
Eigenvalues in Combinatorial Optimization ∗

Bojan Mohar
Department of Mathematics

University of Ljubljana
Jadranska 19

61 111 Ljubljana, Slovenia

and

Svatopluk Poljak
Department of Applied Mathematics

Charles University
Malostranské náměst́ı 25
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Abstract

In the last decade many important applications of eigenvalues and
eigenvectors of graphs in combinatorial optimization were discovered.
The number and importance of these results is so fascinating that it
makes sense to present this survey.
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1 Introduction

The application of eigenvalue methods in combinatorial optimization has
already a long history. The first eigenvalue bounds on the chromatic number
were formulated by H. S. Wilf and A. J. Hoffman already at the end of
sixties. Historically, the next applications, due to M. Fiedler and Donath and
Hoffman in 1973, concerned the area of graph partition. A very important
use of eigenvalues is the Lovász’s notion of the theta-function from 1979.
Using it, he solved the long standing Shannon capacity problem of the 5-
cycle. Moreover, the theta-function provides the only known way to compute
the chromatic number of perfect graphs in polynomial time.

Next strong result was the use of eigenvalues in the construction of su-
percontrators and expanders by Alon and Milman in 1985. Their work
motivated the study of eigenvalues of random regular graphs. Eigenvalues
of random 01-matrices were studied already earlier by F. Juhász, who also
analysed the behaviour of the theta-function on random graphs, and intro-
duced the eigenvalues in the clustering. Isoperimetric properties of graphs
have also a crucial role in designing random polynomial time algorithm for
approximating volume of convex bodies (cf., e.g., [87]).

Recently, there is an increasing interest in the application of eigenvalues
in combinatorial optimization problems. To mention only some of them,
Burkard, Finke, Rendl, and Wolkowicz used the eigenvalue approach in the
study of the quadratic assignment problem and general graph partition prob-
lems, Delorme and Poljak in the max-cut problem, and Juvan and Mohar
in the labelling problems.

There are several ways of using eigenvalues in the combinatorial opti-
mization. The first possibility consists in formulating concrete bounds which
involve eigenvalues of some related matrices. Examples of such bounds are
given by the bounds on the edge-connectivity, separation properties, band-
width and cutwidth, and bounds on the chromatic number and stable sets
in Sections 4.1, 4.2, and 4.3. Another way is to use the eigenvalues as a tool
of transformation of combinatorial optimization problems to continuous op-
timization problems. Examples of this kind are provided by the bisection
problem, max-cut problem, generalized partition problem, and the theta-
function. It seems that the finest estimates can be obtained in this way, in
particular for the partition problems.

Different kind of applications is based on the properties of the Perron-
Frobenius eigenvector of a nonnegative matrix. This technique is suitable
for the ranking problems.
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The common point of the most important among the presented appli-
cations is the possibility of the change to a “continuous optimization”. In
such cases there is a possibility of introducing a parameter u ∈ Rn and
optimizing when U is restricted to be an element of a convex set K ⊆ Rn.
This way we get improved bounds or methods for the problems in question.
A classical example is the Lovász’ ϑ-function. Its use gives rise to polyno-
mial time algorithms for determining the stability number, or the chromatic
number of perfect graphs. Similar approach appears in relation to the fol-
lowing problems: bipartition width (Theorems 2.1 and 2.3, Corollary 2.4),
partition (Theorem 2.18, Corollaries 2.19 and 2.20), max-cut (Lemma 2.10),
stable sets and coloring (Theorems 4.11 and 4.15), bandwidth (Theorem 3.1
and the inequality (44)), etc.

Our survey is organized according to the types of the combinatorial opti-
mization problems: partition, ordering, coloring and stable sets, routing. We
also include a short section on the isometric embedding; especially because
the bounds there rely on another property of eigenvalues, the Sylvester’s in-
ertia law. Appendix A contains some information about the computational
aspects, and Appendix B collects known results on eigenvalues of random
matrices. Some basic properties of eigenvalues are recalled in the following
subsection.

There are several existing books and survey papers concerning graph
eigenvalues, e.g., [16, 34, 33, 47, 96, 98]. We do not intend to overlap our
presentation with their contents. Therefore we restrict ourselves to some
problems which can be classified as applications in combinatorial optimiza-
tion, and that are not treated in any of the works mentioned above. In
particular, we do not include discussion on expander graphs (which are ac-
cessible only via eigenvalue methods) and their applications, although they
are quite important tool in the design of algorithms and several other areas
of theoretical computer science.

The present text is biased by the viewpoint and the interests of the
authors and can not be complete. Therefore we apologize to all those who
feel that their work is missing in the references or has not been emphasized
sufficiently in the text.

We thank Ch. Delorme, F. Rendl and M. Laurent, with whom we dis-
cussed parts of the topic presented here, and who also provided us with
several references.
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1.1 Matrices and eigenvalues of graphs

Graphs are assumed to be finite and undirected (unless stated otherwise),
multiple edges and loops are permitted. It is in the nature of some problems
that only simple graphs make sense, e.g., when speaking about stable sets
or colorings (cf. Section 4). In such cases graphs will be assumed to be
simple. In some other cases, we will allow more general objects – weighted
graphs, i.e., each edge uv ∈ E(G) has a real weight w(uv) > 0. (We also
set w(uv) := 0 if u and v are not adjacent.) Unweighted graphs are special
case of weighted ones if we define w(uv) as the number of edges between
v and u. If G is a graph of order n, the adjacency matrix A(G) = [auv] of
G is an n × n matrix with rows and columns indexed by V (G) and entries
auv (u, v ∈ V (G)) equal to the number of edges between vertices u and v.
Consistent with this is the definition of the adjacency matrix of a weighted
graph with weights w(uv) where auv = w(uv). The degree deg(v) of a vertex
v ∈ V (G) is equal to the number of edges adjacent to v. In the weihgted
case we define the degree of v as the sum of weights of edges adjacent to
v. Denote by D(G) the diagonal matrix indexed by V (G) and with vertex
degrees on the diagonal, i.e., dvv = deg(v), v ∈ V (G), and duv = 0 if u 6= v.
The difference

L(G) = D(G)−A(G) (1)

is called the (difference) Laplacian matrix of G. It is easy to see that for a
vector x ∈ `2(V (G)) (a vector of dimension |V (G)| with coordinates xv, v ∈
V (G), corresponding to vertices of G) we have

xTL(G)x =
∑
u,v

auv(xu − xv)2 (2)

which in case of a simple graph G reduces to

xTL(G)x =
∑

uv∈E(G)

(xu − xv)2 . (3)

The matrix L(G) is real symmetric, so it has n = |V (G)| real eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn (repeated according to their multiplicities). By (2) it is
immediate that L(G) is positive semidefinite. It also follows easily from (2)
that λ1 = 0 with a corresponding eigenvector 1 = (1, 1, . . . , 1)T , and that
λ2 > 0 if and only if the graph is connected (see Section 2.2). We will use the
notation λk(G) to denote the k-th smallest eigenvalue of L(G) (respecting
the multiplicities), and generally, if M is a matrix with real eigenvalues, we

5



denote by λk(M) the k-th smallest eigenvalue of M. To denote the maximal
eigenvalue ofM we use the symbol λmax(M). Consistently with this notation
we will sometimes use λmin(M) instead of λ1(M).

There are several useful min-max formulas for the expression of eigenval-
ues of a symmetric matrix and their sums. If M is a real symmetric matrix
of order n× n then

λ1(M) = min
{xTMx

‖x‖2
| 0 6= x ∈ Rn

}
(4)

= min {xTMx | x ∈ Rn, ‖x‖ = 1}

and similarly

λmax(M) = max {xTMx | x ∈ Rn, ‖x‖ = 1} . (5)

The Rayleigh’s characterization (4) has a generalization, the min-max char-
acterization of λk(M), known also as the Courant-Fisher’s expression:

λk(M) = min
U

max
x
{xTMx | ‖x‖ = 1, x ∈ U} (6)

where the first minimum is over all k-dimensional subspaces U of Rn. An-
other way of expressing (6) is

λk(M) = min {xTMx | ‖x‖ = 1, x ⊥ xi, 1 ≤ i < k} (7)

where x1, . . . , xk−1 are pairwise orthogonal eigenvectors of λ1, . . . , λk−1, re-
spectively. We will also need a result known as Fan’s Theorem [44] on the
sum of the k smallest eigenvalues of M :

k∑
i=1

λi(M) = min
x1,...,xk

{ k∑
i=1

xTi Mxi | ‖xi‖ = 1, xi ⊥ xj , 1 ≤ i, j ≤ k, i 6= j
}
(8)

where the minimum runs over all pairwise orthogonal k-tuples of unit vectors
x1, x2, . . . , xk.

The proofs of the Rayleigh’s principle and the Courant-Fisher theorem
can be found in standard books on matrix theory, e.g. [83]. A short proof
of the Fan’s theorem is given in [106].

If G is a (weighted) graph and L = L(G) its Laplacian matrix then by
(7)

λ2(G) = min {xTLx | ‖x‖ = 1, x ⊥ 1} (9)
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since 1 is an eigenvector of λ1(G). Fiedler [46] used (9) to get a more useful
expression for λ2(G):

λ2(G) = 2n ·min

{ ∑
uv∈E auv(xu − xv)2∑
u∈V

∑
v∈V (xu − xv)2

| x 6= c · 1 for c ∈ R
}

(10)

where V = V (G), E = E(G), and n = |V |. The expression (10) implies a
similar expression for λmax(G)

λmax(G) = 2n ·max

{ ∑
uv∈E auv(xu − xv)2∑
u∈V

∑
v∈V (xu − xv)2

| x 6= c · 1 for c ∈ R
}
. (11)

2 Partition Problems

The common question in the partition problems surveyed in this section is
to find a partition of the vertex set of a graph into two parts S and V \ S
such that the edge cut

δS = {e = uv ∈ E(G) | u ∈ S, v /∈ S}

satisfies some specific extremal property. This property differs for graph
bisection, edge connectivity, isoperimetric property, max-cut problem and
clustering. It ranges from maximizing or minimizing |δS| to optimization of
functions that may depend both on δS and the partition (S, V \S).

It makes sense to introduce another notation which can also be used
instead of δS. If A,B are disjoint subsets of V (G) then we denote by E(A,B)
the set of edges with one end in A and the other end in B. We also write

e(A,B) = w(E(A,B)) =
∑

e∈E(A,B)

w(e)

where w is the edge-weight function of the graph. Clearly, e(A,B) =
|E(A,B)| if G is unweighted.

The common initial point for the considered partition problems is to
represent a partition (S, V \S) by a ±1-vector xS = (xS,i where xS,i = 1 for
i ∈ S and xS,i = −1 for i /∈ S. If w = (wij) is an edge-weight function,
then the weight w(δS) of the cut induced by S can be expressed via the
Laplacian matrix (cf. (2)) as follows.

w(δS) :=
∑

i∈S,j /∈S
wij =

1
4

∑
i,j∈V

wij(xS,i − xS,j)2 =
1
4
xTSL(G)xS . (12)

The last subsection deals with multi-partition problems, which generalize
the bisection problem of Subsection 2.1.
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2.1 Graph bisection

Let G = (V,E) be a graph with an even number of vertices. The bisection
width bw(G) is defined as the minimum number of edges whose deletion
disconnects G into two parts of the same size, i.e.

bw(G) := min{w(δS) | S ⊂ V, |S| = 1
2
|V |} .

The most applications of the graph bisection problem are in the area of VLSI
(see [84]). The problem of determining bw(G) is NP-complete ([53]), and
hence approximative algorithms and bounds on bw(G) come into interest.

The first eigenvalue lower bound on bw(G) was formulated by Donath
and Hoffman in [42]. Their bound has been later improved by Boppana [18]
as follows. Let n be the number of vertices of G, and u = (u1, . . . , un)T a
vector of length n.

Theorem 2.1 ([18]) Let G be a graph of order n. Then

bw(G) ≥ n

4
max
u

min
x
xT (L(G) + diag(u))x (13)

where the maximum is taken over all vectors u ∈ Rn satisfying
∑n
i=1 ui = 0,

and the minimum is over all vectors x ∈ Rn satisfying
∑n
i=1 xi = 0 and

‖x‖ = 1.

Proof. Let (S, V \S), |S| = 1
2n, be a partition which realizes the minimum

bisection width, i.e. w(δS) = bw(G). Let us define a vector y = (yi) by
yi = 1 for i ∈ S, and yi = −1 for i /∈ S. Further, let u be a vector with∑n
i=1 ui = 0 which realizes the maximum on the right-hand side of (13).

