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Abstract

Let S be a closed surface with boundary ∂S and let G be a graph. Let K ⊆ G be a
subgraph embedded in S such that ∂S ⊆ K. An embedding extension of K to G is an
embedding of G in S which coincides on K with the given embedding of K. Minimal
obstructions for the existence of embedding extensions are classified in cases when S is the
disk or the cylinder. Linear time algorithms are presented that either find an embedding
extension, or return an obstruction to the existence of extensions. These results are
to be used as the basic building stones in the design of linear time algorithms for the
embeddability of graphs in an arbitrary surface and for solving more general embedding
extension problems.

1 Introduction

Let K be a subgraph of G. A K–component or a K–bridge in G is a subgraph of G which
is either an edge e ∈ E(G)\E(K) (together with its endpoints) which has both endpoints in
K, or it is a connected component of G−V (K) together with all edges (and their endpoints)
between this component and K. Each edge of a K-component R having an endpoint in K is
a foot of R. The vertices of R∩K are the vertices of attachment of R. A vertex of K of degree
in K different from 2 is a main vertex of K. For convenience, if a connected component of
K is a cycle, then we choose an arbitrary vertex of it and declare it to be a main vertex of
K as well. A branch of K is any path in K whose endpoints are main vertices and such that
no internal vertex on this path is a main vertex. If a K-component is attached at a single
branch of K, it is said to be local. The number of branches of K is called the branch size of
K.

Let K ⊆ G, and suppose that we are given an embedding of K into a (closed) surface Σ.
The embedding extension problem asks whether it is possible to extend the given embedding
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of K to an embedding of G, and any such embedding is said to be an embedding extension
of K to G. Let Σ be the (closed) disk or the cylinder. Let K be embedded in Σ such that
∂Σ ⊆ K. An obstruction for embedding extensions is a subgraph Ω of G − E(K) such that
the embedding of K cannot be extended to K ∪ Ω. The obstruction is small if K ∪ Ω has
bounded branch size. If Ω is small, then it is easy to verify that no embedding extension to
K ∪Ω exists, and hence Ω is a good verifier that there are no embedding extensions of K to
G as well. In this paper, minimal obstructions for embedding extension problems in the disk
and the cylinder are classified for several “canonical” choices of K. Although much work has
been done on “embedding obstructions”, our results seem to be new, apart from the case of
the disk (cf. [20]; see also Section 3) or the case when K = ∅ and Σ is a closed surface [19]. It
is interesting that minimal obstructions are not always small. They can be arbitrarily large
but their structure is easily described. We also present linear time algorithms to either find
an embedding extension, or return a (minimal) obstruction to the existence of extensions.

The basic results of this paper (Theorems 3.1, 4.3, 5.3, and 6.2) are to be used as the
basic building stones in the design of linear time algorithms for embedding graphs in general
surfaces [10, 12, 16, 11]. Moreover, we are able to solve even more general embedding extension
problems in linear time.

Robertson and Seymour (cf. [19] and the graph minors papers preceding it) proved a
Kuratowski theorem for general surfaces. In our further project [17], results of this paper
are used to obtain a reasonably short proof of Robertson and Seymour’s result. It is worth
mentioning that all our results are direct and constructive, in the tradition of Archdeacon
and Huneke [1]. (Recently, also Seymour [23] obtained a constructive proof by using graph
minors and tree-width techniques.)

Embeddings in orientable surfaces can be described combinatorially [6] by specifying a
rotation system: for each vertex v of the graph G we have the cyclic permutation πv of its
neighbors, representing their circular order around v on the surface. In order to make a
clear presentation of our algorithm, we have decided to use this description only implicitly.
Whenever we say that we have an embedding, we mean such a combinatorial description.
Whenever used, it is easy to see how one can combine the embeddings of some parts of the
graph described this way into the embedding of larger species.

Concerning the time complexity of our algorithms, we assume a random-access machine
(RAM) model with unit cost for basic operations. This model was introduced by Cook and
Reckhow [4]. More precisely, our model is the unit-cost RAM where operations on integers,
whose values are O(n), need only constant time (n is the order of the given graph).

