F of G sharing an edge with D would also touch S from
both sides which is now impossible since F’ either lies between C; and S
(the part not containing C;), or between C3 and S (the part not containing
C1). Since p(G) > 1 there are at least two appropriate faces F, F’, and this
gives a contradiction to the requirement that both of them touch S from
both sides. O

12



Claim 4. Let By, B; be distinct bridges of K, and let z;,y; be vertices of
attachment of B;, ¢ = 1,2. Then at least two of the vertices z1, 31,22, Y2
are equal.

Proof.  Assume all the attachments are distinct. For : = 1,2 let e; be a
foot of B; at z; and let f; be a foot at y;. If z1,y;, 2, v, appear on C in
that order then it is clear since By # B, that C(eq, f1) and C(ez, f2) can be
chosen to be disjoint. By Claim 2 this is not possible. Therefore we may
assume that the order of attachments on C is z1, 22, y1, y2 (they interlace).
However, this gives rise to a subdivision of Ky which is clearly embedded as
shown on Figure 6.3. O

Claim 5.  Every bridge of K has at least two vertices of attachment.

Proof. By Claim 3 each component L of G — K is contained in an open
disk Dp. We may assume that Dy contains only vertices of L and only
edges of L and parts of feet of the bridge B of K containing L. We may also
assume that when a foot of B leaves Dy it does not return to it any more.

Assume now that B has a single vertex of attachment. If for each pair
e, f of feet of B, the cycle C(e, f) is contractible, then there is a nontrivial
1-reduction which eliminates B. Otherwise there are feet e, f of B which
are consecutive on D, according to how the edges leave Dy, and such that
C(e, f) is essential. The face of G containing the part of 9D, between e and
f therefore contains an essential curve meeting G only at the attachment of
B. However, this contradicts p(G) > 2.

The same arguments as above (only much simplified) resolve the case
when a bridge is just an edge. O

Claim 6. Let D be a closed disk in the torus and let v1,7v9,73,74 be
pairwise nonhomotopic essential simple closed curves on the torus. Then a
pair of 7;,7; (1 <& < j <4) cross each other out of D.

Proof.  Any two nonhomotopic essential curves in the torus must cross
at least once. Assuming that the v; (v = 1,2,3,4) do not cross out of D,
they all cross each other in D. Contract D to a point z. This does not
change the homotopies of the curves. It is easy to see that each 7v; gives
rise to an essential simple closed curve 7/ and a set of contractible loops.
Consider now ~{....,v/ which are obtained from 7i,...,v} (respectively)
by splitting the curves at the places where they touch to get curves disjoint
apart from their common point. They divide the torus into a number of
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regions. Since the curves are essential and pairwise nonhomotopic, each
such region is bounded by at least 3 of them. A simple application of the

Euler’s formula now finishes the proof. The details are left to the reader.
a

Claim 7. K has at least two bridges.

Proof.  Assume that B is the only bridge of K. Choose an outer face
F sharing an edge with D and consider its fundamental cycles Cy,Cs,....
Denote by Py, P;,... the corresponding paths on F\ E(C) connecting ver-
tices of C'. Since OF is a cycle, two paths P;, P; (1 < j) can only intersect
if 7 =44 1 in which case the initial vertex of P; is the same as the ter-
minal vertex of P;. Consequently, if we have at least 3 fundamental cycles
of F' then we either get a K4 or 2 disjoint essential cycles. (Cf. the proof
of Claim 4.) Hence we have only two fundamental cycles of F' and Py, P,
touch. See Figure 6.4. Note that C; and C; are homotopic. The face F' was
chosen arbitrarily. If F” is another outer face with an edge on C it also gives
rise to a homotopic pair of fundamental cycles C7,C}. Since K has only one
bridge, these can not be homotopic to C; and Cs.

G is 3-reduced. Therefore B has at least 4 vertices of attachment and
by Figure 6.4 there are at least 4 outer faces with an edge on C. They give
rise to four pairwise nonhomotopic cycles which do not cross out of D. By
Claim 6 this is impossible. O

FIGURE 6.4
Claim 8. No bridge of K has more than 2 vertices of attachment.

Proof. If B has 4 or more vertices of attachment, any other bridge has
two vertices of attachment (Claim 5) which are distinct from a pair of at-
tachments of B. We are done by Claim 7 and Claim 4.