Using (12), we get

bw(G) = w(δS) =
1
4
yTL(G)y .

We also have

yTdiag(u)y =
n∑
i=1

uiy
2
i =

n∑
i=1

ui = 0

since y2
i = 1 for every i. Hence

1
4
yT (L(G) + diag(u))y = bw(G).
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Finally, since ‖y‖2 = n and
∑n
i=1 yi = 0, we have

1
4
yT (L(G) + diag(u))y ≥ min

x

n

4
xT (L(G) + diag(u))x

where the minimum is taken over all x ∈ Rn with ‖x‖ = 1 and
∑n
i=1 xi = 0.

This proves the theorem. 2

The main result of [18] is that the lower bound given in the above theorem
provides the actual value of bw(G) with a high probability in a certain
probabilistic model. Let G(n,m, b) be the set of graphs with n vertices, m
edges, and the bisection width bw(G) = b.

Theorem 2.2 ([18]) Suppose that b ≤ 1
2m −

5
2

√
mn log n. Then the lower

bound of Theorem 2.1 is exact for a graph G from G(n,m, b) with probability
at least 1−O( 1

n). 2

An important fact is that the bound of Theorem 2.1 is efficiently com-
putable – see the Appendix A. It relies on the concavity of the function f(u)
given as

f(u) = min
x
xT (L(G) + diag(u))x

where the minimum is over all x with ‖x‖ = 1 and
∑n
i=1 xi = 0.

For computational purposes, it is convenient to express the bound of
Theorem 2.1 as the minimum eigenvalue of a certain matrix. Let Q =
(q1, . . . qn−1) be an n× (n−1) matrix such that the columns qi are mutually
orthogonal unit vectors satisfying 1T qi = 0, i = 1, . . . , n− 1.

Corollary 2.3 ([18]) We have

bw(G) ≥ max
u

n

4
λmin(QT (L(G) + diag(u))Q) (14)

where the maximum runs over all vectors u ∈ Rn with
∑n
i=1 ui = 0. 2

The bound of Theorem 2.1 improves a previous bound of Donath and
Hoffman, which is formulated in the following corollary.

Corollary 2.4 ([42]) We have

bw(G) ≥ max
u

n

4

(
λ1(QT (L(G) + diag(u))Q) + λ2(QT (L(G) + diag(u))Q)

)
where the maximum is taken over all vectors u ∈ Rn such that

∑
ui = 0.
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Proof. The proof easily follows by the application of the Rayleigh quotient
(6) to λ1 and λ2, and using the Fan’s theorem (8). 2

Let us note that the original proof of Corollary 2.4 was based on the
following Hoffman-Wielandt inequality proved in [68]. Let M and N be
symmetric matrices of size n× n. Then

n∑
i=1

λi(M)λn−i+1(N) ≤ tr(MN) ≤
n∑
i=1

λi(M)λi(N) . (15)

Let us remark that the bounds of Corollaries 2.3 and 2.4 coincide when G
is a vertex transitive graph, but there exist instances, e.g. the path of length
3, for which the bound of Boppana is strictly greater than that of Donath-
Hoffman. Computational experiments with the Boppana’s bound are re-
ported in [118]. It appears that the bound provides a very good estimate on
the bisection width also in practice. Some computational experiments with
the Donath-Hoffman bound were done earlier in [42] and [30].

A probabilistic algorithm for the bisection width using randomized round-
ing was developed in [126]. It has been proved that, for r-regular graphs and
every 0 < ε < 1, the algorithm constructs a bisection such the number of
edges in the cut does not exceed bw(G) by more than O

(√
n ln 1

ε

)
. Another

approximation algorithm is presented in [57].

2.2 Connectivity and separation

It was quite early when Fiedler [45] observed that the second smallest Lapla-
cian eigenvalue λ2(G) measures the graph connectivity. He calls λ2(G) the
algebraic connectivity of G. The use of the name is justified by the following
results.

Theorem 2.5 ([45]) Let G be a simple graph of order n different from the
complete graph Kn. Denote by ν(G) and µ(G) its vertex- and edge-connec-
tivity, respectively. Then

(a) λ2(G) ≤ ν(G) ≤ µ(G), and

(b) λ2(G) ≥ 2µ(G)(1− cos(π/n)).

In particular, G is connected if and only if λ2(G) > 0. 2
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The algebraic connectivity has many properties similar to other measures
of connectivity: λ2(G) ≤ λ2(G + e), a vertex deletion can reduce λ2 by at
most 1, λ2(G − v) ≥ λ2(G) − 1, if G is a simple graph, etc. The reader
is referred to a survey [96] for more details. Many additional properties
obtained by M. Fiedler are also surveyed in [47]. Some properties of la2

with respect to connectivity were found independently also by Anderson
and Morley (see [7]).

By the work of Tanner [129] and later by several other authors (cf. [96])
it became clear that λ2 measures the connectivity in the following sense:
How difficult is to split the graph into two large pieces? More precisely,
if λ2(G) is large, then any partition of V (G) into classes X ∪ Y , where X
and Y are both large, has many edges between X and Y . Unfortunately,
the converse is not true. For example, a highly connected graph together
with an isolated vertex will have λ2 equal to 0. The basic “folklore” result
justifying the above statements is the following inequality:

Proposition 2.6 Let G be a (weighted) graph of order n. For a subset
X ⊂ V (G) let w(δX) be the total weight of edges in δX. Then

w(δX) ≥ λ2(G)
|X|(n− |X|)

n
. (16)

Proof. Let x ∈ `2(V ) be given by xv = 1 if v ∈ X, and xv = 0 otherwise.
Then ∑

u∈V

∑
u∈V

(xu − xv)2 = 2|X|(n− |X|)

and ∑
uv∈E

auv(xu − xv)2 =
∑

uv∈δX
auv = w(δX).

By (10) we get the inequality of the proposition. 2

In the same way as above we get from (11):

Proposition 2.7 If G is a (weighted) graph of order n and X ⊂ V (G) a
subset of vertices then

w(δX) ≤ λn(G)
|X|(n− |X|)

n
. (17)

2
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It is an important consequence of (16) and (17) that in a graph which
has all non-trivial Laplace eigenvalues in a small interval (λ2(G) and λn(G)
close to each other), all vertex sets X of the same cardinality have approx-
imately the same number of out-going edges w(δX). In particular, this is
true for random graphs or for random regular graphs (cf. Appendix B).
The consequence of this fact is that many algorithms for problems involving
some kind of separation behave very well for random graphs. In fact, to get
good vertex partition into sets of given size in a graph, one does not need
to be very clever – any partition will do a good job.

Related to the connectivity, but less trivial to establish are separation
properties of graphs. A set C ⊂ V (G) is said to separate vertex sets A,B ⊂
V (G) if

(a) A,B, and C partition V (G) and
(b) no vertex of A is adjacent to a vertex of B.

In applications one is interested in small sets C separating relatively large
sets A and B. Usually we want that |C| = o(n) and |A| = Ω(n), |B| = Ω(n).
The following results show that graphs G with large λ2(G) do not contain
small separators.

Theorem 2.8 Let G be a graph and w : E(G) → R+ an arbitrary non-
negative edge-weighting of G. Denote by λ2 = λ2(Gw) the first non-trivial
Laplace eigenvalue of the corresponding weighted graph Gw, and by ∆ =
∆(Gw) the maximal (weighted) degree of Gw. If C ⊂ V (G) separates vertex
sets A,B then

|C| ≥ 4λ2|A||B|
∆n− λ2|A ∪B|

(18)

and
|C| ≥ 1

2λ2

(
− n(∆− λ2) +

√
n2(∆− λ2)2 + 16λ2

2|A||B|
)
. (19)

Proof. Let x ∈ `2(V (G)) be defined by xv = −1 if v ∈ A, xv = 1 if v ∈ B,
and xv = 0 if v ∈ C. By (10) we have:

λ2 ≤ 2n
e(A,C) + e(B,C)

8|A||B|+ 2|C||A ∪B|
≤ n∆|C|

4|A||B|+ |C||A ∪B|
. (20)

By rearranging (20) we get (18). If we use in (18) the relation |A ∪ B| =
n− |C| we get a quadratic inequality for |C| which yields (19). 2

A slightly weaker version of (18) was obtained by Alon and Milman [6,
Lemma 2.1].
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Of course, using (18) or (19) makes sense only in case when |A∪B| ≥ n/2.
Otherwise we should use in (20) the inequality e(A,C)+e(B,C) ≤ ∆|A∪B|
instead of e(A,C) + e(B,C) ≤ ∆|C| which was used above.

Theorem 2.8 implies that graphs containing small separators separating
two large sets (e.g. graphs of bounded genus) have small λ2. In other
words, when λ2 is large we see that any separator C separating large sets
contains many vertices. For example, random graphs (edge probability 1

2 ,
cf. Appendix B) have λ2 = n

2 − O(
√
n log n) and ∆ = n

2 + O(
√
n log n). If

we want a separator C separating sets of sizes c1n + o(n) and c2n + o(n),
respectively, we get from (19)

|C| ≥ 4n
√
c1c2 + o(n) .

Concerning separation properties related to eigenvalues we also refer to
[114].

2.3 Isoperimetric numbers

In [6] some inequalities of the isoperimetric nature relating λ2 and some other
quantities in graphs are presented. These results have analytic analogues
[61] in the theory of Riemannian manifolds where the role of λ2 is played
by the smallest positive eigenvalue of the Laplacian differential operator on
the Riemannian manifold. Approximately at the same time Buser [24] and
Dodziuk [41] also discovered isoperimetric inequalities involving the Laplace
eigenvalues of graphs.

In [5] expanders and graphs with large λ2 are related. Expanders can be
constructed from graphs which are called c-magnifiers (c ∈ R+). These are
graphs which are highly connected according to the following property. For
every set X of vertices of G with |X| ≤ n

2 , the neighbourhood N(X) of X
contains at least c|X| vertices. In [5] it is shown that a graph G is 2λ2

∆+2λ2
-

magnifier and, conversely, if G is a c-magnifier then λ2(G) ≥ c2

4+2c2
. The first

result is based on Proposition 2.6, while the second one is a discrete version
of the Cheeger’s inequality [25] from the theory of Riemannian manifolds.

A strong improvement over the Alon’s discrete version of the Cheeger’s
inequality was obtained by Mohar [95] in connection with another problem.
The isoperimetric number i(G) of a graph G is equal to

i(G) = min
{ |δX|
|X|

| X ⊂ V, 0 < |X| ≤ |V |
2

}
.
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This graph invariant is NP-hard to compute, and even obtaining any lower
bounds on i(G) seems to be a difficult problem. The following easy derived
bound

i(G) ≥ λ2(G)
2

(21)

is so important that it initiated a great interest in the study of eigenvalues
of graphs. All started with an application of (21) in the construction of
expander graphs (cf. [5, 89, 90, 15, 88]) and this motivated much of the
research surveyed in this paper. (Slightly before the interest in the Laplacian
of graphs was influenced by its use in the analysis of the Laplace differential
operator on Riemannian manifolds, cf. [22, 24, 41]).

The inequality (21) holds also for weighted graphs by the obvious change
in the definition of i(G). It follows easily from Proposition 2.6. It is notably
important that there is also an upper bound on i(G) in terms of λ2(G). One
of the strongest such inequalities is the following [95]:

Theorem 2.9 ([95]) Let G be a simple graph on at least 3 vertices. Then

i(G) ≤
√
λ2(2∆− λ2) (22)

where ∆ is the maximal vertex degree in G, and λ2 = λ2(G). 2

Theorem 2.9 is a discrete version of Cheeger’s inequality [25] relating the
first non-trivial eigenvalue of the Laplace differential operator on a compact
Riemannian manifold to an isoperimetric constant of the manifold. Discrete
versions of the Cheeger’s bound were found by Alon [5] (vertex version as
mentioned above), Dodziuk [41] (for infinite graphs), Varopoulos [130] (also
for the infinite case), Mohar [94, 95], Sinclair and Jerrum [124] (in terms of
Markov chains), Friedland [49]. Cf. also Diaconis and Stroock [39].

There are other definitions of isoperimetric constants of graphs. For
example, define for X ⊆ V (G)

S(X) =
∑
v∈X

deg(v) .

