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1. INTRODUCTION

The problem of constructing embeddings of graphs in surfaces is of
practical and of theoretical interest. The practical issues arise, for exam-
ple, in problems concerning VLSI and also in several other applications,
since graphs embedded in low genus surfaces can be handled more easily.
Theoretical interest comes from the fact that the genus parameter of a
graph is an important graph invariant and that graphs of bounded genus
have interesting properties.

There are very efficient (linear time) algorithms which for a given graph
determine whether the graph can be embedded in the 2-sphere. The first
such algorithms were obtained by Hopcroft and Tarjan [11] back in 1974.
There are several other linear time planarity algorithms (Booth and
Lueker [3], Fraysseix and Rosenstiehl [8], Williamson [24, 25]). The exten-
sions of original algorithms produce also an embedding (rotation system)
whenever a graph is found to be planar [4], or find a forbidden Kuratowski
subgraph K or K; ; if a graph is found to be non-planar [24, 25] (sce also
[14)).

It is known [21] that the general problem of determining the genus, or
the non-orientable genus of graphs is NP-hard. However, for every fixed
surface there is a polynomial time algorithm which checks if a given graph
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can be embedded in the surface. Such algorithms were found first by
Filotti et al. [7]. For a fixed orientable surface § of genus g they
discovered an algorithm with time complexity O(n*¥*#) (a, B8 are con-
stants) which tests if a given graph of order n can be embedded in S.
Unfortunately, their algorithm is practically not useful, even in the sim-
plest case when S is the torus. For every fixed surface an O(n?) algorithm
can be devised using graph minors [16, 20]. Robertson and Seymour
recently improved their O(n*) algorithms to O(n? log n) [17-19]. A con-
structive version is described by Archdeacon in [1]. The running time is
proportional to n'® but with a little additional care it could be decreased
to O(n®). Unfortunately, also these algorithms are only of theoretical
interest. A disadvantage is that the list of forbidden minors is unknown for
any surface different from the two-sphere and the projective plane. Even
for the projective plane whose forbidden minors are known [2, 9], the
algorithms based on checking for the presence of forbidden minors are
consuming too much time, since their running time estimates involve
enormous constants.

The main motivation for designing a fast projective plane algorithm is
our goal to obtain a fast (linear time and acceptable constants) algorithms
for checking embeddability of graphs in any fixed surface. The projective
plane algorithm of this paper and the torus algorithm of Juvan, Marincek,
and the author [12] are the building blocks used in the general case [13].

The projective plane is the simplest (compact) surface after the two-
sphere. No practically applicable algorithms for embedding graphs in the
projective plane have appeared in print so far. Recently J. Fiedler er al.
found that the orientable genus testing for graphs which can be embedded
in the projective plane is a polynomial time problem [6). This result
opened the theoretical interest (in addition to the possible applications in
practice) in algorithms for testing if a given graph can be embedded in the
projective plane. In [15] an algorithm for constructing embeddings into the
projective plane is described, and it is claimed that it works in time
proportional to n®. Unfortunately, the algorithm of [15] seems to have a
gap. If an embedding is found, then all is correct, but if the algorithm fails,
it does not mean that the graph cannot be embedded in the projective
plane. We see a way how to fix the gaps, but then the worst-case time
complexity becomes exponential. (The unavoidable mistakes in [15] were
independently observed by Williamson (private communication).)

In the present paper we describe a new algorithm which finds an
embedding of a given graph into the projective plane if such an embedding
exists. Its worst-case time and space complexity is linear. The constants
involved in the linear time complexity bound are acceptably small from the
practical point of view, and we are working towards an implementation of
our algorithm.
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Concerning the time complexity of our algorithm, we assume a random-
access machine (RAM) model, the so-called unit-cost RAM, where opera-
tions on integers, whose value is O(n), need only constant time (n is the
order of the given graph). This model was introduced by Cook and
Reckhow [5].

At the end of this section let us formulate our main result. The rest of
the paper is devoted to its proof.

TueoreMm 1.1.  There is an algorithm which for a given simple graph G of
order n determines in time O(n) if G has an embedding into the projective
plane. In case of the positive answer it also finds an embedding.

It should be mentioned that the number of edges of a simple graph of
order n which is embeddable in the projective plane is at most 3n. This
follows easily from the Euler’s formula. If the given graph has more than
3n edges, then it is either not simple, or it is not embeddable in the
projective plane.

Our embedding algorithm uses extensively a linear time planarity algo-
rithm. For this purpose one may take any one of such algorithms. In the
initial step we also need to exhibit a Kuratowski subgraph if the graph is
not planar but at any later stage we do not need this. In case we only want
to check if a graph is embeddable in the projective plane, we only need to
check planarity without actually constructing planar embeddings.

Embeddings in the projective plane can be combinatorially described by
specifying a rotation system (for each vertex ¢ of G we have the cyclic
permutation 7, of its neighbours, representing their circular order around
v on the surface), together with a signature A: E(G) — {—1, 1} having the
property that a cycle of G has an even number of edges e with Ale) = —1
if and only if the cycle is contractible on the projective plane (cf. [10]). For
embeddings in orientable surfaces, in particular the two-sphere, we only
need to give the rotation system (we may assume that the signature is
everywhere equal to one).