14



Suppose now that a bridge B of K has exactly three vertices of attach-
ment. Since the total number of attachments is at least 4 there is a bridge
B’ with a new vertex of attachment, and in B’ and B we can find pairs of
distinct attachments. Again, we are done by Claim 4. O

From now on we may assume that we only have bridges of K with two
attachments.

Claim 9. Every bridge of K is an edge.

Proof. A bridge B with two attachments which is not an edge would give
rise to a nontrivial 2-reduction unless it contains two feet e, f attached at
the same vertex = on C such that C(e, f) is essential. Now any bridge is
attached to z since otherwise it gives rise to an essential cycle disjoint from
C(e, f). Also, no bridge different from B can have two feet attached at a
vertex y € V(C), y # z. But since p(G) > 2 we have p(G —z) > 1 (cf.
[RV]). This implies that B also has a pair of feet ¢/, f at the other vertex of
attachment y (y # ) such that C(€’, f') is essential. But now, by symmetry,
it follows that every bridge of A" is attached at y as well. This contradicts
the 2-reducibility. O

Now we are well prepared to finish the proof of Lemma 6.2. The bridges
of K are just edges. Any two of them have a vertex in common since
otherwise we either get a K4 or two disjoint essential cycles, depending
whether their ends on C interlace, or not, respectively. Denote by T the
graph consisting of the bridges of K" (and their vertices of attachment). As
explained above, T' does not have a 2-matching (two edges without a common
vertex) and does not have a l-cover (a vertex whose removal leaves only
isolated vertices). Therefore T is not bipartite (by the Konig-Egervary’s
Theorem [B]). So T' contains a cycle of odd length. Without a 2-matching
this can only be a triangle. Finally. any edge of T adjacent to a fourth
vertex can be exiended to a 2-matching by one of the edges in the triangle.
A contradiction. Lemma 6.2 is proved. O

Till the rest of this section we will assume that p(G) > 2, G has no 2
disjoint essential cycles, but there is a submap K of G homeomorphic to K4
as shown in Figure 6.3. Let ) denote the quadrangular face of K. We will
assume that @) is as large as possible in the sense that no other subdivision
K' of K4 has its quadrangular face Q" which properly contains @. Denote
by R the other face of K. The relative K-components embedded in R will
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be called outside components or outside bridges of I{. Since p(G) > 2 there
is at least one outside component. By the following lemma the attachments
of outside components are quite restricted.

Lemma 6.3 Let B be an outside component of K. If B has a vertex of
attachment to a branch or a main vertez of K at the side designated by a
shading in Figure 6.5 (a), (b), or (c), respectively, then every other foot of
B either attaches to the same verter or a verter in the part designated in
Figure 6.6 (a), (b), or (c), respectively.

\

(a) (b) (c)

FiGUuRrRE 6.5 Attachments

(a) (2) (c)

FiGureE 6.6 Other attachments

Proof. In each case particular places of possible attachments can be ex-
cluded since B being attached at that place would either give rise to the

16



case of Lemma 6.1, yield the existence of 2 disjoint essential cycles, or con-
tradict the maximality of Q. O

(a) (b) (c)

(d) (2)
FiGUuRE 6.7 Subgraph K

Lemma 6.4 Up to symmetries we may assume that G contains a subgraph
K homeomorphic to one of the graphs in Figure 6.7 (a)-(e) such that:

a) The quadrangle Q of K4 is mazimal,
b) Fvery K -component is attached only to the points on the boundary of Q.

Proof. Denote by K’ the submap of G homeomorphic to K4 as in Fig-
ure 6.3. Assume that B is its outside component which is attached at a
vertex not on the boundary of . Denote by b the corresponding branch
of K'. By Lemma 5.3 (Case (a)) B is attached only on one side of 6. If
B is attached only at vertices on this branch, say from the left side, then
we can replace a part of b by the “leftmost” path of B. After a number
of such changes we will definitely come to a case when no K'-component is

17



attached only to vertices of an outside branch of K’ (otherwise contradicting
2-reducibility).

Assume now that B is an outside K'-component attached at an interior
vertex of b. Now we know that B is attached at a vertex not on b (compare
with Figure 6.7(d)). Denote this vertex by z. By Lemma 6.3 (Case (c))
B is attached only at one side of z. Therefore, if B is not an edge it is
attached to b at more vertices. Let y,z be the attachments of B on b as
close to each of the endpoints of b as possible. Since G is 3-reduced there is
a K'’-component attached to b between y and z. Now we have a subgraph
of G as shown on Figure 6.8. The thick cycles in Figure 6.8 are disjoint and
essential which are assumed not to exist. Therefore B is just an edge.