Then one can define the following version of the isoperimetric number:

i′(G) = min
{ |δX|
S(X)

| X ⊂ V, 0 < S(X) ≤ |E(G)|
}
.
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(Note that |E(G)| = 1
2S(V (G)).) Similar eigenvalue bounds as (21) and

(22) can be derived for i′(G):

i′(G) ≥ 1− λmax(P )
2

(23)

where P = [puv] is the transition matrix of the random walk on G, i.e.,
puv = auv/deg(u), and auv is the element of the adjacency matrix of G.
The reader is referred to [94] for details. There is also the corresponding
upper bound of Cheeger’s type, derived for infinite graphs by Mohar [94],
and for finite graphs by Sinclair and Jerrum [124]. Cf. also [39].

A similar isoperimetric quantity as i′(G) was introduced by Friedland
[49] who defines for U ⊂ V (G), U 6= ∅,

ε(U) = min
∅6=V⊆U

|δV |
S(V )

and shows that the smallest eigenvalue λ1(LU ) of the principal submatrix
of L(G) whose rows and columns are indexed by U is bounded by

λ1(LU ) ≥ min
v∈U

deg(v)
2

ε(U)2 . (24)

Friedland [49] also provides several norm estimates for λ1(LU ).
There are vertex oriented isoperimetric inequalities for graphs using

eigenvalues which are appropriate for some other purposes, e.g., [5, 87].
Lovász and Simonovits [87], and Dyer, Frieze and Kannan [43] used the
isoperimetric number in a random polynomial time algorithm for estimat-
ing the volume of a convex body.

2.4 The maximum cut problem

A weighted graph G with an edge-weight function w will be denoted as a
pair (G,w) in this subsection (which differs from our standard notation),
because we need to consider some operations with the weight functions.

The maximum cut problem, or shortly the max-cut problem, is to find
a subset S ⊂ V for which the weight w(δS) :=

∑
e∈δS w(e) is maximum.

Let mc(G,w) denote the value of the maximum cut. An eigenvalue upper
bound

mc(G,w) ≤ n

4
λmaxL(G,w) (25)
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was first studied by Mohar and Poljak in [99]. Later, an optimized eigenvalue
bound has been introduced by Delorme and Poljak in [35]:

mc(G,w) ≤ min
u

n

4
λmax(L(G,w) + diag(u)) =: ϕ(G,w) (26)

where the minimum is taken over all u ∈ Rn such that
∑
ui = 0. The

validity of (26) is based on the following lemma.

Lemma 2.10 We have

mc(G,w) ≤ n

4
λmax(L(G,w) + diag(u)) (27)

for every vector u ∈ Rn satisfying
∑
ui = 0.

Proof. Let S be a subset of V for which w(δS) is maximum. Let us
consider a vector y ∈ Rn defined by yi = 1 for i ∈ S and yi = −1 for i /∈ S.
Observe that y satisfies ‖y‖2 = n, and

∑n
i=1 uiy

2
i = 0 for a vector u ∈ Rn

with
∑n
i=1 ui = 0. By (12) we have:

mc(G,w) = w(δS) =
1
4
yTLy

=
1
4

(yTLy +
n∑
i=1

uiy
2
i )

≤ max
‖x‖2=n

1
4

(xTLx+ xTdiag(u)x)

=
n

4
λmax(L+ diag(u)) .

2

We call u with
∑n
i=1 ui = 0 a correcting vector. Observe that the bound

of (25) corresponds to the choice of correcting vector u = 0. Let ϕ(G,w)
denote the minimum in (26). In fact, the minimum is achieved for a unique
correcting vector u. The optimum correcting vector u has a dual character-
ization by Theorem 2.11.

For a linear subspace E ⊂ Rn, let C(E) denote the convex cone generated
by vectors (x2

1, x
2
2, . . . , x

2
n)T for x = (x1, x2, . . . , xn)T ∈ E .

Theorem 2.11 ([35]) Let E be the eigenspace of the maximum eigenvalue
λmax of L(G) + diag(u) for a correcting vector u. Then u is the optimum
correcting vector if and only if (1, 1, . . . , 1)T ∈ C(E). 2
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The bound ϕ(G,w) has some pleasant properties. It can be computed
in polynomial time with an arbitrarily prescribed precision, and it seems
to provide a good estimate on mc(G,w). Let mc(G) and ϕ(G) denote the
max-cut and the eigenvalue bound for an unweighted graph G. Asymp-
totically, the ratio ϕ(G)/mc(G) tends to 1 for a random graph G, but the
worst case ratio of ϕ(G,w)/mc(G,w) for w ≥ 0 is not known. (It does
not make sense to investigate the ratio with general w, since mc(G,w) may
become zero.) So far the worst known case is the 5-cycle C5, for which
the ratio is ϕ(G)/mc(G) = 25+5

√
5

32 = 1.1306 . . . . It remains open whether
ϕ(G,w)/mc(G,w) ≤ 1.131 for all graphs with non-negative weights. The
conjecture was confirmed for planar graphs in [35], and other classes of
graphs in [36, 37]. We recall here the result for planar graphs. First we need
an auxiliary result about subadditivity of ϕ with respect to amalgamation
which we present without the proof.

Let (G1, w
1) and (G2, w

2) be a pair of weighted graphs on vertex sets
V1 and V2. We define the amalgam (G1 + G2, w) as the weighted graph on
V1 ∪ V2 where

wij =


w1
ij for ij ∈ V1

w2
ij for ij ∈ V2

w1
ij + w2

ij for ij ∈ V1 ∩ V2

0 elsewhere .

Lemma 2.12 ([35]) We have ϕ(G1 + G2, w) ≤ ϕ(G1, w
1) + ϕ(G2, w

2) for
any pair of weighted graphs (G1, w

1) and (G2, w
2). 2

Theorem 2.13 ([35]) Let G = (V,E) be a planar graph with nonnegative
edge weight function w. Then

ϕ(G,w) ≤ 1.131mc(G,w) .

Proof. Let C denote the set of all odd cycles of G. Barahona (see
[9]) proved that the solution of the max-cut problem for a nonnegatively
weighted planar graph is given by the optimum solution of the following
linear program (with variables xe corresponding to edges of G):

max
∑
e∈E wexe , (28)∑

e∈C xe ≤ |C| − 1 , for C ∈ C , (29)
0 ≤ xe ≤ 1 , for e ∈ E . (30)
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Let us consider the dual linear program which reads

min
∑
C∈C(|C| − 1)αC +

∑
e∈E βe , (31)

βe +
∑
{αC | e ∈ C ∈ C} ≥ we for e ∈ E , (32)

α ≥ 0, β ≥ 0 (33)

where αC (C ∈ C) and βe (e ∈ E) are dual variables corresponding to (29)
and (30), respectively. Let α and β be the optimum dual solution. The
dual constraint (32) can be interpreted as telling that the graph (G,w) is a
subgraph of the amalgam of the collection of weighted odd cycles {(C,αC) |
C ∈ C} and edges {(K2, βe) | e ∈ E}. Since the inequality ϕ ≤ 1.131mc
holds for every member of the collection, it is true also for its amalgam
(G,w) by the lemma. This proves the theorem. 2

More detailed discussion about the relations between the linear program-
ming and eigenvalue approach is given in [112]. The max-cut problem is
polynomially solvable for nonnegatively weighted planar graphs by an exact
algorithm [66, 104], and Theorem 2.13 shows that also eigenvalue approach
provides a good estimate.

Another easy consequence of Lemma 2.12 is that

mc(G,w) = ϕ(G,w) (34)

for arbitrary non-negatively weighted graphs, because each such graph can
be built by the amalgamation of single edges, considered as weighted graphs
(e, we). (It is ϕ(K2) = mc(K2) = 1.) Let us call a graph exact when the
equality in (34) holds. It has been proved in [36] that the recognition of exact
weighted graphs is an NP-complete problem. The status of complexity is
open for unweighted exact graphs.

The bound ϕ(G,w) has several properties analogous to mc(G,w). We
present them in the following theorems.

Let S be a subset of vertices of a weighted graph (G,w). The switching
wS of the weight function w is defined as

wSij =
{−wij for ij ∈ δS
wij otherwise.

The operation of switching was studied in a connection with the cut poly-
tope. In particular, it is well known (and easy to check) that mc(G,wS) =
mc(G,w)− w(δS). We show that ϕ has an analogous property.
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Theorem 2.14 ([36]) We have ϕ(G,wS) = ϕ(G,w)− w(δS). 2

The next operation that we consider is vertex splitting. Let p1, . . . , pn
be integers. We define a weighted graph (G̃, w̃) by splitting each vertex i
of G into pi independent vertices vi1, . . . , vipi , and the original weight wij is
equally divided among the new edges pipj between the splitted vertices, i.e.,
w̃is,jt = wij

pipj
for i, j = 1, . . . , n, s = 1, . . . , pi, t = 1, . . . , pj . It is not difficult

to see that mc(G̃, w̃) = mc(G,w) for any splitting.

Theorem 2.15 ([36]) We have ϕ(G̃, w̃) = ϕ(G,w) for any splitting (G̃, w̃)
of (G,w). Moreover, there exists an eigenvector x̃ corresponding to the
optimized maximum eigenvalue of ϕ(G̃, w̃) such that the entries of x̃ coincide
on each splitted vertex. 2

The splitting operation can be used to get an alternative definition of
ϕ(G,w), because for every nonnegatively weighted graph there (asymptoti-
cally) exists a splitting such that the optimum correcting vector for (G̃, w̃)
is u = 0.

We define the contraction of a pair k and ` as follows. Let Gk∼` be
the graph obtained from G by identifying vertices k and `, and summing
the weights on the identified edges. Formally, the vertex set of Gk∼` is
V (G)\{`}, and

wk∼`ij =


wi` + wik for j = k (the identified vertex)
w`j + wkj for i = k (the identified vertex)
wij for i, j /∈ {k, `} .

Theorem 2.16 ([36]) We have ϕ(Gk∼`, wk∼`) ≤ ϕ(G,w) for any contracted
pair k and `. 2

The operations of contraction and switching are useful in practical solv-
ing the max-cut problem by branch and bound technique. The contraction
is used when a pair of nodes should be fixed in the same partition class.
When two nodes i and j are fixed to belong to different classes, we first
switch the weight function, and then consider the contraction of the pair
i and j in the switched graphs. Theorems 2.14 and 2.16 ensure that the
upper bound is nonincreasing in the branching process. Computational ex-
periments with computing the upper bound ϕ(G,w), and exactly solving
the max-cut problem has been done by Poljak and Rendl [113]. A ‘typical’
gap between mc(G,w) and ϕ(G,w) is 4–5%.
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2.5 Clustering

Stimulated by the work of Fiedler [45], Juhász and Mályusz [77] discovered
an application of eigenvalue bounds to a clustering problem. The formula-
tion of this problem is close to the bisection problem, but has a slightly dif-
ferent objective function. Let G be a (weighted) graph and A its (weighted)
adjacency matrix. If c = (S1, S2) is a partition of V (G) into non-empty sets
S1, S2 (called clusters of the partition c), denote by

f(c) =
|S1||S2|
|V (G)|

(d11 − 2d12 + d22)

where
dij =

1
|Si||Sj |

e(Si, Sj) , i, j ∈ {1, 2} .

The task is to find a partition c for which f(c) is maximum.

Theorem 2.17 ([77]) Let G be a (weighted) graph of order n. Let P be the
orthogonal projection parallel to (1, . . . , 1)T , i.e. P = (δij − 1

n) where δij is
the Kronecker δ. Then

f(c) ≤ λmax(PAP )

for any partition c of V (G).

Proof. We reproduce the proof (following [77]) since in [77] the theorem
is proved for unweighted graphs only.

Given a partition c = (S1, S2) of V = V (G), let x ∈ `2(V ) be the vector
with coordinates

xv =


(
|S2|
|S1||V |

) 1
2 if v ∈ S1

−
(
|S1|
|S2||V |

) 1
2 if v ∈ S2 .