CoroLLARY 1.2, There is an O(n?) algorithm for determining the ori-
entable genus of graphs embeddable in the projective plane.

Proof. Let G be a given projective planar graph. We may assume that
G is simple, since omitting loops and replacing multiple edges by simple
edges does not change the genus of the graph. Check first if G is planar, If
yes, we are done. Otherwise find an embedding of G in the projective
plane and from now on consider G as an embedded graph.

A family of faces of the graph G embedded in the projective plane is
essential if the union of the closures of faces in this family contains a
non-contractible curve. The smallest number of faces forming an essential
family is called the face-width of the embedded graph . We denote it by
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p(G). The face-width can be determined in the following way. Construct
first the vertex-face incidence graph H (also called the angle graph, or the
radial graph). Its vertices are the union of V(G) and the set of faces of G.
For each incident vertex-face pair (v, F) we have an edge between v and
F in H. Moreover, H is embedded in the projective plane in the obvious
way. The graph H can easily be determined in O(n) time using the “face
tracking” algorithm (see [10, p. 115]). One can at the same time determine
the rotation system and the corresponding signature A, of H. It is easy to
see that the length of a shortest non-contractible cycle of H is equal to
2p(G). Therefore, to compute p(G) it suffices to determine a shortest
essential cycle of H. An efficient algorithm for this problem was obtained
by Thomassen [22]. It consists of the following simple procedure. For each
vertex u € V(H) perform the breadth-first search (BFS) starting at u.
When a new edge e = v,v, is encountered at the BFS, it either enters the
BFS tree T, or else it determines a cycle C, together with the edges that
are already in 7. If this cycle is non-contractible and contains u then this
is a shortest non-contractible cycle of H containing u. If C is non-con-
tractible but u & V(C), then u does not lie on a shortest non-contractible
cycle of G. Let n(v) denote the parity of the number of edges having the
signature —1 on the path in 7 from the root u to v©. This is easily
constructed at the time of the BFS. Then the number of edges on C with
negative signature has the same parity as n(v;) + n(v,) (+1if A, (e) =
—1). This determines (in constant time) whether C is contractible or not.
Repeating the BFS with each vertex as the root we find a shortest
non-contractible cycle. The worst-case time complexity is linear for each
breadth-first search, so the complete procedure for determining p(G) is
quadratic in n.

Compute now g = | p(G)/2|. Since we already excluded the possibility
that G is planar, g is equal to the orientable genus of the graph G {6].

If necessary, one can also obtain an embedding of G into the orientable
surface of genus g using the constructed minimal non-contractible cycle of
H. See [6] for details. O

2. Basic DEFINITIONS

We consider finite undirected graphs. Our concern is testing for embed-
dability into a given surface. Therefore it may be assumed that all graphs
are simple. Throughout the paper, G will always be a simple graph of
order n.

We will mainly consider graphs embedded in surfaces. All surfaces are
assumed to be closed and without boundary. By 2, we will denote the
projective plane. If G is a graph embedded in a surface S, the connected
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components of S\ G are called faces of G in S. If every face is
homeomorphic to an open disk in the plane then the embedding is said to
be a 2-cell embedding. The boundary of every face of a 2-cell embedded
graph G determines a closed walk consisting of the sequence of edges of
G following the boundary of the face. This closed walk is called a facial
walk of the face. (It is determined up to the choice of the initial point and
the direction.) If every facial walk is a cycle of the graph then the
embedding is said to be closed.

Let K be a subgraph of G. A relative K-component is a subgraph of G
which is either an edge e € E(G)\ E(K) (together with its endpoints)
which has both endpoints in K, or it is a connected component of
G — V(K) together with all edges (and their endpoints) between this
component and K. Sometimes we will use just K-component, or also a
bridge of K, to mean a relative K-component. Each edge of a K-compo-
nent R having an endpoint in K is a foot of R. The vertices of R N K are
the vertices of attachment of R.

Consider a subgraph K of G. A vertex whose degree in K is different
from two is called a main vertex of K. The paths in K joining pairs of
main vertices and having all internal vertices of degree 2 in K, are called
branches of K. If a relative K-component is attached at a single branch of
K it is said to be local. Those relative K-components which are not local
are called global.

Let K be a subgraph of G and C a cycle in K. Two relative K-compo-
nents B, B, overlap on C if on C they have three vertices of attachment
to K in common, or there are distinct vertices a,b,c,d on C (in this
order) such that a and ¢ are vertices of attachment of B,, and b,d are
attachments of B,. If K is two-cell embedded in a surface S and F is a
face bounded by a cycle C then we also say that B\, B, overlap in the face
F if they overlap on C. The following proposition is well known.

ProrosiTiON 2.1.  Let K be a subgraph of G. Suppose that K is two-cell
embedded in a surface S and thar a cycle C of K bounds a face F of K. If
B|,B,,..., B, are relative K-components and each of them admits an
embedding in F, then their union B, U --- U B, has an embedding in F if
and only if no two of the bridges B;, B,, i # j, overlap on C.