If two bridges are attached at different sides of b they must share the
vertex on b. Otherwise there are 2 disjoint essential cycles. It is now easy
to see that we must have Case (c) of Figure 6.7. If two bridges of A attach
at the same side of b then we have just two (by 3-reducibility). so we have
Case (a) or (b) of Figure 6.7. Two bridges of K’ attached at a point in
the interior of distinct branches of K not on 9@ also give rise to 2 disjoint
essential cycles. Therefore we are left with cases (d) or (e). O

FIGURE 6.8
Lemma 6.5 In cases (a) and (b) of Figure 6.7 we have p(G) < 1.

Proof. Denote the main vertices on the boundary of @ by a,b, ¢, d, respec-
tively, so that a is the vertex of degree 5 in K. Consider the face of K
which has repeated vertices on its boundary. Note that a appears twice and
between the two appearances of a there are only branches of K" without any
attached relative K-components. This implies that p(G) < 1. O
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Lemma 6.6 Case (c) of Figure 6.7 gives rise to two graphs on 5 vertices
shown in Figures 6.9 and 6.10.

Proof. Denote the main vertices on the boundary of @ by a,b, ¢, d, respec-
tively, so that a is on the right, b at the top. Denote by z the main vertex
of K out of (). Consider the face R of K with the facial walk abzcdz. Since
p(G) > 2 there is a K-component in R. Every such component is just an
edge (by the maximality of @ and 2-reducibility). If it attaches neither to
a nor to d we find 2 disjoint essential cycles. Similarly we see that every
such K-component must attach either to b or ¢. Therefore we have two
possibilities which are depicted in Figures 6.9 and 6.10. In none of the cases
there can be additional bridges in R. It is also easy to verify that the two
4-gons adzc and cbza of K contain no bridges of K (they would give rise to
a 2-reduction or 2 disjoint essential cycles).

It remains to show that no bridge of A is in . In case of Figure 6.9
we have the essential cycle zbd. A K-bridge in @ overlapping with bd then
gives rise to a disjoint essential cycle. By Lemma 2.2 there is a face A in
@) containing b and d on its boundary. Similarly we see that there is a face
B containing a and ¢. Clearly, A = B. Now, by the 2-reducibility we have
A=B=4Q.

X X
b o)
c 2 C
a
d d
X X

FIGURE 6.9 FIGURE 6.10
In case of Figure 6.10 the cycle ac (of length 2) is essential. As above this
implies that there is a face in @ containing a and c. By the 3-reducibility it

follows that @ contains no bridges of K. O

The arguments used in the above proof to show that there are no bridges
of K in @ will be repeatedly used later. Let us thus state this as a lemma.
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Lemma 6.7 Suppose that S1,S2, 53, 54 are disjoint segments on the bound-
ary of Q, appearing in the given order. If G contains an essential cycle C
whose intersection with Q) is contained in S; U S3 and there is a path out of
Q and disjoint from C joining a vertez of S, with a verter of S4 then in Q
there is a face containing a vertezr of S and a verter of S3.

Lemma 6.8 In Case (d) of Figure 6.7, G contains vertices p,q,r such that
every bridge of {p,q,r} is just an edge or a vertex attached with one edge
to each of p,q,r. In each case G either contains a subgraph isomorphic to
K33, or G is the map of Figure 6.10.

(@]
o)

@]
(]

FIGURE 6.11 FIGURE 6.12

Proof. Under the same notation as in the proof of Lemma 6.6 consider
the face R bounded by the walk abzdacdz. Since p(G) > 2 and the map
is 1-reduced, the faces of G have no vertices repeated on their boundary.
Therefore there must be bridges of i’ in R. The possible attachments in
R are the branches ab,da. and cd of K. A bridge connecting cd with ad
together with the cycle zba gives rise to 2 disjoint essential cycles unless the
only attachment on ad is the vertex a. Similarly, a bridge from cd to ba must
either have d as its only attachment on cd, or have a as the only attachment
on ba. (Cf. the cycle daz). By Lemma 2.2 we have in R a bridge of K
overlapping on JR with both appearances of a in order that p(G) > 2. By
the restrictions obtained above, the only such possibility is a bridge attached
at d on the branch cd, and attached at a vertex y on ab, where y # a. If
the same bridge has another vertex of attachment, it is not on ab (by the
maximality of @), so it is the vertex a on the branch ad. If this bridge has
only two vertices of attachment then there must be another bridge of K
in R which overlaps with both appearances of d. The only possibility for
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such a bridge is that it is attached at b on ab and between d and a on da
(but not at d). Both possibilities are represented on Figures 6.11 and 6.12,
respectively. In the second case we may as well assume that every outside
bridge of K is just an edge.