Then Px = x and ‖x‖ = 1. Moreover,

(PAPx, x) = (Ax, x) =
∑
u,v∈V

auvxuxv

=
|S2|
|S1||V |

∑
u,v∈S1

auv −
2
|V |

∑
u∈S1,v∈S2

auv +
|S1|
|S2||V |

∑
u,v∈S2

auv

=
|S1||S2|
|V |

(d11 − 2d12 + d22) = f(c) .
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By the Rayleigh’s principle (5) we get the inequality of the theorem. 2

The functional f usually characterizes good clusterings. However, it
is difficult to find an optimal partition. Therefore Juhász and Mályuzs
[77, 75] proposed relaxations F1(c), F2(c), and F3(c) of f(c), which can be
easier optimized. A function ρ ∈ `2(V ) is a weight-function if ρ(v) ≥ 0 for
v ∈ V and

∑
v∈V ρ(v)2 = 1. Then ρ(v) can be viewed as the weight of

the vertex v, and ρ(v)ρ(u) is the weight of the edge vu. For U ⊆ V define
ρ(U) =

∑
u∈U ρ(u), the weight of U . Then we define, for c = (S1, S2):

F1(c) = max
ρ(S1)=ρ(S2)

{ρ(S1)ρ(S2)(d11(ρ)− 2d12(ρ) + d22(ρ))}

where

dij(ρ) =
1

ρ(Si)ρ(Sj)

∑
u∈Si

∑
v∈Sj

ρ(u)ρ(v)auv , i, j ∈ {1, 2}.

It is proved in [77] that f(c) ≤ F1(c) ≤ λmax(PAP ). Further, it is shown
that all optimal partitions for F1 can be obtained by partitioning V (G)
according to the signs of coordinates of eigenvectors of PAP corresponding
to its maximal eigenvalue.

The functional F2(c) is defined as an optimum over two weight-functions,
δ and ρ:

F2(c) = min
δ

max
ρ

{
ρ(S1)ρ(S2)

(
ρ(S1)
ρ(S2)

d11(ρ)− 2d12(ρ) +
ρ(S2)
ρ(S1)

d22(ρ)
)}

where the maximum is over all weight functions ρ such that (δρ)(S1) =
(δρ)(S2) with (δρ)(U) :=

∑
u∈U δ(u)ρ(u). Then ([77])

F1(c) ≥ F2(c) ≥ λ|V |−1(A).

An optimal partition c with respect to F2 can be obtained by the signs
of the coordinates of the second largest eigenvalue λ|V |−1(A) of A.

The functional F3(c) is defined similarly:

F3(c) = min
ρ

{
ρ(S1)ρ(S2)

(
ρ(S1)
ρ(S2)

d11(ρ)− 2d12(ρ) +
ρ(S2)
ρ(S1)

d22(ρ)
)}

.

One can prove ([76]) that

f(c) ≥ F3(c) ≥ λmin(A)
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and that an optimal partition c with respect to F3 can be obtained by
the signs of the coordinates of an eigenvector corresponding to λmin(A).
A behaviour of the clustering based on the above functionals for random
graphs is studied in [76].

A clustering problem (with a fixed number k ≥ 2 of clusters) was also
studied by Bolla [17]. Let v1, . . . , vn be binary random variables taking
values 0 and 1, and let e′1, . . . , e

′
m(m >> n) be a sample for the variables vi.

Then one can form a hypergraph H = (V,E) with vertices V = {v1, . . . , vn}
and hyperedges E = {e1, . . . , em} where ej contains all those vertices for
which the value of the j-th object e′j is equal 1. It is of practical interest
[17] to partition E into k clusters, E = E1 ∪ E2 ∪ . . . ∪ Ek such that the
following criterion function is minimized:

Q =
k∑
i=1

Q(Hi)

where Hi = (Vi, Ei) is the hypergraph corresponding to the i-th cluster Ei
and

Q(Hi) = min
1≤d≤n

{
c · 2n−d +

d∑
j=1

λj(Hi)
}

with c > 0 a constant (its choice depends on the size of the problem), and
λj(Hi) the j-th eigenvalue of an appropriately defined Laplacian matrix
L(H) of the hypergraph Hi as described below. It is shown in [17] that the
eigenvalue sum in Q(Hi) is related to a combinatorial property of Hi. It
measures how distinct the clusters Hi are from each other.

The Laplacian matrix L(H) of a hypergraph H = (V,E) on n vertices
is defined by Bolla [17] as an n× n matrix with its ij-th entry `ij equal to

`ij =


−
∑
e∈E,vi,vj∈e

1
|e| if i 6= j

∑
e∈E,vi∈e

|e|−1
|e| if i = j .

Clearly, |e| denotes the number of vertices incident with the hyperedge e.
Note that if H is a graph then L(H) defined above is equal to 1

2 of the usual
Laplacian matrix of the graph.

2.6 Graph partition

The graph partition problem asks for a partition of the vertex set of a
weighted graph into a fixed number of classes of given sizes, so that the
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number (resp. the weight) of edges between is minimum. Hence, the prob-
lem is a generalization of the bisection problem of section 2.1. The first
eigenvalue bound on this problem is by Donath and Hoffman [42], which we
recall in Theorem 2.21. Further work on the problem include [10, 11, 12, 13],
where also several relaxation to the transportation problem were considered.
We survey here only the recent results of Rendl and Wolkowicz [118] because
they give the tightest eigenvalue bound.

The eigenvalue lower bound on the bisection width has been extended
to a more general graph partition problem by Rendl and Wolkowicz [118].
The problem reads as follows.

Graph Partition Problem

Instance: A graph G = (V,E), integers m1, . . . ,mk such that
∑k
i=1mi =

n = |V |.

Task: Find a partition (S1, . . . , Sk) of V such that |Si| = mi, i = 1, . . . , k,
and the number of edges whose end vertices are in distinct partition
classes is minimum.

Assume that m1, . . . ,mk are fixed, and let (S1, . . . , Sk) be an optimal parti-
tion. Let us denote by Ecut (and Euncut) the set of edges whose endvertices
belong to distinct classes (to the same class) of the partition. Let A denote
the adjacency matrix of G. Let 1j = (1, . . . , 1)T be the all 1’s vector of
length j, and m = (m1, . . . ,mk)T .

Theorem 2.18 ([118]) We have

|Euncut| ≤ min
u

max
x

1
2
tr(XT (A+ diag(u))X)

where the minimum is taken over all vectors u ∈ Rn satisfying
∑n
i=1 ui = 0,

and the maximum is over all n× k matrices X satisfying

(i) X1k = 1n,

(ii) XT1n = m,

(iii) XTX = diag(m).

Proof. Consider the matrix X = (xij) defined by xij = 1 if i ∈ Sj ,
and xij = 0 otherwise. It is straightforward to check that |Euncut| =
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1
2 tr(X

TAX), and X satisfies (i), (ii) and (iii). It is also easy to see that
tr(XTdiag(u)X) = 0 for any vector u = (ui) with

∑n
i=1 ui = 0. 2

The optimization problem formulated in Theorem 2.18 can be efficiently
solved in two special cases, but a general solution is not known. The special
cases are given in Corollaries 2.19 and 2.20. Let Q = (q1, . . . , qn−1) be an
n × (n − 1) matrix whose columns q1, . . . , qn−1 satisfy qTi qj = 0 for i 6= j,
‖qi‖ = 1 and 1Tn qi = 0 for i = 1, . . . , n− 1.

Corollary 2.19 ([118]) Let G be a graph with adjacency matrix A whose
vertices are partitioned into sets of sizes m1, . . . ,mk, respectively, and let Q
be a matrix as described above. Assume that m1 = . . . = mk = n

k . Then
|Euncut| is bounded above by

min
u

max
X

{
1
2
tr(XT (A+ diag(u))X) | X satisfies (i),(ii),(iii)

}

= min
u

n

2k

k−1∑
j=1

λn−j+1(QT (A+ diag(u))Q) +
1
k
|E| (35)

where the minimum runs over all vectors u ∈ Rn with
∑
ui = 0.

Observe that QTAQ is of size (n−1)×(n−1), and hence λn−1, . . . , λn−k+1

are the k − 1 largest eigenvalues of QTAQ. We give the proof only for the
special case of k = 2.

Proof. Assume m1 = m2 = n
2 . Then the conditions on X are equivalent

with X = (x,1n − x) where x = (xi) is a vector satisfying
∑n
i=1 xi =∑n

i=1 x
2
i = n

2 . Set M = A+ diag(u), and 1 = 1n. We have

1
2
tr(XTMX) =

1
2

(xTMx+ (1− x)TM(1− x)) =

xTMx− 1TMx+
1
2
1TM1 =

1
4

(1− 2x)TM(1− 2x) +
1
4
1TM1 .

Observe that

1
4
1TM1 =

1
4
1TA1 +

1
4
1Tdiag(u)1 =

1
2
|E|+ 1

4

n∑
i=1

ui =
1
2
|E|.

Further, y = 1− 2x satisfies yT y = n by the properties of x. Hence

min
X

1
2
tr(XTMX) = min

y

{
1
4
yTMy +

1
2
|E| | yT y = n

}
=
n

4
λ1(M) +

|E|
2
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by the Rayleigh’s principle. 2

The next corollary deals with the case of a 2-partition in possibly nonequal
parts. Let m1 +m2 = n, and denote

C(u) =
1
n
m1m2Q

T (A+ diag(u))Q ,

c(u) =
m1 −m2

n

√
m1m2

n
QT (A+ diag(u))Q ,

c′ = |E|(m2
1 +m2

2)
1

2n2
.

Corollary 2.20 ([118]) Suppose we have a 2-partition of V (G) into sets
of sizes m1 and m2, respectively. Then |Euncut| is bounded above by

min
u

max
X

{
1
2
tr(XT (A+ diag(u))X) | X satisfies (i),(ii),(iii)

}
=

min
u

max
z

{
zTC(u)z + c(u)T z + c′ | z ∈ Rn−1, ‖z‖ = 1

}
where the minimum runs over all vectors u ∈ Rn with

∑
ui = 0. 2

Both Corollaries 2.19 and 2.20 can be viewed as generalizations of the
Boppana’s bound of Corollary 2.3. This can be shown as follows. By Corol-
lary 2.19 (or 2.20) we have (with U = diag(u))

|Euncut| ≤ min
u

n

4
λmax(QT (A+ U)Q) +

|E|
2

,

and hence

|Ecut| = |E| − |Euncut| ≥
|E|
2
− n

4
min
u
λmax(QT (A+ U)Q).

Let d =
∑
di/n = 2|E|/n denote the average vertex degree of G. Then

|E|
2
− n

4
λmax(QT (A+ U)Q) =

n

4
λmin(dIn−1 −QT (A+ U)Q) =

n

4
λmin(QT (dIn −A− U)Q) =

n

4
λmin(QT (D −A+ diag (u′))Q)

where D = diag(d1, . . . , dn) is the diagonal matrix defined by the degrees
of the graph G, and u′i = d − di − ui, i = 1, . . . , n. Observe that

∑
u′i =∑

ui + nd−
∑
di =

∑
ui = 0, and L = D−A is the Laplacian matrix of G.

This proves the equivalence of the bounds.
A bound on the general graph partition problem has already been for-

mulated by Donath and Hoffman in [42].

25



Theorem 2.21 ([42]) Assume that m1 ≥ m2 ≥ . . . ≥ mk. Then

|Ecut| ≥ max
u

1
2

k∑
i=1

miλi(L(G) + diag(u)) (36)

where the maximum runs over all vectors u ∈ Rn with
∑
ui = 0. 2

However, the bound given by this theorem is weaker than that of Theo-
rem 2.18. It should be mentioned that Donath and Hoffman derived another
partition result [42, Theorem 3].

3 Ordering

A number of recent papers use eigenvalues and eigenvectors of matrices as-
sociated to graphs to obtain orderings (labellings) of vertices of a graph
which give rise to acceptable approximations for several optimization prob-
lems on graphs. Applications to cutwidth, bandwidth and the min-p-sum
problem use the Laplacian matrix, its second smallest eigenvalue and the
corresponding eigenvectors. Applications to ranking and scaling use the
Perron-Frobenius eigenvector.

3.1 Bandwidth and min-p-sum problems

A labelling of a (weighted) graph G = (V,E) is a 1-1 mapping ψ : V →
{1, . . . , |V |}. For a real number p, 0 < p < ∞, we define its p-discrepancy
σp(G,ψ) as

σp(G,ψ) :=
( ∑
uv∈E

auv|ψ(u)− ψ(v)|p
)1/p

,

and for p =∞,
σ∞(G,ψ) := max

uv∈E
|ψ(u)− ψ(v)|.

Notice that σ∞(G,ψ) is independent of the edge weights auv. The minimal
value

σp(G) := min
ψ
σp(G,ψ), 0 < p ≤ ∞,

is called the min-p-sum of the graph G. For the case p = ∞, σ∞(G) is
also known as the bandwidth of the graph G. The reader can find more
information about the min-1-sum and the bandwidth in [27, 26]. Let us just
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mention that the bandwidth and the min-1-sum problem are NP-complete
in general [54, 110].