A related result, which we shall use without explicitly referring to it, is
the following proposition.

ProposITION 2.2. Let K be a subgraph of G. Suppose that K is two-cell
embedded in a surface S and that a cycle C of K bounds a face Fof K. Let B
be a relative K-component and ¢, i, extensions of the embedding of K to an
embedding of K U B such that B is embedded in F under each of them. Then
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Y, can be extended to an embedding of G in S if and only if , can be
extended to an embedding of G.

3. THe Grapus Ky aND K, ; IN THE PROJECTIVE PLANE

We will use some properties of the embeddings of Kuratowski graphs
K, and K, ; in the projective plane. Let us first recall a lemma.

LemMma 3.1. Let G be a 2-connected graph embedded in the projective
plane. If G is not planar then this is a closed two-cell embedding.

Proof. Clearly an embedding which is not two-cell gives rise to an
embedding of G in the two-sphere. Suppose that the embedding is not
closed. Then there is a face F whose facial walk is the union of a cycle C
and a closed walk W, such that C and W have only a vertex, say x, in
common. Let y be a simple closed curve on il which follows C. Then y
can be moved by a homotopy in the face F so that the obtained curve v’
intersects the graph only in x. Since G is 2-connected, it is casy to see that
v’ is an essential curve on 5:1. Cutting along y’ we obtain a disk in the
plane with the double occurrence of x on its boundary. It is clear that this
gives rise to an embedding of G in the plane. O

THeoREM 3.2.  Up to automorphisms of K., the equivalence classes of
embeddings of K in the projective plane are collected in Figs. 1a and b.

Proof. By Lemma 3.1 every embedding of K in the projective plane is
a closed two-cell embedding. Therefore every face is of size at most five. It
follows by the Euler’s formula and a standard counting argument that K,

(2) (b)

Fic. 1. Embeddings of Ks.
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F1G. 2. The embedding of K ; in the projective plane.

has no triangular embedding into 3. So there is a face of size five or four.
It is easy to see that in each among these two possibilities we have a
unique embedding of K. as shown in Fig. 1a and b, respectively. O

THEOREM 3.3.  Up to automorphisms of K 5 the only equivalence class
of embeddings of K, 5 in the projective plane is represented in Fig. 2.

Proof.  As in the proof of Theorem 3.2 we find that every embedding is

a closed two-cell embedding and that there is a face of size five or six.
Since K, ; is bipartite, it must be of size six. Then it is easy to see that the
remaining three edges can be added in a unique way as shown in Fig. 2.
O

Remark 3.4. 1t is easy to check that the embedding of K of Fig. la
gives rise to 12 non-equivalent embeddings of K, (as a labelled graph).
Similarly, Fig. 1b represents 15 embeddings of K, and the embedding in
Fig. 2 represents six non-equivalent embeddings.

CoroLLARY 3.5. Let G be a graph, K a subgraph of G homeomorphic
either to K or K, 5 and let B be a global bridge of K which is attached to at
least one non-main vertex of K. If K is embedded in the projective plane such
that B can be added to it in two different faces, then one of the faces is the
face F as displayed in Figs. 1a, 1b, or 2.

Proof. Consider one of the possible embeddings of K. Since B is
attached to an interior vertex of a branch, say e, of K, the two faces in
which B can be embedded share e on their boundary. But since B is
global, they must have in common a vertex which does not lie on e. By
checking all the possibilities we see that in each case one of the faces is
the face F as displayed in Figs. 1a, 1b, and 2, respectively. O
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4. ELiMiNaTION OF LocaL BRIDGES

In this section, G will be a given graph and K its subgraph. G is
3-connected modulo K if for every vertex set X C V(G) with at most two
elements, every connected component of G — X contains a main vertex of
K. This is obviously equivalent to the following condition: If G*(K) is the
graph obtained from G by adding three mutually adjacent new vertices
whose additional neighbours are the main vertices of K, then G*(K) is
3-connected. In this paper we will use the notion of 3-connected modulo
K only in cases when K will be homeomorphic to a 3-connected graph. In
this case the condition is equivalent to the requirement that G is 3-con-
nected.

In our final algorithm K will be a Kuratowski subgraph of G embedded
in the projective plane. The following result shows that we will be able to
reduce the problem to the case when G is 3-connected modulo K.

We need some additional definitions. Let G be a 2-connected graph. A
pair of vertices x, y of G is a separation pair if there exist edge-disjoint
subgraphs G,, G, of G whose union is G, their intersection is {x, y}, and
each of them contains at least two edges. If x, y is a separation pair and
G, G, the corresponding graphs, then the graphs G} = G, + xy (G, with
a new edge xy) and G, = G, + xy are called split graphs of G. The new
edges xy added to G, and G, are called virtual edges. Note that by adding
virtual edges we may obtain new parallel edges. Dividing G into two split
graphs G} and G} is called splitting. Reassembling the two split graphs
over a common virtual edge is called merging. Suppose now that we split
the graph G, then split the obtained split graphs, and so on, until no
further splitting is possible. The obtained graphs are called split compo-
nents of G. If we merge all triple bonds (over the same virtual edges, of
course) into larger bonds, and merge triangles into larger cycles, as much
as possible, we obtain graphs which are called 3-connected components of
G. The split components are not necessarily unique, but the 3-connected
components of G are [23]. The 3-connected components are either 3-con-
nected graphs, bonds, or cycles. Every 3-connected component is homeo-
morphic to a subgraph of G.