Consider first the case of Figure 6.11. If y # b then we have 2 disjoint
essential cycles (Lemma 6.3 (b)). So y = b. Therefore this bridge has a,d,
and y as the only attachments. It follows by the 3-reducibility that the
bridge is trivial — just a vertex z together with its attachments. Consider
now the subgraph H of G consisting of vertices a, b, d together with the two
bridges of {a,b,d} containing z and z, respectively. The embedding of H
is cellular. Any bridge of H is attached to H at vertices a,b,d only (not
necessarily all three). For each vertex t € {a,b,d}, H contains an essential
cycle which is not using t. Therefore any bridge B of H attaches to ¢t from
one side only. Since G is 3-reduced, B is either an edge joining two of a, b, d,
or a vertex of degree 3 adjacent to a,b, and d. Note that {a,b,d} have at
least 3 non-edge bridges, containing z,z, and ¢, respectively. so K335 C G.

Suppose now that we have the case of Figure 6.12. Denote by y and 2
the attachments on the branches ab and da, respectively. If z # a and y # b
then the boundary of @ together with the outside diagonals ac,yd, and bz
give the case settled by Lemma 6.1. Therefore either z = a, or y = b.

Assume first that z = a, but y # b. Since the cycle azb is essential we
may use Lemma 6.7 with S = {a}, S, = {y}, 53 = {b}, Sy = {d} to see
that in ¢ there is a face containing @ and b. By the 3-reducibility it turns
out now that the connected component of G — {a,b,d} containing y is just
the vertex y itself and it is attached to a,b,d with 3 edges. Let H be the
subgraph of G containing a,b,d together with the vertices z,y and their
attachments to {a,b.d} and together with the edge bz = ba. We conclude
in the same way as above in case of Figure 6.11.

Next we consider the case z # a and y = b. We assume that z is as
close as possible to a. Then. if there is an outside bridge of K attached
between z and a, its other attachment is on the branch ed. But this way
we get an essential cycle disjoint from the cycle azb, unless the attachment
is the vertex a. It follows that every outside bridge of K" which is attached
at the branch cd either goes to a or to b. We claim that the component of
G — {a,b,d} containing the vertex c is trivial and attached to a,b,d by 3
edges. This is evident because of the 3-reducibility if we show that in () there
is a face containing b and d. But the existence of such a face is guaranteed
by Lemma 6.7 (cycle bdz, Sy = {b}, S2 = {c}, S3 = {d}, S4 = {a}).

Let H be the subgraph of G on the vertices a,b,d,z,c and with edges
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bd and the attachments of ¢,z to {a,b,d}. We conclude in the same way as
in the first two cases.

In the remaining case when z = a and y = b we may take for H the graph
on vertices a,b,d,z and with edges bd,ab (the possibility going across!),
az,br,dz. As above we see that there is a face in ) containing b and d, and
thereafter we see that there are no additional bridges of K. The obtained

map is equivalent to the map of Figure 6.10. The equivalence is realized by
the permutation (a)(bc)(dz). O

Lemma 6.9 In case (e) of Figure 6.7 the outside bridges of K which are
attached only to the main vertices of I do not give rise to a 2-representative
embedding.

(a) . (o) (c)

(@]
Q
(@}

D a o 3
c g c d
a o) a b
{ad) (2)

FIGURE 6.13

Proof. Consider the outer face F in Figure 6.7 (e). The outside bridges
of K are just edges. In order to get p(G) > 2, we need for each double
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occurrence of a vertex on the boundary of F' an edge in F' overlapping with
the two occurrences (Lemma 2.2). Assume (by symmetry) that the vertex
a at the branch ab has the largest number of outside bridges. It is easy to
see that the possible minimal sets of outside bridges yielding p(G) > 2 are
the ones shown in Figure 6.13, if we additionally assume the 3-reducibility
which excludes any triangles in F' which do not contain an edge from the
boundary of . In each of the cases (a), (b), and (d) we have a pair of
edges zy, wz such that {z,y,w,z} = {a,b,c,d} and such a pair gives rise to
2 disjoint essential cycles.