As for the comments in the introduction, good lower bounds on σp(G)
are extremely important and nontrivial to obtain. Let us present a result of
Juvan and Mohar [79].

Theorem 3.1 ([79]) Let G be a graph of order n with at least one edge,
and let

β(G) := sup
w

⌈
n

λ2(Gw)

(
−∆(Gw) +

√
∆2(Gw) + λ2

2(Gw)
)⌉

where the supremum is taken over all non-negative weightings w of the edges
of G, and where λ2(Gw) is the second smallest eigenvalue of the correspond-
ing weighted Laplacian matrix and ∆(Gw) denotes the maximal w-weighted
degree of G. Then

σ∞(G) ≥
{
β(G)− 1 if β(G) ≡ n (mod 2)
β(G) otherwise.

Proof. We will use the separation result of Section 2.2. Fix an arbitrary
weighting function w, and let λi = λi(Gw). Also, choose an optimal labelling
ψ for the bandwidth of G. Define A,B,C ⊂ V (G) as follows:

A := {v ∈ V (G) | ψ(v) ≤ (n− k)/2}

B := {v ∈ V (G) | n− k
2

< ψ(v) ≤ (n+ k)/2}

C := {v ∈ V (G) | ψ(v) > (n+ k)/2}

where 1 ≤ k < n is a number to be determined later. We will assume that
k ≡ n (mod 2). Notice that |A| = |C| = (n− k)/2 and |B| = k. The sum of
the weights of the edges between particular parts A,B,C can be estimated
using Proposition 2.6 as follows:

e(A,B ∪ C) ≥ λ2
|A| |B ∪ C|

n
(37)

e(A ∪B,C) ≥ λ2
|C| |A ∪B|

n
(38)

e(B,A ∪ C) ≤ ∆|B| . (39)

Since

2e(A,C) = e(A,B ∪ C) + e(A ∪B,C)− e(B,A ∪ C) (40)
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we get from (37)–(39) that

2e(A,C) ≥ λ2

2n
(n2 − k2)−∆k . (41)

It follows that e(A,C) > 0 if k < n
λ2

(−∆ +
√

∆2 + λ2
2) which implies that

there is at least one edge between A and C. Consequently, σ∞(G) ≥ k + 1
where

k :=
⌈
n

λ2

(
−∆ +

√
∆2 + λ2

2

)⌉
− ε

and ε = 1 or 2 (chosen so that k ≡ n (mod 2)). 2

Notice that if λ2 is small compared to ∆, the lower bound of Theorem
3.1 behaves like λ2n/(2∆) and for λ2 = ∆(1 − o(1)) it behaves like (

√
2 −

1)n(1− o(1)). If we replace the inequality (39) with

e(B,A ∪ C) ≤ λn
k(n− k)

n
(42)

(cf. Proposition 2.7) we get another lower bound [79] on the bandwidth:

σ∞(G) ≥
{
β′(G)− 1 if β′(G) ≡ n (mod 2)
β′(G) otherwise

(43)

where β′(G) is defined as

β′(G) := sup
w

⌈
λ2(Gw)

2λn(Gw)− λ2(Gw)
n

⌉
. (44)

The supremum is again over all non-negative edge weighting functions w.
It is easy to see that the supremum in the definitions of β(G) and β′(G) is
always attained. Unfortunately, unlike some other similar optimizations (cf.
Sections 2 and 4) we do not know of an efficient algorithm for computing
β(G) or β′(G).

Further improvements are possible. The first possibility is to use in
(37) and (38) improved bounds on partitions as outlined in Sections 2.1
and 2.2. Another approach has the following background. It may happen
that λ2(Gw) = 0 for every weighting w and therefore also β′(G) = 0 (and
β(G) = 0 with the proper interpretation). Of course, this will happen if
and only if G is disconnected. Well, if one of the components of G is large,
the others very small, the bandwidth will depend on the large component.

28



One may assume that in such a case we reduce the bandwidth problem to
the connected components. However, the same will happen if there is a
small part of the graph which is “loosely” connected to the rest. Possible
improvements will be to add (weighted) edges to the graph in order to get
rid of such such anomalies. The proof of Theorem 3.1 will go through with
the same arguments. The only difference will be to replace the condition
e(A,C) > 0 with

e(A,C) > w+ :=
∑

uv/∈E(G)

w(uv) . (45)

In this case we get the bound:

σ∞(G) ≥
⌈
n

λ2

(
−∆w +

√
∆2
w + λ2(λ2 − 2w+/n)

)⌉
− 1

where λ2 = λ2(Gw) and ∆w = ∆(Gw) is the maximal (weighted) degree of
Gw. There is a similar bound along the lines of (43) and (44).

There is another possibility of optimization. One may try to find a
subgraph G′ of G for which any of the previous bounds will be better than for
G. It is obvious by the Courant-Fisher principle that λmax(G′) ≤ λmax(G)
but it may happen that λ2(G′) > λ2(G) if G contains fewer vertices than G.

In [78] also bounds on σ1(G) and σ2(G), the most useful among the
parameters σp(G), 0 < p <∞, are obtained.

Theorem 3.2 ([78]) Let G be a (weighted) graph of order n and let d(G)
denote the average (weighted) degree of G. Then

(a) λ2(G)
n2 − 1

6
≤ σ1(G) ≤ d(G)

n(n+ 1)
6

,

(b) λ2(G)
n(n2 − 1)

12
≤ σ2(G)2 ≤ d(G)

n2(n+ 1)
12

.

2

Juvan and Mohar [78] suggested to use eigenvectors corresponding to
λ2(G) to determine an approximation to an optimal labelling for any of the
problems of calculating σp(G), 0 < p ≤ ∞. Their calculations on several
classes of graphs show fairly successful behaviour. A labelling corresponding
to a vector x ∈ `2(V (G)) is determined by the increase of components xv, v ∈

29



V (G), of x. The vertex v with the smallest value xv will be labelled 1, the
second smallest 2, etc. The heuristic argument behind this algorithm is
that eigenvectors of λ2(G) minimize the sum

∑
uv∈E(xu − xv)2 (under the

constraint xt1 = 0, ‖x‖ = 1 which guarantee that x is not a “multiple of
1”), and σ2(G) minimizes

∑
uv∈E(ψ(u)− ψ(v))2.

3.2 Cutwidth

The cutwidth c(G) of a (weighted) graph G of order n is defined as the
minimum of c(G,ψ) over all labellings ψ of G where

c(G,ψ) = max
1≤i<n

e(ψ−1({1, 2, . . . , i}), ψ−1({i+ 1, . . . , n)}).

In other words, we want a labelling ψ where the maximal number (sum
of the weights) of edges between vertices with ψ(v) ≤ i and vertices with
ψ(u) > i (1 ≤ i < n), is as small as possible. It is known that the cutwidth
computation is NP-hard [53]. The following simple result is outlined in [78]:

Theorem 3.3 ([78]) Let G be a graph of order n and ψ a labelling of G.
Then

λ2(G)
bn2 cd

n
2 e

n
≤ c(G,ψ) ≤ λn(G)

bn2 cd
n
2 e

n
.

Consequently,

λ2(G)
bn2 cd

n
2 e

n
≤ c(G) ≤ λn(G)

bn2 cd
n
2 e

n
.

2

3.3 Ranking

An idea of using eigenvalues and eigenvectors for the tournament ranking
problem appears in the book of Berge [14]. Let G = (V, F ) be a partial
tournament, i.e., a directed graph such that ij ∈ F implies that ji 6∈ F .
The existence of an arc ij means that the player i has beaten the player
j. One can rank the players in a partial tournament using the outdegrees
(number of wins). But it may happen that “while one player has beaten a
large number of very weak players, another player has beaten only a few very
strong players.” To discover such “anomalies” one can use quite successfully
the following ranking procedure based on the power indices as defined below.
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Let pji (k) denote the number of walks of length k from the vertex i to j,
and let

pj(k) = pj1(k) + · · · + pjn(k)

where n = |V | as usual. The power index of the j-th player is defined as

πj = lim
k→∞

pj(k)
p1(k) + · · ·+ pn(k)

.

Theorem 3.4 The power indices of players in a partial tournament are
given by the positive eigenvector of the adjacency matrix of the tournament
normalized in the `1-norm.

Proof. It is well-known that the entries of the k-th power of the adjacency
matrix A determine the number of walks of length k, i.e. Ak = [pji (k)]i,j∈V .
Therefore pj(k) = ejA

k1 where ej is the vector with j-th coordinate equal
to 1, all others equal to 0. By the Perron-Frobenius theorem, A has a
positive eigenvector, and its eigenvalue has the largest modulus among the
eigenvalues of A. Moreover, by the power method, Ak1/‖Ak1‖ converges to
the Perron-Frobenius eigenvector. Therefore also a different normalization
Ak1/1Ak1, which approaches the vector of power indices, converges to a
multiple of the normalized Perron-Frobenius eigenvector. 2

Applications in geography. Similar idea appeared also in the geographic
literature, where it was used to compare accessibility of nodes in a trans-
portation network. The accessibility of a node i is expressed by its index
(called Gould index) πi defined by

πi =
xi
‖x‖

where x is the eigenvector of λmax(A(G)) and G is an undirected graph
representing the network. The references to applications can be found in
the survey paper [127].

3.4 Scaling

A method of scaling based on the maximum eigenvector has been proposed
by T. L. Saaty in [121]. A matrix A = (aij) is positive and reciprocal if
aij = a−1

ji > 0 for i, j = 1, . . . , n. The goal is to find a positive vector
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w = (w1, . . . , wn), called a scaling, so that the entries aij of A are, in some
sense, well approximated by the ratios wi

wj
. This will be denoted as aij ≈ wi

wj
.

In practical applications, the matrix A may be obtained as a matrix of
pairwise comparisons, and the entries aij are obtained by consulting a board
of experts. As a heuristical method of scaling, T. L. Saaty proposed to take
the eigenvectors corresponding to the maximum eigenvalue λmax(A). By the
Perron-Frobenius theorem, this eigenvector is unique, and all its entries are
positive. T. L. Saaty has shown the following properties of w.

Theorem 3.5 ([121]) Let A be a positive reciprocal matrix of size n×n and
w its Perron-Frobenius eigenvector. Then the following holds:

(i) λmax(A) ≥ n,

(ii) λmax(A) = n if and only if aijajk = aik for all i, j, k = 1, . . . , n (i.e., A
is already scaled).

(iii) If a1j ≤ a2j ≤ . . . ≤ anj for all j, then w1 ≤ w2 ≤ . . . ≤ wn.

Proof. (i) Since λmax is the eigenvalue with the eigenvector w, we have

n∑
j=1

aijwj = λmaxwi, i = 1, . . . , n,

which gives
n∑
i=1

n∑
j=1

aijwjw
−1
i = nλmax .

Applying the inequality x+ 1/x ≥ 2 with x = aijwjw
−1
i , we get x+ 1/x =

aijwjw
−1
i + ajiwiw

−1
j ≥ 2, which together with aii = 1 gives

nλmax =
n∑

i,j=1

aijwjw
−1
i

=
n∑
i=1

aii +
∑

1≤i<j≤n
(aijwjw−1

i + ajiwiw
−1
j ) ≥ n+ 2

(
n

2

)
= n2 .

Hence λmax ≥ n.
(ii) It follows from the above inequality that λmax = n if and only if

x + 1/x = aijwjw
−1
i + ajiwiw

−1
j = 2, for all pairs i, j. This holds only if
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aijwjw
−1
i = 1 for all i, j = 1, . . . , n, and this is equivalent to the condition

in (ii).
(iii) Fix i < j. Since wk > 0, and aik ≤ ajk for k = 1, . . . , n, we have

λmaxwi =
n∑
k=1

aikwk ≤
n∑
k=1

ajkwk = λmaxwj .

Hence wi ≤ wj . 2

Parts (i) and (ii) of Theorem 3.5 indicate that the difference between
λmax and n depends on how far the matrix A is from a scaled matrix. In
fact, Saaty [121] has shown that the value of (λmax−n)/(n−1) corresponds
to the variance of εij = aijwjw

−1
i .

3.5 The quadratic assignment problem

The quadratic assignment problem is one of the most interesting combi-
natorial optimization problems, with many applications in the layout the-
ory. Several other known hard combinatorial optimization problems, like
the travelling salesman, the bisection width, or the min-1-sum problem are
special cases of the quadratic assignment problem. (The bisection width and
the min-1-sum problem are considered in Sections 2.1 and 3.1, respectively.)
The problem reads as follows.