ProrosiTiON 4.1.  Let K be a subgraph of a graph G. If K is closed 2-cell
embedded in a surface S then we can in time proportional to |E(G)| fulfil
one of the following tasks:

(a) Change G to a graph G' which is homeomorphic to a subgraph of
G, and change K to a subgraph K' of G’ which is homeomorphic to K, has
the same main vertices, and is embedded in S the same way as K (with the
main vertices fixed). Moreover, G’ is 3-connected modulo K', and the
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embedding of K’ can be extended to an embedding of G’ if and only if the
embedding of K can be extended to an embedding of G. Every extension of
the embedding of K’ to an embedding of G’ gives rise in linear time to an
extension of the embedding of K to an embedding of G.

(b) Prove that the embedding of K cannot be extended to an embedding
of G.

Proof. Let G*= G*(K) be the graph as defined above. By the algo-
rithm of Hopcroft and Tarjan [11] one can determine the 3-connected
components of G* in linear time (this algorithm also takes care of the
case when G* is not two-connected). Let G, be the 3-connected compo-
nent of G* which contains the three vertices added to G. Then the graph
G’ obtained from G, by deleting the three new vertices is homeomorphic
to a subgraph G, of G which contains all the main vertices of K. It is easy
to see that we may choose G, so that X is its subgraph. Since K is closed
two-cell embedded in S, every split component (except () is planar if the
embedding of K can be extended to an embedding of G. (So we either
prove (b), or have plane embeddings of the split components different
from G,.) The same holds for 3-connected components of G *. It follows
that the embedding of the subgraph K’ of G’ corresponding to K has an
extension to an embedding of G’ if and only if the embedding of K has an
extension to an embedding of G.

It remains to show how one can extend in linear time an embedding of
G’ to obtain an embedding of G in the projective plane. G is obtained
from G’ by a sequence of mergings. We can obtain plane embeddings of
all the 3-connected components Q; (except G,) of G* in time O(|V(Q)]),
so all together in time O(n). It remains to show how we can obtain
embeddings of graphs obtained by merging a graph embedded in the
projective plane with a graph embedded in the 2-sphere. Suppose we have
a closed 2-cell embedding of a graph H, in the projective plane given by
the rotation system w,, v € V(H,), and the signature A,. Let the planar
embedding of a 3-connected component H, of G be given by a rotation
system on H,, and let H be the graph obtained from H, and H, by
merging along the virtual edge ¢ = ww € E(H,) N E(H,). We need to
describe the rotation system and the signature of H which correspond to
the embedding of H in the projective plane. The time needed for this
must be O(JV(H,)]). But this is not difficult. We leave it to the reader to
show that the following procedure does the job. The rotations of H at
vertices in H,\ {u,v}, i = 1,2, are equal to the rotations in H,. The
rotation at u is obtained in such a way that in =, the edge e is replaced by
the sequence of edges in H, following e in the rotation of H,. We do the
same at v if A,(e) = 1. In the case when A (e) = —1 we replace ¢ in T,
by the sequence of edges adjacent to v in H, (except e), but this time in
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o

FiG. 3. Merging embeddings in case when A(e) = — 1.

the reverse order. See Fig. 3 (the crosses on edges designate the negative
signature). Finally, to obtain the signature A of H we use the signature of
H, on E(H)\{e}, define the edges of E(H,)\ F., where F ={fe

ECH)f is adjacent to v in H,)}, to have the signature one, and the edges
in F \ {e} to have the signature A (e). O

Once having the graph 3-connected modulo its Kuratowski subgraph K
we will need to eliminate local bridges of K. This is established by the
following result.

ProrosiTion 4.2. Let K be a subgraph of a graph G such that G is
3-connected modulo K. If K is closed 2-cell embedded in a surface S then we
can in time proportional to |E(G)| fulfil one of the following:

(a) Change K to a subgraph K' of G which is homeomorphic to K, has
the same main vertices, and is embedded in S the same way as K. In
particular, G is also 3-connected modulo K'. Moreover, there are no local
bridges of K'.

(b) Prove that the embedding of K cannot be extended to an embedding
of G.

Proof. Given K, we first determine all local bridges of K. For each
branch e of K, define the graph H, as the union of e, together with all
local bridges attached at e, and with the additional edge ¢ joining the
endvertices of e. Find an embedding of H, in the plane. (If H, is not
planar then the embedding of K cannot be extended to an embedding of
G since the embedding of K is closed.) Clearly, H, is 2-connected.
Therefore a face F containing ¢’ is bounded by a cycle consisting of ¢ and
a path P,. Replace in K the branch e by the path P.. Denote by K” the
graph obtained by performing this operation at all branches of K. Note
that K” may still have local bridges but it is easy to see that any global
bridge of K is contained in a global bridge of K”. Repeat now the above
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procedure from the beginning with the graph K”. If H. is the auxiliary
graph used in the process, note that there are two possibilities to choose
the path P/. If we take the same embedding as before (since P, is
contained in the corresponding graph used in the first step) then in one of
the cases, P, is equal to e. Make sure to always take the other one. Since
G is 3-connected modulo K, it is also 3-connected modulo K”. Therefore
by changing the branch e of K” to P’ we eliminate the local bridges
attached at this branch.