b
C
a
d /
FiGuRrE 6.14

Case (e) is centrally symmetric to case (c). Thus it remains to con-
sider case (c) which is exhibited in Figure 6.14. There is an essential cycle
of length 2 through vertices a and ¢. By Lemma 6.7 (S; = {a} , 2 =
{b}, S3 = {c}, Sy = {d}) there is a face S in @ containing a and c. It
follows by 3-reducibility that nothing is attached to branches ad and cd in-
cluding attachments at ¢ and a if these are coming from a face containing d.
Consider now the face in Figure 6.14 bounded by the triangle abc (with the
branch bec on 9Q)). It follows by the 3-reducibility that a bridge of K in Q is
attached to an interior vertex of the branci b¢c and to a vertex z # b on ab.
Using the face S we see that there is a disk D such that GNJD = {a,b,c}
and D contains the branches ab,bc of K and the bridge obtained above.

Clearly, D gives rise to a nontrivial 3-reduction which is a contradiction.
a

By Lemma 6.9, in case (e) of Figure 6.7 there is an outside bridge of K
attached at an interior vertex of a branch.

Lemma 6.10 In the remaining case only the graph K33 with two additional
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edges embedded as shown on Figure 3.12 1s obtained.

Proof. Till the end of this section we will assume that we have case (e) of
Figure 6.7 and any minimal set of outside bridges giving p > 2 must contain
a bridge attached to only one main vertex of K. Moreover, we know that
every outside bridge of K is just an edge. Suppose that such a bridge is
attached at the vertex z in the interior of the branch ab. A minimal edge-
set giving p > 2 must separate all the double occurrences of vertices on
the boundary of the outer face R of K4. It is easy to get all such sets by
exhibiting the appropriate possibilities, and having in mind that most types
of bridges in R are forbidden now. Some of the obtained configurations give
rise to two disjoint essential cycles. The remaining ones are collected in
Figure 6.15 (a)—(e).

d o d c d c
) 2 o 3 0 2
2 o c d o d
a 0 a o] El 0
() (0) ()
a c d c

O
,
(&3
(@]
Q

FiGuRrE 6.15

Cases (c), (d), and (e) are not minimal in the sense that we may delete
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the edge ac or bd of K4 and still have p > 2 with another copy of K4 sitting
in there. These cases therefore arise from the others (cases (a) and (b)).
Case (b) can be turned into case (a) by exchanging the edge ac of K4 with
the edge zc.

It remains to consider case (a) of Figure 6.15. It is re-drawn in Figure
6.16.

FIGURE 6.16

By Lemma 6.7 (57 = [2,0], S2 = {c}, S3 = {d}, S4 = {a}. and the cycle
bzdb) we see that in @) there is a face F} of G containing d and a vertex of the
segment [z,b] of Q. Similarly, (57 = [a,z], S = {b}, S3 = {c}, Sa = {d},
and the cycle czac) we see that in @ there is a face F;, of G containing ¢ and
a vertex of the segment [a,z]. If F; = F, then this face contains ¢ and d,
and there is a non-trivial 3-reduction reducing the branch cd and the edges
cz,dr. Consequently, F; # Fy. This implies that 9 F; contains d and z, and
O F, contains ¢ and z. Note that no bridge of K is in the face of Figure 6.16
bounded by the triangle czd (we would have a submap on Figure 6.1 or a
non-trivial 2-reduction). Since ¢ and d are not on the boundary of the same
face contained in @ (a 3-reduction of the triangle czd), there is a bridge of A
in @ from a vertex y in the interior of the branch ¢d to z. By 3-reducibility,
this is trivial — the vertex y is adjacent in G to ¢, d, and z.

So far we have shown that we have a submap represented in Figure 3.12.
We need to show that there are no additional bridges of K. It suffices to see
that there are no additional outside bridges since in this case any bridges in
@ give rise to a non-trivial 3-reduction. The outside bridges may only be
attached to the following segments on 9Q: [a,z], [z,b], [b,c], or [d,a]. By
symmetry we may consider a bridge B (if there is one) in the face bounded
by adbzc. B is just an edge. If B is attached at the vertex t # d on the
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branch da, the other end of B can not be on the segment [z,b] of Q (we
get two disjoint essential cycles), so the other end is ¢. A bridge attached at
d can have c or a vertex on [z, b] as the other end. By symmetry, the same
restrictions apply in the other face bounded by bcazd. But if there is any

such bridge, we have a non-trivial 3-reduction. This completes the proof.
a

With the proof of Lemma 6.10 we exhibited all possible cases and we
established the validity of Theorem 3.2.
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