Quadratic Assignment Problem

Instance: Matrices A, B and C of size n× n.

Task: Find a permutation π of {1, 2, . . . , n} which minimizes
n∑
i=1

ciπ(i) +
n∑
i=1

n∑
j=1

aijbπ(i)π(j) . (46)

The crucial application of the eigenvalue approach is estimating the
quadratic term in (46). The following theorem, concerning the symmetric
case, is due to Finke, Burkard, and Rendl [48].

Theorem 3.6 ([48]) Let A and B be symmetric n×n matrices with eigen-
values λ1 ≤ . . . ≤ λn and µ1 ≤ . . . ≤ µn, respectively. Then

min
π

n∑
i=1

n∑
j=1

aijbπ(i)π(j) ≥
n∑
i=1

λiµn−i+1 (47)
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where the minimum is taken over all permutations π of {1, 2, . . . , n}.

Proof. Let π be the permutation which realizes the minimum in (47), and
let X be the permutation matrix corresponding to π. Since B and XBXT

are similar, the eigenvalues of XBXT are also µ1 ≤ . . . ≤ µn. We have
n∑
i=1

n∑
j=1

aijbπ(i)π(j) = tr(AXBXT )

and using the Hoffman-Wielandt inequality (15) we finally get:

tr(A(XBXT )) ≥
n∑
i=1

λiµn−i+1 .

2

Further results and generalizations to non-symmetric case appear in [63,
64, 117]. A survey of applications of the quadratic assignment problem is in
[23].

4 Stable sets and coloring

In this section we survey eigenvalue bounds on the chromatic number χ(G)
and the size of a maximum stable set α(G). The lower bound on χ(G) (due
to A. Hoffman [67]), and the upper bound on χ(G) (due to H. Wilf [132]) are
probably the earliest applications of spectral bounds to a graph optimization
problem. On the other hand, theoretically most important is the Lovász’s
bound ϑ(G) on the maximum stable set size.

We recall that the chromatic number χ(G) is the minimum number of
colors needed to color the vertices of G so that no two adjacent vertices have
the same color. A set S is called stable or independent if no two vertices of S
are adjacent. The maximum size of a stable set is denoted by α(G). We let
G denote the complement of G. The coloring and the stable set problems
make sense only for simple graphs. Therefore all graphs in this section are
assumed to be simple.

4.1 Chromatic number

The first eigenvalue bounds on the chromatic number are due to H. Wilf
[132] and A. Hoffman [67] who formulated an upper and a lower bound,
respectively.
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Theorem 4.1 ([132, 67]) Let A = A(G) be the adjacency matrix of a simple
graph G. Then

1 +
λmax(A)
|λmin(A)|

≤ χ(G) ≤ 1 + λmax(A) . (48)

Proof. (See [133].) Let Gcrit be a maximal color-critical subgraph of G (i.e.
a subgraph of G with the same chromatic number and such that deleting any
edge decreases the chromatic number). Let d denote the minimum degree
of Gcrit. We have

χ(G)− 1 ≤ d ≤ λmax(A(Gcrit)) ≤ λmax(A(G)) .

A short proof of the lower bound, based on the interlacing property of
eigenvalues, can be found in [55] or [86]. 2

Let us remark that the upper bound can be realized by an efficient
algorithm, i.e., one can color any graph G by 1 + λmax(A(G)) colors in
polynomial time. (This question was raised in [8].) The algorithm follows
from an easy lemma (see, e.g., [34]).

Lemma 4.2 The average degree d of G is less or equal to λmax(A(G)). 2

Let v1 be a vertex of G whose degree is at most the average degree d.
Clearly, such a vertex can easily be found. By the interlacing property of
eigenvalues, λmax(A(G− v1)) ≤ λmax(A(G)). Assume that G− v1 is already
colored with at most k = b1 + λmax(A(G))c colors. Since the degree of v1 is
at most k − 1, the coloring can be extended to G. This gives a polynomial
time algorithm.

The following two theorems are due to Cvetković [32] and Hoffman [67].

Theorem 4.3 ([32, 34]) Let G be a simple graph of order n. Then

χ(G) ≥ n

n− λmax(A(G))
.

Theorem 4.4 ([67]) Let G be a simple graph of order n distinct from the
complete graph Kn, and let G denote the complement of G. Then

χ(G) ≥ n+ λn−1(A(G))− λn(A(G))
1 + λn−1(A(G))

.
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Eigenvectors can also be used to obtain a coloring of a graph. In fact,
bipartite graphs are fully characterized by the following theorem.

Theorem 4.5 ([34], Theorems 3.4 and 3.11) A graph G is bipartite if and
only if

λmin(A(G)) = −λmax(A(G)) .

2

The bipartition of a bipartite graph G is given by the sign-pattern of
an eigenvector corresponding to λmin(A(G)). The idea has been extended
by Apswall and Gilbert [8] to obtain a heuristic graph coloring algorithm
using the following result as the basis of the heuristic. Let x1, . . . , xr be a
collection of vectors from Rn. The vectors x` = (x1`, . . . , xn`), ` = 1, . . . , r,
determine a partition (i.e. coloring) of {1, . . . , n} as follows. Let i and j
belong to the same partition class if and only if either xi` ≥ 0 and xj` ≥ 0
for ` = 1, . . . , r, or xi` < 0 and xj` < 0 for ` = 1, . . . , r. In other words, the
partition classes are given by the sign-patterns of the collection (where the
zero entries are considered as positive).

Theorem 4.6 ([8]) Let x1, . . . , xn be pairwise orthogonal eigenvectors of
λ1(A(G)), . . . , λn(A(G)), respectively. Then, for every pair i and j of adja-
cent vertices, there exits an eigenvector x` for which xi` and xj` have distinct
signs.

In some cases, the minimum coloring can be obtained via sign-pattern of
a collection of vectors. An explicit class of graphs is given in Theorem 4.7.
A graph G = (V,E) is called block regular k-partite, if (i) G is a k-partite
graph with partition V = V1 ∪ . . . ∪ Vk, and (ii) for every i, j, i 6= j, the
number of edges from a vertex u ∈ Vi to Vj depends only on i and j.

Theorem 4.7 ([8]) Let G be a block regular k-partite graph. Then there
exists a set of at most k−1 eigenvectors whose sign-pattern induces a proper
k-coloring of G. 2

For ideas of the similar flavor we also refer to [115, 116].

4.2 Lower bounds on stable sets

H. S. Wilf [134] derived a spectral bound on the size of the maximum stable
set using an earlier result of Motzkin and Straus [101].
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Theorem 4.8 ([134]) Let G be a simple graph. Then

α(G) ≥ s2

s2 − λmax(A(G))

where s is the sum of entries of the normalized eigenvector corresponding to
λmax(A(G)).

Proof. Let G = (V,E) be a graph with vertex set V = {1, . . . , n}. We
need a result of Motzkin and Straus [101], who proved that α(G) can be
expressed as an optimum of a quadratic program as follows:

max

∑
ij /∈E

xixj |
n∑
i=1

xi = 1, x ≥ 0

 = 1− 1
α(G)

.

Let u = (ui) ≥ 0 be the normalized eigenvector corresponding to the eigen-
value λmax(A(G)), and let s :=

∑n
i=1 ui. Then y = ui/s satisfies y ≥ 0 and∑n

i=1 yi = 1, and hence

1− 1
α(G)

≥
∑
ij /∈E

yiyj = yTA(G)y = λmax(A(G))‖y‖2 =
1
s2
λmax(A(G)).

2

Corollary 4.9 ([134]) For a simple graph G we have

α(G) ≥ n

n− λmax(A(G))
.

Proof. It follows from the fact that s2 ≤ n. 2

Corollary 4.9 generalizes the bound of Cvetković given in Theorem 4.3,
since

χ(G) ≥ α(G) ≥ n

n− λmax(A(G))
.

In fact, H. S. Wilf derived a hierarchy of spectral bounds. One of them
is given in the next theorem.

Theorem 4.10 ([134]) Let G be a d-regular graph on n vertices. Then

α(G) ≥ n

d+ 1 + (λmin(A(G)) + 1) max(M2
+,M

2
−)/n

where M+ = minui>0
1
ui
, M− = minui<0

1
|ui| , and u is the normalized eigen-

vector of the second largest eigenvalue of A(G). 2
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4.3 Upper bounds on stable sets

L. Lovász introduced an eigenvalue bound ϑ(G) on α(G) in the connection
with his solution of the problem of Shannon capacity of the 5-cycle, see [85].
Given a graph G = (V,E), the number ϑ(G) is defined by

ϑ(G) := min
A∈A

λmax(A) (49)

where A is the class of real n × n matrices A = (aij), where n = |V |,
satisfying

aij =

{
1 for ij /∈ E, or i = j,

arbitrary otherwise.
(50)

Theorem 4.11 ([85]) For every graph G, we have α(G) ≤ ϑ(G).

Proof. Let k = α(G) and let S be a stable set of size k = α(G). Assume
that A ∈ A is a matrix for which λmax(A) = ϑ(G). (It is easy to see that
the minimum in (49) is attained.) Define a vector y = (yi), ‖y‖ = 1, by

yi =

{
k−1/2 for i ∈ S

0 otherwise.
(51)

Then
α(G) = k = yTAy ≤ max

‖x‖=1
xTAx = λmax(A) = ϑ(G) .

2

Important is the dual characterization of ϑ(G).

Theorem 4.12 ([85]) Let B denote the class of positive semidefinite sym-
metric matrices B = (bij) satisfying

∑n
i=1 bii = 1 and bij = 0 for i and j

adjacent. Then
ϑ(G) = max

B∈B

∑
i,j

Bi,j .

2

Lovász gives also several other equivalent definitions of ϑ(G).

Theorem 4.13 ([85]) We have

ϑ(G) = max
B∈B

(
1− λmax(B)

λmin(B)

)
where B ∈ B if and only if bij = 0 for ij ∈ E and for i = j, and bij is
arbitrary otherwise. 2
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Lovász also proves that χ(G) ≥ ϑ(G), and hence Theorem 4.13 yields
the Hoffman’s lower bound on χ(G) presented in Theorem 4.1.

The number ϑ(G) is probably the best known efficiently computable
estimate of α(G). Moreover, α(G) = ϑ(G) for perfect graphs. However,
there is a big gap between the performance of α(G) and ϑ(G) on random
graphs. It is well known that α(G) ≈ 2 lnn. On the other hand, Juhász [73]
determined ϑ(G) for random graphs.

Theorem 4.14 ([73]) Let G be a random graph with edge probability p =
1/2. Then, with probability 1− o(1) for n→∞,

1
2
√
n+O(n1/3 log n) ≤ ϑ(G) ≤ 2

√
n+O(n1/3 log n) .

2

4.4 k-colorable subgraphs

Narasimhan and Manber [102] recently extended the eigenvalue bound ϑ(G)
to obtain a bound on the maximum size of a k-colorable subgraph.

Given a graph G = (V,E), let αk(G) denote the maximum size of a
k-colorable subgraph of G, i.e.

αk(G) = max{|S1 ∪ . . . ∪ Sk| : Si is stable, i = 1, . . . , k} .

Let A be the class of matrices defined by (50). Let

ϑk(G) := min

{
k∑
i=1

λn−i+1(A) | A ∈ A
}

i.e., ϑk(G) is the sum of the k largest eigenvalues of A ∈ A, where A is chosen
so that the sum in minimized. The bound ϑk(G) improves the obvious bound
αk(G) ≤ kϑ(G).

Theorem 4.15 ([102]) We have αk(G) ≤ ϑk(G) for every graph G.

Proof. The proof is quite analogous to that of Theorem 4.11. Let S1 ∪
. . .∪Sk be the maximum k-colorable subgraph with St stable sets. For every
t = 1, . . . , k, let y(t) be the vector defined by (51) for St. We may assume
that St are pairwise disjoint. Then the vectors y(t) are pairwise orthogonal.
The result follows by using the Fan’s Theorem [44] (cf. (8)). 2

Corollary 4.16 If ϑk(G) < |V (G)| then χ(G) > k.
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5 Routing problems

In this section we will mention a number of results relating eigenvalues of
graphs (in particular λ2(G)) to metric (distance) parameters and walks in
graphs. A great variety of such results have been discovered recently. For
example, eigenvalues are related to the diameter, mean distance, forwarding
indices, routings, several properties of random walks on graphs, etc. We do
not intend to be complete, so some parts will be covered with not too many
details.