Let K’ be the resulting subgraph of G. It follows by the above that G’
has no local bridges. All other required properties follow by construction.

It is well known that the algorithms used in the above construction of K’
(finding all local bridges, planarity) are linear and since the graphs H, are
pairwise edge-disjoint, the total time is also linear in |E(G)}. O

5. TESTING FOR PLANARITY

Planarity testing and embedding algorithms will be used in several
situations. We will describe three examples. Whenever referring to one of
these cases we will say that we are testing for planarity.

Let K be a subgraph of a graph G and suppose that K is 2-cell
embedded in a surface S.

ExampLE 1. Let F be a face of K whose boundary is a cycle C. Let
B,, ..., B, be bridges of K with all their vertices of attachment on C. Let
the graph Q be the union C U B, U - -+ U B,, together with an additional
vertex z adjacent to all vertices of attachment of the bridges B, (i =
1,...,k) on C. It is easy to see that Q is planar if and only if
the bridges B,,..., B, can be simultanecously embedded in the face F.
Therefore, by testing for planarity of Q we can determine if the bridges
B,,..., B, can be simultaneously embedded in F. In particular, we can
check with this procedure if a single bridge can be embedded in a (closed)
face (using just one bridge, i.e., kK = 1). See also Example 2. If each B,
(i=1,...,k) admits an embedding in F then we can also test for their
overlapping on C by using the above procedure.

ExampLE 2. Using the above idea we can test in linear time O(n)
which bridges of K can be embedded in F. The crucial idea is that we can
construct all the graphs Q; (cf. Example 1) corresponding to the bridges B,
of K (i =1,...,k) simultaneously and spend only O(n) time. In Q; we
only need those vertices of C which are attachments of the bridge B,.
Going around the boundary C of F we have to remember for each bridge
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B, which was the last vertex of attachment of B, that we have met. When
we meet another foot of B, we can then immediately join the last vertex
with the new one. The time required for these operations is linear in
T E(B)| + |[V(C)I. It follows that the time is also linear in n.

ExamrLE 3. Let F, F’ be faces of K bounded by cycles C, C’, respec-
tively. Suppose that C N C’ = e U {x}, where e is a branch of K and x is
a vertex. If a and b are the endpoints of e then denote by P,, P; the
segments on C and C’, respectively, between a and x. Similarly, let P,, P}
be the segments from b to x. We assume that the segments are chosen in
such a way that they do not contain e. Let B,,..., B, be bridges of K
with all their vertices of attachment on C U C'. Let the graph Q be the
union CUC'UB, U ---UB,, together with two additional vertices
z,, z, such that z, is adjacent to a, x, and all vertices of attachment of the
bridges B; (i = 1,...,k) on P, U P, and z, is adjacent to b, x and the
attachments on P, U P;. It is easy to see that Q is planar if and only if
the bridges B,,..., B, can be simultaneously embedded in F U F’. Again,
the time complexity is linear in n.

6. SKEW-PLANARITY ALGORITHM

In this section we basically describe an algorithm for embedding graphs
in the Mdbius band. More precisely, suppose that we have a graph G of
order n and a subgraph K of G homeomorphic to K, and embedded in
the Mdbius band as shown in Fig. 4. (Note that four of the edges are
embedded on the boundary, while the edges ¢ and ¢’ join points on the
boundary but lie otherwise in the interior.) Suppose that K has no local
bridges and that G is 3-connected modulo K. Denote by F and F’ the
faces of K, and let e,¢’ be the branches on the intersection of their

Fic. 4. K, in the Mébius band.
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boundaries. Qur aim is to find out in linear time whether the embedding
of K can be extended to an embedding of G.

TuHeoreMm 6.1.  Under the notation and assumptions given above, there is
a linear time algorithm which finds an embedding extension to G of the given
embedding of K in the Mdbius band if such an extension exists, and otherwise
reports that no such an extension exists.

Proof. Denote by a,, b, the endvertices of e (with g, on the top), and
let c,, dy be the endvertices of ¢’ (with d,, on the top). See Fig. 4. The
algorithm is as follows:

Step 1. For each bridge of K find out in which of the faces it can be
embedded. If a bridge B, contains n, vertices then the time used by B, for
this operation is O(n,;) with O(n) total pre-processing time (cf. Section 5,
Example 2). All together, the time is linear in n. Split the bridges into
three groups: those embeddable in F but not in F’, those embeddable
only in F’, and those which can be embedded in both F and F’. If there is
a bridge which has no embedding in F or F’, then G has no embedding
extending the embedding of K. Try to embed all the bridges of the first
type in F using a planarity algorithm. Do the same in F’ with bridges
which have no embedding in F. If we are not successful in one or the
other case, then there is no embedding of G extending the given embed-
ding of K. For the remaining bridges which have two embeddings with
respect to K, we use the further steps described below to find out if all of
them can be embedded at the same time.