5.1 Diameter and the mean distance

There is a great interest in obtaining good upper bounds on the diameter
of graphs. The diameter can be efficiently computed but in practice graphs
with several hundreds of thousands of vertices are dealt with and eigenvalue
bounds, which can sometimes be estimated “by construction” (analytically),
come into play.

There is a lower bound

diam(G) ≥ 4
nλ2(G)

(52)

which was obtained by Brendan McKay (private communication, cf. [97] for
a proof). More important is that there are upper bounds on the diameter
of a graph G in terms of λ2(G) [97]:

diam(G) ≤ 2
⌈√

λn(G)
λ2(G)

√
α2 − 1

4α
+ 1

⌉
d logα

n

2
e (53)

where α is any real number which is > 1. For any particular choice of n, λn,
and λ2 one can find the value of α which imposes the lowest upper bound
on the diameter of the graph. See [97] for details. A good general choice is
α = 7.

In [97] another upper bound on the diameter of a graph is obtained

diam(G) ≤ 2
⌈

∆ + λ2(G)
4λ2(G)

ln(n− 1)
⌉
. (54)

This improves a bound obtained previously by Alon and Milman [6], and
usually also supersedes the bound obtained by F. Chung [28]. Another very
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nice improvement was obtained by Chung, Faber, and Manteuffel [29]:

diam(G) ≤
⌈

cosh−1(n− 1)
cosh−1 ((λn + λ2)/(λn − λ2))

⌉
+ 1 . (55)

where λ2 = λ2(G) and λn = λn(G).
A relation between the diameter and the spectral properties is also ob-

served in [39]. Another diameter bound was obtained by Nilli [103]. If G
contains two edges whose endvertices are at distance at least κ in G then

λ2(G) ≤ ∆−
√

∆− 1 +
4
√

∆− 1− 2
κ

(56)

where ∆ is the maximal vertex degree in the graph G. This bound holds
also for weighted graphs, which is not the case with other bounds men-
tioned above. On the other hand, (56) makes sense only for the so-called
Ramanujan graphs [89, 90] where λ2(G) ≥ ∆−

√
∆− 1.

In [97], some bounds on the mean distance ρ̄(G) are derived. Recall that
the mean distance is equal to the average of all distances between distinct
vertices of the graph. A lower bound is

(n− 1)ρ̄(G) ≥ 2
λ2(G)

+
n− 2

2

and an upper bound, similar to (54), is

ρ̄(G) ≤ n

n− 1

⌈
∆ + λ2(G)

4λ2(G)
ln(n− 1)

⌉
.

There is also an upper bound on ρ̄(G) related to the inequality (53). Cf. [97].
There is an interesting formula for the mean distance of a tree (due to

B. D. McKay). See [92] or [97] for a proof.

Theorem 5.1 Let T be a tree of order n and λ2, λ3, . . . , λn the non-zero
Laplacian eigenvalues of T . Then the mean distance ρ̄(T ) is equal to:

(n− 1)ρ̄(T ) = 2
n∑
i=2

1
λi
.

Some related results can also be found in [93].
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5.2 Routings

Eigenvalues of graphs can also be used in relation to several problems which
involve a system of shortest paths between vertices of a graph. Roughly
speaking, one is interested in a set of shortest paths between all pairs of dis-
tinct vertices, P = {Puv | u, v ∈ V (G), u 6= v, Puv is a geodesic path}. Such
a system of paths is called a routing on G. The goal is to find a routing
which minimizes the maximal number of occurrences of any edge in the rout-
ing. There is also a vertex version of the problem. The obtained minimum
is called the forwarding index (respectively, the vertex forwarding index) of
the graph. There are some simple inequalities that relate the forwarding pa-
rameters with expanding properties of graphs, and these relations give rise
to eigenvalue applications in these problems. We refer to [125] for details.

5.3 Random walks

It has been known for a long time that the properties of a random walk
on a graph G and the spectral properties of its transition matrix P (G)
are closely related (see, e.g., [82]). Let us recall that the entries puv of
the transition matrix are defined by puv = auv/deg(u), where auv is the
element of the (weighted) adjacency matrix of G. We will only refer to some
recent papers in this area. There is a close relationship between the random
walk properties and combinatorial optimization, for example in the area of
randomized algorithms. See, e.g., [87].

The cover time of a graph G is the maximum over all vertices v ∈ V (G)
of the expected time required in a random walk starting at v to visit all
vertices of G. Results related to the cover time of graphs appear in [3, 20,
38, 39, 80, 109, 119]. A closely related notion is the hitting time of the
random walk [2, 19, 107, 109].

The mixing rate of a random walk is a measure which measures how
fast we approach the stationary distribution by starting the random walk
at an arbitrary vertex. Related works are [1, 87, 124]. A random walk
is rapidly mixing if it approaches stationary distribution “very fast” (in
the logarithmic number of steps). For a random walk on a graph G this
notion is closely related to λ2(G). Jerrum and Sinclair [70] obtained a fully
polynomial approximation scheme for the permanent evaluation (and thus
for counting the number of perfect matchings in graphs) by using the rapid
mixing property.

Some other related results appeared in [4, 39, 107, 108, 128, 130].

42



6 Embedding problems

The eigenvalue approach is also useful in the study of embedding problems,
where it is used to guarantee existence or nonexistence of certain graph
embeddings. We include this topic in our survey, because determining the
minimum dimension of an embedding has a flavour of an optimization prob-
lem. Moreover, the proofs rely on a different property of eigenvalues – on
the Sylvester’s law of inertia of symmetric quadratic forms.

Let G be a graph. The distance distG(u, v) of two vertices u and v is the
length of a shortest path between u and v. The distance matrix D = D(G)
is the matrix of pairwise distances between the vertices of G.

A mapping f : V (G)→ V (H) is called an isometric embedding of a graph
G into a graph H if distH(f(u), f(v)) = distG(u, v) for every pair u, v ∈
V (G). A recent survey of results on isometric graph embedding problems
can be found in [59]. We recall only two results, namely isometric embedding
of graphs in cubes and squashed cubes, where eigenvalue technique was
applied.

The squashed cube Q∗r is the graph with vertex set {0, 1, ∗}r, and the
edge set formed by the pairs (u1, . . . , ur) and (v1, . . . , vr) such that there is
exactly one coordinate i for which {ui, vi} = {0, 1}. P. Winkler [135] proved
that every connected graph G can be isometrically embedded in a squashed
cube Q∗r of dimension r ≤ |V (G)| − 1. A lower bound on the minimum r
was known earlier, and the result is reported to Witsenhausen (see [60]).

Theorem 6.1 Assume that a graph G can be isometrically embedded in the
squashed cube Q∗r. Then

r ≥ max(n+, n−)

where n+ and n− denote the number of positive and negative eigenvalues of
the distance matrix D(G) of G.

Proof. Let dij denote the distance distG(i, j). We will consider the
quadratic form

1
2
xTD(G)x =

∑
i<j

dijxixj (57)

in variables x = (x1, . . . , xn)T , n = |V (G)|.
Let f : V (G) → {0, 1, ∗}r be an isometric embedding of G in the

squashed cube Q∗r . For every k = 1, . . . , r, let

Xk = {i | f(i)k = 0} and Yk = {i | f(i)k = 1} .
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The sets Xk, Yk, k = 1, . . . , r, are used to express the quadratic form (57) as

∑
i<j

dijxixj =
r∑

k=1

(∑
i∈Xk

xi

)(∑
j∈Yk

xj

)
. (58)

Using the identity ab = 1
4((a+ b)2− (a− b)2), this form can be written as a

sum and difference of squares

∑
i<j

dijxixj =
1
4

r∑
k=1

{(∑
i∈Xk

xi +
∑
j∈Yk

xj

)2

−
(∑
i∈Xk

xi −
∑
j∈Yk

xj

)2}
. (59)

By the Sylvester’s law of inertia, the number of positive and negative squares
must be at least n+ and n−, respectively. 2

The hypercube Qr is the graph with vertex set {0, 1}r, and two vertices
(u1, . . . , ur) and (v1, . . . , vr) form an edge if

∑r
i=1 |ui − vi| = 1. The graphs

G isometrically embeddable into a hypercube have been first characterized
by Djoković [40]. From our point of view, the following characterization is
interesting.

Theorem 6.2 ([120]) A graph G is isometrically embeddable in a hypercube
Qr if and only if G is bipartite and the distance matrix D(G) has exactly
one positive eigenvalue.

The dimension of the minimum embedding was determined by Graham
and Pollack [60] as the number of negative eigenvalues of D(G).

Theorem 6.3 ([60]) Let a graph G be isometrically embeddable a hypercube
Qr. Then the minimum r (the dimension of the embedding) is equal to the
number of negative eigenvalues of the distance matrix D(G). 2

A Appendix: Computational aspects

In this Appendix we briefly discuss several ingredients of the computation
and complexity of the problems arising by evaluating the eigenvalue bounds.
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Complexity

The most commonly used model of complexity in the combinatorial opti-
mization is the model based on the time complexity. From this point of view,
problems are classified as ‘easy’ or ‘difficult’ depending on whether they are
polynomial time solvable or NP-hard. A problem is said to be polynomial
time solvable, if it admits a solution by an algorithm whose running time is
bounded by a polynomial in the size of the input, measured by the length of
the binary encoding. The opposite pole form the NP-hard problems, which
are at least as difficult as the most difficult problems in the class NP (the
class of nondeterministically polynomial problems). The formal definition
of the complexity classes can be found in the book [53]. It is widely believed
that the NP-complete problems cannot be solved in polynomial time, and
the P=NP problem is definitely the most important open problem of the
theoretical computer science.

There are only a few combinatorial optimization problems (like the graph
isomorphism) whose complexity status is open. All the other most important
problems are known to be either polynomial time solvable or NP-hard.

The combinatorial optimization problems surveyed in this article, with
the exception of the edge- and vertex-connectivity studied in Section 2.2,
belong to the NP-hard problems. Hence, the existence of good estimates
is very important. Eigenvalue bounds provide in many cases quite good
approximations. Moreover, as we show below, these estimates are efficiently
computable.

Eigenvalue computation

Both in the direct formulas and the approximation by a continuous problem,
we need to determine the eigenvalues numerically in order to get concrete
bounds. The eigenvalues of a symmetric matrix are real but, in general,
irrational numbers. Hence, given an integral (or rational) symmetric matrix
M , we cannot compute its spectrum in polynomial time. However, it is
known as a folklore result that the eigenvalues can be computed in polyno-
mial time with an arbitrary prescribed precision. Unfortunately, we cannot
refer to any detailed analysis of this question. Some partial discussions of
this topic can be found in [8] and [36].

The polynomial time computability of eigenvalues has only theoretical
importance. For applications, it is significant that the eigenvalues can be
computed fast by a variety of numerical methods, see e.g., [58]. There also
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exist several software packages [31, 123] for the eigenvalue computations.
For example, the routine DNLASO from [123] was used by Poljak and Rendl
[113] in the practical computations related to the max-cut problem.

Convexity

Convexity is a crucial property, which enables efficient solution of the relaxed
continuous optimization problems.

Given a symmetric matrix M of size n×n, an integer k, 1 ≤ k ≤ n, and
non-negative coefficients ci, i = k, k + 1, . . . , n, satisfying ck ≤ ck+1 ≤ · · · ≤
cn, let us consider the function f(u), u ∈ Rn, defined by

f(u) =
n∑
i=k

ci λi(M + diag(u)). (60)

The following result is obtained by an easy application of the Rayleigh’s
principle (4) and the Fan’s theorem (8).

Theorem A.1 [30] The function f(u) defined by (60) is convex. 2

Hence the functions given by formulas (13), (14), (26), (35), and (36) are
convex (resp. concave), and their minimum (resp. maximum) is efficiently
computable, as mentioned in the next paragraph. It is also easy to see (by
an application of the Rayleigh’s principle) that the ϑ-function defined by
(49) is obtained by the minimization of a convex function.

As a consequence of the convexity, dual characterizations are possible
(cf. Theorems 2.11 and 4.12). A general duality theorem of that type is
proved also in [105].