Mark as labelled all bridges that have been determined in which face
they will be embedded and consider the remaining bridges as unlabelled.

Step 2. Set a :=ay, b= by, ¢ =c,, and d = d,. In the general step
of our algorithm we will have the same situation as at this point. There are
vertices a, b on e, where a is above b (with respect to the directions
determined by Fig. 4), and we have vertices ¢, d on e’ with d on the top.
We assume that 3F is oriented such that the order of the vertices is
a, b, c,d. Similarly, 3F' is oriented so that their order is a, b, d, c. We will
from time to time use segments on the boundaries of these faces. Then the
segment xy will mean the segment from x to y in the direction agreed
above (in the face F if not mentioned otherwise). Some of the bridges of
K are already decided to be embedded in F or in F’, respectively. The
decision has been made exactly for all those bridges that are labelled. We
will actually embed them in Step 6. Therefore we do not need to check
now that the bridges determined to be embedded in a particular face do
not overlap. All the remaining bridges have all their attachments to e
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between a and b (possibly at a, or b), and all attachments to ¢’ are in the
segment cd.

Among all labelled bridges that are assigned to F and have a vertex of
attachment in the open segment da on dF, determine their attachment x,
on the segment ac, which is as close to ¢, as possible, but different from
c. {(Now this means that x, # ¢, but later on when ¢ will be changed, the
same definition will permit the possibility x, = ¢,. This also means that
when ¢ will change its value from ¢, to another one, we may need to
update the value x,) If there is no appropriate bridge, then we set
x, = a. (We leave it to the reader to verify how one can determine x, in
linear time with a certain pre-processing in Step 1, so that also the later
updating of x,, when the vertices a, b, ¢, d will change, will not take more
than linear time all over the whole algorithm.) The significance of x, lies
in the fact that each unlabelled bridge B attached between a and x,
(possibly at a but not at x_) overlaps in F with a labelled bridge assigned
to F, and B should therefore be embedded in F’. We note that for such a
bridge B we will not check its overlapping with other bridges in F’, since
this will come out in Step 6 anyway.

Define similarly x,, x_, x,, and introduce the corresponding vertices
X, x4, x.., x7; by considering the bridges that have been assigned to F’.

Step 3. We will (possibly) return to the beginning of Step 3 several
times but we note that each time we either embed a new bridge or move
a,b or c,d closer towards each other. Therefore we do this only O(n)
times.

If a = b or ¢ = d then go to Step 5.

If a # x, then for all unlabelled bridges B attached at a repeat the
following. Assign B to be embedded in F’ and mark it labelled. Since we
will change a afterwards, change x/, and x/ according to the definition in
Step 2 (pretending that a was already moved towards b) if necessary, i.e.,
if an attachment of B different from d on the segment ad, on d4F’ is
closer to d, than x/, then X/, should be changed to such an attachment
closest to d,. Similarly for x.. If a = a,, it may also be necessary to
change x. and x);. When finished with all the unlabelled bridges at a,
label all these bridges and change a to be the next vertex on e towards b.
If necessary, change x,, x, x,, etc., and then return to the beginning of
Step 3.

We now have a = x,. Next we check if @ = x/,, and if not, we repeat the
above procedure in F’. Finally, do the same with b, ¢, d, so that we may
assume from now on that ¢ = x, = x, b = x, = x}, etc.

If there is no unlabelled bridge attached at a then we move a to the
next vertex towards b. After changing a we make sure to change
X,y X0y Xy, Xy, etc. properly so that they are defined according to the
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definition given in Step 2. Then return to the beginning of Step 3. Do the
same if there are no corresponding bridges at b, ¢, d, respectively.

From now on suppose that there are unlabelled bridges, 4, B,C, D
attached at a, b, ¢, d, respectively. If A4 is just the edge ad then we assign
A to be embedded in F. One can easily see that ad does not overlap with
any of the bridges previously assigned to F (unless some of the previously
embedded bridges overlap with each other, in which case there is no
embedding extension and we do not care if our algorithm does not work
properly from this point on). Therefore our decision of embedding ad into
F does not influence the embeddability of G. After assigning ad to F,
mark this bridge as labelled and return to the beginning of Step 3.

If D =ad we do the same. Suppose now that A, D # ad. We check
next whether 4 = D. If so, we try to find another candidate for A (by
possibly moving a towards b) and another candidate for D. To be more
specific, we do not change A, D, a, or d until we find a proper
alternative. In case of the search for the alternative for a, we look for the
first bridge attached at a or as close to a as possible. If we find the bridge
ad then we perform the same steps as described above. Otherwise we try
to find the alternative for D that overlaps with A4 in F, or the alternative
for A that overlaps with D. If such alternatives cannot be found, then we
perform the same procedure as in the above case when A was just the
edge ad, and after that return to the beginning of Step 3. From now on we
may assume that we have either changed A4 (and possibly a), or D (and
possibly d). Once we find whether to change A or D, if the vertex a or d
has changed, we make sure to change x,, x/, x,, x},... accordingly.