Global optimization

Another important fact is that the problem of the minimization of a convex
function f over a convex region K in Rn is, under some technical assump-
tions on f and K, polynomial time solvable in the following sense. Given an
ε > 0, the algorithm finds a rational number z̄ and a rational vector ū ∈ K
such that |z̄ − f(ū)| ≤ ε, and

f(ū) ≤ f(u)+ε for every u such that {u′ ∈ Rn | ‖u−u′‖ < ε} ⊂ K. (61)

A detailed analysis of the ellipsoid algorithm for the minimization of f is
given in the book by Grötschel, Lovász, and Schrijver [62].
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The general theory can be applied to the convex function f given by (60)
and the convex set K = {u ∈ Rn |

∑n
i=1 ui = 0}. In this concrete case, the

minimum ū can be approximated in a stronger sense, namely so that

f(ū) ≤ f(u) + ε for all u ∈ K

holds (instead of (61)).
Again, the polynomial time computability is mainly of theoretical inter-

est, because it indicates that the relaxed problems are easy. For the concrete
computation, other algorithms than the ellipsoid method are more suitable.
The problem of practical minimization of (60) is slightly complicated by
the fact that f is not differentiable at all points. In particular, it is typi-
cally not differentiable at its minimum, because several eigenvalues are often
identified as a result of the minimization.

Several methods of minimization of (60) were proposed in [30, 105, 122].

Branch and bound algorithms

The eigenvalue relaxations can also be used to compute exact optima in
the combination with the branch and bound method. For that purpose, it
is important to show that the relaxation is monotone with respect to the
branching. Computational experiments for the max-cut problem were done
by Poljak and Rendl [113]. In particular, the computing was speeded up
by a suitable initiation of parameters in solving the subproblems. This was
possible due to the combinatorial properties of the eigenvalue bound.

B Appendix: Eigenvalues of random graphs

The usual model for random graphs is the following. For a positive integer n
we consider (labelled) graphs on n vertices in which each edge appears with
probability p = p(n). The adjacency matrix of a random graph is a random
symmetric 01-matrix with zeros on the main diagonal. For a (random) graph
G with the adjacency matrix A let us denote by d(A) the density of edges
of G, more precisely, d(A) = 2|E(G)|/n2. The following bound is easy to
verify:

Proposition B.1 ([71]) Let G be a graph of order n and A its adjacency
matrix. Then

nd(A) ≤ λmax(A) ≤ n
√
d(A) .
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Proof. The first inequality follows by (1.5) by taking x = 1,

λmax(A) ≥ (A1,1)
(1,1)

= nd(A) .

The other inequality follows from the fact that

n∑
i=1

λi(A)2 = tr A2 =
∑

v∈V (G)

deg(v) = n2d(A) .

2

Note that for random graphs the expected value of d(A) is n−1
n p which

is approximately equal to p. The bounds of Proposition B.1 hold in general.
They can be improved for random graphs.

Theorem B.2 ([71]) For almost all graphs of order n (with fixed edge prob-
ability p) the maximal eigenvalue of the adjacency matrix A is equal to

λmax(A) = np(1 + o(1)) .

By the above result almost all graphs have the maximal eigenvalue close
to np. This is to be expected. Much more surprising is the result for the
second largest eigenvalue.

Theorem B.3 ([71]) For almost all graphs G of order n with fixed edge
probability p (0 < p < 1) and an arbitrary ε > 0, the second largest adjacency
matrix eigenvalue is

λn−1(A) = O(n1/2+ε) .

These results were upgraded by Füredi and Komlós [52]:

Theorem B.4 ([52]) Let A = (aij) be an n×n random symmetric matrix in
which aii = 0 and aij (i < j) are independent, identically distributed bounded
random variables with distribution function H. Denote the moments of H
by µ =

∫
xdH(x) and σ2 =

∫
(x− µ)2dH(x). Then:

(a) If µ > 0 then λmax(A) = µn+O(1) in measure, and max1≤i<n |λi(A)|
= 2σ

√
n+O(n1/3 log n) in probability.

(b) If µ = 0 then max1≤i≤n |λi(A)| = 2σ
√
n+O(n1/3 log n) in probability.

2
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The special case of Theorem B.4(a) where H is a discrete random vari-
able with values 0 and 1, the latter with probability p, gives Theorem B.3.
The additional step is a result of Wigner [131] which determines the overall
eigenvalue distribution of random graphs.

Theorem B.5 ([131]) Let A = (aij) be an n×n random symmetric matrix
in which aii = 0 and aij (i < j) are independent, identically distributed
bounded random variables with distribution function H. Denote the mo-
ments of H by µ =

∫
xdH(x) and σ2 =

∫
(x − µ)2dH(x), and let Fn(x) be

the cumulative distribution function of the eigenvalues of A. Then we have
for an arbitrary x:

lim
n→∞

Fn(x) =
∫ x

−∞
f(x) dx in probability

where
f(x) =

{
1

2πσ2n

√
4σ2n− x2, |x| < 2σ

√
n

0, otherwise
.

2

It should be mentioned that Theorem C.4 does not follow from Theorem
B.5. The latter result only implies that at most o(n) eigenvalues are in
absolute value larger than 2σ

√
n(1 + o(1)). The non-symmetric random

matrices were considered by Juhász [72].
The Laplacian spectrum of random graphs was considered by Juvan and

Mohar [79]. (A weaker result was obtained independently by Juhász [74].)
The distribution of eigenvalues follows easily from the Wigner’s result (a
version where the diagonal entries need not to be identically 0; cf. [71]).
The important is the estimation of λ2(G) for a random graph G.

Theorem B.6 ([79]) For a fixed edge probability p (0 < p < 1) and any
ε > 0 almost all graphs have their Laplace eigenvalues λ2(G) and λmax(G)
bounded by:

pn− f+
ε (n) < λ2(G) < pn− f−ε (n)

and
pn+ f+

ε (n) > λmax(G) > pn+ f−ε (n)

where

f+
ε (n) =

√
(2 + ε)p(1− p)n log n and f−ε (n) =

√
(2− ε)p(1− p)n log n.

2
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There were also serious attacks on the eigenvalue problem for random
regular graphs. For an integer d ≥ 2 consider random d-regular graphs.
McKay [91] determined the expected eigenvalue distribution of large d-
regular graphs. Moreover, his result approximates eigenvalue distribution
for arbitrary large regular graphs which do not have too many short cycles
(which is the case with random regular graphs in any sensible model).

Theorem B.7 ([91]) Let d ≥ 2 be a fixed integer and let G1, G2, G3, . . . be
a sequence of simple d-regular graphs with increasing orders and such that
for each k ≥ 3 the number ck(Gn) of cycles of length k in Gn satisfies

lim
n→∞

ck(Gn)/|V (Gn)| = 0 .

Then the cumulative eigenvalue distribution functions F (Gn, x) of graphs
Gn converge to F (x) for every x, where F (x) =

∫ x
−∞ f(t)dt and

f(t) =

{
d
√

4(d−1)−t2
2π(d2−t2)

, |t| ≤ 2
√
d− 1

0, otherwise
.

2

Godsil and Mohar [56] determined the expected eigenvalue distribution
of random semiregular bipartite graphs (and some other families). Recall
that a bipartite graph G is (d1, d2)-semiregular if the vertices in one biparti-
tion class all have degree d1, and the vertices in the other class have degree
d2.

Theorem B.8 ([56]) Let d1, d2 ≥ 2 be a integers, p =
√

(d1 − 1)(d2 − 1),
and let G1, G2, G3, . . . be a sequence of simple (d1, d2)-semiregular bipartite
graphs with increasing orders and such that for each k ≥ 3 the number
ck(Gn) of cycles of length k in Gn satisfies

lim
n→∞

ck(Gn)/|V (Gn)| = 0 .

Then the cumulative eigenvalue distribution functions F (Gn, x) of graphs
Gn converge to F (x) for every x, where

F (x) =
∫ x

−∞
f(t)dt+

1
2
|d1 − d2|
d1 + d2

δ(0)
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where δ(0) is the discrete distribution with a unit point mass at the point 0,
and

f(t) =


d1d2

√
−(t2 − d1d2 + (p− 1)2)(t2 − d1d2 + (p+ 1)2)

π(d1 + d2)(d1d2 − t2)|t|
,

if |
√
d1 − 1−

√
d2 − 1| ≤ |t| ≤

√
d1 − 1 +

√
d2 − 1

0, otherwise .

2

The above result shows that all but o(n) eigenvalues of a random d-
regular graph are in absolute value smaller than 2

√
d− 1. However, due to

the importance of the second eigenvalue of graphs, this is not a sufficient
result for applications surveyed in this paper. Broder and Shamir [21] were
able to show that random d-regular graphs (for d an even integer) have

ρ2(G) = O(d3/4)

where
ρ2(G) = max{|λ| ; λ an eigenvalue of A(G), λ 6= d} .

The above estimate holds for almost all d-regular graphs according to the fol-
lowing model. Let d be an even integer. For a random d-regular graph on n
vertices choose d

2 random permutations σ1, σ2, . . . , σd/2 of V = {1, 2, . . . , n},
and define the d-regular graph corresponding to these permutations as the
graph on the vertex set V with the vertex i (1 ≤ i ≤ n) adjacent to ver-
tices σj(i), σ−1

j (i), j = 1, 2, . . . , d2 . (Note that some of the obtained graphs
contain loops or parallel edges. If we do not want loops we may consider
random fixed point free permutations σj . It turns out, however, that a pos-
itive portion of these graphs are simple, so the properties holding for almost
all graphs in this model also hold for almost all simple graphs among them.)

The O(d3/4) bound for ρ2(G) was improved to O(
√
d) by Friedman (us-

ing the same model) [50]. A weaker version than Friedman’s was obtained
independently by Kahn and Szemerédi (cf. [51]). They proved the following
results:

Theorem B.9 ([51]) For a fixed even integer d, a random d-regular graph
G of order n has

ρ2(G) = O(
√
d)

with probability 1− n−Ω(
√
d) as n tends to infinity. 2
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It is not known if the methods used by Kahn and Szemerédi yield the
expected bound (2 + o(1))

√
d− 1 with probability 1− o(1).

Theorem B.10 ([50]) For a fixed even integer d, a random d-regular graph
G of order n has the expectation

E(ρ2(G)m) ≤
(

2
√
d− 1 + 2 log d+O(1) +O

(d3/2 log log n
log n

))m

for any integer m ≤ 2blog nb
√
d− 1/2c/ log(d/2)c (with an absolute constant

in the O-notation), where all logarithms are base e. 2

The following result is even more useful:

Theorem B.11 ([50]) For a fixed even integer d and an arbitrary ε > 0, a
random d-regular graph G of order n has

ρ2(G) ≤
(

2
√
d− 1 + 2 log d+O(1) +O

(d3/2 log log n
log n

))
(1 + ε)

with probability at least 1− (1 + ε)2n−2b
√
d−1/2c log(1+ε)/ log(d/2). 2

On the other hand, Alon and Boppana (cf. [5]) proved that

ρ2(G) ≥ 2
√
d− 1−O

( log d
log n

)
hold for any d-regular graph G, as far as n ≥ d2. Friedman’s results are close
to this bound but still far from the bound ρ2(G) ≤ 2

√
d− 1 + ε conjectured

for random d-regular graphs by Alon [5].
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[125] P. Solé, Expanding and forwarding, submitted.

[126] A. Srivastav and P. Stangier, A provably good algorithm for the graph parti-
tioning problem, Preprint of Institute of Discrete Math., Univ. Bonn, 1991.

[127] P. D. Straffin, Jr., Linear algebra in geography: Eigenvectors of networks,
Math. Mag. 53 (1980) 269–276.

[128] V. S. Sunderam, P. Winkler, Fast information sharing in a distributed system,
preprint, 1988.

[129] R. M. Tanner, Explicit concentrators from generalized n-gons, SIAM J. Alg.
Discr. Meth. 5 (1984) 287–293.

[130] N. Th. Varopoulos, Isoperimetric inequalities and Markov chains, J. Funct.
Anal. 63 (1985) 215–239.

[131] E. P. Wigner, Characteristic vectors of bordered matrices with infinite di-
mensions, Ann. Math. 62 (1955) 548–564.

[132] H. S. Wilf, The eigenvalues of a graph and its chromatic number, J. London
Math. Soc. 42 (1967) 330–332.

[133] H. S. Wilf, Graphs and their spectra: Old and new results, Congr. Numer.
50 (1985) 37–42.

[134] H. S. Wilf, Spectral bounds for the clique and independence numbers of
graphs, J. Combin. Theory, Ser. B 40 (1986) 113–117.

[135] P. M. Winkler, Proof of the squashed cube conjecture, Combinatorica 3
(1983) 135–139.

61