From now on we have 4 # D and A, D overlap in F. It is easy to see
that we still have @ # b and d # c. After clearing this part we make sure
in the same way that B # C. Next we make sure that A # C and B # D
by performing the same operation in the face F’. It may happen now that
we obtain A = D again. In this case we repeat all the procedure from the
beginning. Finally, we end up with the case where 4 # C,D and B #
C, D. It may happen, however, that 4 = B, In such a case the end of our
suffering is quite close. We embed A = B first in F and next in F’, and in
each case we solve the embeddability problem as follows. Let us only
describe the case when we embed A4 =B in F. Then the remaining
bridges are uniquely determined in which face they should go if there is an
embedding. For example, C and D go to F’, all unlabelled bridges
attached at a point strictly between a and b must go to F’, etc. Once we
determine for all the bridges to be either in F or in F’, we go to Step 6.
We undertake the same steps if C = D,

Step 4. Now we have a, b, ¢, d distinct vertices and we have unlabelled
bridges A, B, C, D which are pairwise distinct. By construction it follows
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that 4 and D overlap in F, B and C overlap in F, A and C overlap in
F', and B and D overlap in F'. 1t is easy to see that only the following
three cases can occur.

Case 4.1. A, B overlap in F, or C, D overlap in F': Then the only
possibility for embedding A4, B,C, D is to embed 4 and B in F', and
embed C and D in F. Mark A, B, C, D as labelled and return to Step 3.

Case 42. A, B overlap in F', or C, D overlap in F: Then the only
possibility for embedding A4, B,C, D is to embed A4 and B in F, and
embed C and D in F’. Mark A, B,C, D as labelled and return to Step 3.

Case 43. A, B do not overlap in F, F’, and C, D do not overlap in
F, F': Then A and B have only one vertex of attachment on ¢’ and this
attachment is the same for both of them. The same holds for the
attachment of C and D on e. We have two possibilities how to embed
A,B,C,D in F and F’. We have to check for both of them. But in each
case the problem becomes quite simple—we can solve the embeddability
of the remaining bridges by testing for planarity. Let us describe the
details only for the case when we embed A4, B in F and C, D in F'. Then
all bridges are uniquely determined in which of the faces F, or F’ they
should be put. There is only one exception—if there is a bridge (an edge
xy) attached only to the attachment x of 4 and B on ¢, and to the
attachment y of C and D on e. If this bridge is really there, then we
consider two subcases: we first put xy in F and check with the Step 6, and
then put xy in F' and do the same. If xy is not among the bridges, we go
to Step 6 as well.

Step 5. Now we have the following situation. Some bridges are already
determined in which faces they will be put (the labelled bridges). The
remaining bridges are attached to a segment cd on ¢’, and to the single
vertex a (= b) on e. (We might have reached this point from another
alternative, ¢ = d, but for the sake of simplicity of notation we assume the
above situation.) Construct the auxiliary graph G’ as follows (see Fig. 5;
note that the points a on the left and the right represent the same vertex).
Its vertices are the vertices on the branch e, together with vertices
a, fu» fos fus fir Zu» 25, and some other vertices corresponding to the bridges
of K. The vertex z, is adjacent to a, f,, dy, f., vertex z, is adjacent to
a, f,, g, fi» the neighbours of a are f,, f,, fi, fi» 2., 2p» €tC., as shown in
Fig. 5. For each bridge @ of K we also add to G’ the bridge @ with the
following modification. If Q is attached to a vertex in the open segment
da on 9F and is determined to be in F then we replace all such
attachments with an attachment at the vertex f,. Similarly, the attach-
ments on the bottom segment ac give rise to an attachment at f,. The
bridges in F’ similarly attach to f, for the upper open segment ad, and
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FiG. 5. The auxiliary graph G'.

attach to f, for the bottom segment ca. The attachments at ¢ and on cd
remain untouched. (We note that this is the step where we can not
according to Proposition 2.2 replace the bridges by single vertices adjacent
to the attachments. But this is restricted only for the labelled bridges that
are attached to a and the segment cd only.) One can check that the
decision about the planarity of G’ will tell us if there is a possibility of the
embedding of G extending the given embedding of K, and if yes, then it
will tell us in which of the faces F, F’ the remaining bridges shouid be put.
Moreover, any such choice will be appropriate.

Step 6. Once decided which bridges should be embedded in F and
which in F’ we solve our problem by testing for planarity (cf. Section 5,
Example 1), first in F and once again in F’. If we succeed in obtaining an
embedding in each of the cases then the initial embedding task is com-
plete. On the other hand, if the planarity test fails either in F or in F’
then we know that G has no embedding extending the given embedding of
K. This ends the algorithm.

One can easily check that the above algorithm really needs only linear
time. The crucial fact is that each step can either be performed in constant
time, or it contains a series of operations which need not be constant in
each step but that all together there is a linear bound on the number of
these operations. We have tried to comment on the least obvious cases
within the description of the algorithm. O

7. PRoJECTIVE PLANARITY IN LINEAR TIME

After the preparation in previous sections we are ready to present the
final algorithm for embedding graphs in the projective plane. Its linearity
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then proves our main result, Theorem 1.1. The algorithm runs as follows:

Step 1. Given the graph G on n vertices, check if G is simple and
|[E(G)| < 3n. If not then STOP.

Step 2. Check if G is planar. In case of the positive answer return its
plane embedding rotation system and STOP. Otherwise let K be a
Kuratowski subgraph of G.

Step 3. Change G, K in such a way that G is 3-connected modulo K
(Proposition 4.1). Let G and K denote the new graphs. If there was a
non-trivial reduction then make sure at the end to change the embedding
of G into an embedding description of the original graph (cf. the proof of
Proposition 4.1).

Step 4. Change K so that there are no local bridges of K (Proposition
4.2).

Step 5. For every equivalence class of embeddings of K (cf. Section 3)
try to extend it to an embedding of G. If successful in at least one of the
cases then G has an embedding in the projective plane, otherwise not. So,
fix an embedding of K in the projective plane and try to extend it as
follows.

Step 5.1. For each face of K determine which bridges can be
embedded in this face. This can be done by testing for planarity (cf.
Section 5, Example 2) in linear time since K has only four or six faces.

Step 5.2. Let B, be the set of bridges of K which are attached to at
least two main vertices of K, or their attachments to K are not limited to
two of the branches of K. Since G is 3-connected modulo K, the number
of bridges in B, is bounded by a constant if G admits an embedding in the
projective plane. (The reader is invited to find the best possible constant.)
Therefore there is a bounded number of possibilities how to embed K
together with these bridges in 3,,. By Proposition 2.2 we only need to
know in which of the faces particular bridges from B, are embedded. The
following steps should be repeated for each of the possibilities.

Step 5.3. We assume now that an embedding of K in the projective
plane is fixed and that the bridges of B, are distributed to faces of K. We
will decide for each of the remaining bridges in which of the faces it
should be embedded. Once having made the decision for all of the
bridges, we will perform the planarity test for the bridges in each of the
faces to decide whether an embedding of G of the determined kind exists,
or not. From now on we only discuss the way how to split the bridges
among the faces. First of all, our job is trivial for those bridges which were
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found in Step 5.1 to have an embedding in a single face. The remaining
bridges all have exactly two distinct embeddings with respect to K. Each
of them is attached to an interior vertex of a branch of K and to exactly
one other branch. Let B, be the set of these bridges. By Corollary 3.5, one
of the two faces allowing an embedding of a bridge from B, is the face F
(as denoted in Figs. 1 and 2). We say that the bridges in B, that admit
embeddings into the faces F and F’ are of type F'.

Step 5.4. For each face F' # F choose all the faces that have been
determined to be in F’, and add all the faces of type F’. By testing for
planarity we can check if all these faces can be simultaneously embedded
in F’. If this happens then we will embed all of them in F’ since they will
not block any of the remaining bridges. If not, then in every embedding of
these bridges at least one of the bridges of type F’ will be embedded in F.

Step 5.5. For each face F' # F for which the above test was not
successful we check if all bridges that have been assigned to F or to F',
together with the bridges of type F’, can be simultaneously embedded in
the union of F and F’'. For this task we either test for planarity (cf.
Section 5, Example 3), or use the skew-planarity algorithm of Section 6.
We call this procedure the F'-test. Of course, we should obtain the
positive answer to all necessary F'-tests if G has the required embedding.
Thus we assume that the F’'-tests are all positive.

If K is embedded as in Fig. 1a then, since each bridge is attached to a
non-main vertex, the F'-test is required for at most one face F' # F.
(Otherwise there is no required embedding.) The embedding is obtained if
and only if this test (if necessary at all) is positive.

If K is embedded as in Fig. 1b then there is only one face F’' which
might need to be tested for. The result is at hand.

In the last case of Fig. 2 the situation is slightly more complicated.
There is either just one F'-test that is necessary (which we solve as in the
above cases), or there are two of them, say F' and F". In this case, after an
embedding of G is reached, the only bridges of type F' or F” that will be
embedded in F will be attached at one side only to a main vertex of K,
say x, and to a branch ¢’ (respectively ¢”) on the other side of the face F.
To check for such a possibility we put all the bridges of type F’, that do
not attach as required, to be in F'. Similarly for F”. (Note that F’ and F”
are uniquely determined, but for x there are two choices which should be
considered separately.) Finally, we solve the problem about the embed-
dability by testing for planarity (cf. Example 3 of Section 5), separately for
F, F', and for F, F". In both of these tests we have to construct a similar
auxiliary graph G’ as used in Step 5 of the skew-planarity algorithm in
Section 6 (Fig. 5). This ends the procedure for distributing the bridges
among the faces of K.
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Using the results of previous sections, it is easy to see that the running

time of the algorithm is linear. Step 1 is trivial. Step 2 can be performed in
linear time by the results of [24, 25]). Steps 3 and 4 are linear by
Propositions 4.1 and 4.2. Step 5 is performed only a constant number of
times. The same is true if we add all the possibilities for several cases
which arise in 5.2. Steps 5.1, 5.3, and 5.4 are easily seen to be linear since

th

e number of faces F' for which the planarity tests are done is bounded

by a small constant. The same holds for the F'-tests in 5.5.
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