2 Basic definitions

Let G and K be graphs (both subgraphs of some graph H). Then we denote by G − K
the graph obtained from G by deleting all vertices of G ∩K and all their incident edges. If
F ⊆ E(G), then G − F denotes the graph obtained from G by deleting all edges in F . If K
and L are subgraphs of G, then we say that a path P in G joins K and L if P is internally
disjoint from K ∪ L and one of its ends is in K and the other end is in L. Moreover, if an
end of P is in both K and L, then P is a trivial path.

A block or 2-connected component of a graph G is either an isolated vertex, a loop, a bond
of G, or a maximal 2-connected subgraph of G. One can also define the concept of 3-connected

2



components. A graph G is said to be k-separable if it can be written as a union G = H ∪K
of (non-empty) edge-disjoint graphs H and K which have exactly k vertices in common, and
each of them contains at least k edges. Such a pair {H,K} is called a k-separation of G.
A graph is nonseparable if it has no 0- or 1-separations. Let G be a nonseparable graph
and let {H,K} be a 2-separation of G. Let x, y denote the vertices of V (H) ∩ V (K). The
2-separation is elementary if either H−{x, y} or K−{x, y} is non-empty and connected, and
either H or K is nonseparable. It turns out [26] that nonseparable graphs without elementary
2-separations are either 3-connected graphs, cycles Cn (n ≥ 3), p ≥ 1 parallel edges, K1, or
a loop. Assume now that the 2-separation {H,K} of G is elementary. Denote by H ′ and
K ′ the graphs obtained from H and K, respectively, by adding to each of them a new edge
between the vertices of H ∩K. The added edges are called virtual edges. It is easy to verify
that H ′ and K ′ are both nonseparable, and we may repeat the process on their elementary
2-separations (if there are any) until no further elementary 2-separations are possible. As
mentioned above, the obtained graphs are either 3-connected, cycles, edges in parallel, or
rather small. Each of the graphs obtained this way is called a 3-connected component of
G. It was shown by MacLane [14] (cf. also [26]) that the set of 3-connected components of
the graph is uniquely determined although different choices of the 2-separations may have
been used during the process of constructing them. Every 3-connected component consists of
several edges of G and several virtual edges. It is obvious by construction that each edge of
G belongs to exactly one 3-connected component, and each virtual edge has a corresponding
virtual edge in some other 3-connected component. The 3-connected components of G may
be viewed as subgraphs of G, where each virtual edge corresponds to a path in G. These
subgraphs are positioned inG in a tree-like way [26]. We also speak of 3-connected components
when the graph is separable. In that case we define them to be the 3-connected components
of the blocks of the graph.

A linear time algorithm for obtaining the 3-connected components of a graph was devised
by Hopcroft and Tarjan [7].

There are very efficient (linear time) algorithms which for a given graph determine whether
the graph is planar or not. The first such algorithm was obtained by Hopcroft and Tarjan
[8] back in 1974. There are several other linear time planarity algorithms (Booth and Lueker
[2], Fraysseix and Rosenstiehl [5], Williamson [27, 28]). Extensions of the original algorithms
produce also an embedding (rotation system) whenever the given graph is found to be planar
[3], or find a small obstruction — a subgraph homeomorphic to K5 or K3,3 — if the graph
is non-planar [27, 28] (see also [13]). The subgraph homeomorphic to K5 or K3,3 is called a
Kuratowski subgraph of G.

Lemma 2.1 There is a linear time algorithm that, given a graph G, either exhibits an em-
bedding of G in the plane, or finds a Kuratowski subgraph of G.

We will refer to the algorithm mentioned in Lemma 2.1 as testing for planarity. This
procedure not only checks the planarity of the given graph but also takes care of exhibiting
an embedding, or finding a Kuratowski subgraph.

Let C be a cycle of a graph G. Two C-components B1 and B2 overlap if either B1 and
B2 have three vertices of attachment in common, or there are four distinct vertices a, b, c, d
which appear in this order on C and such that a and c are vertices of attachment of B1, and
b, d are vertices of attachment of B2. In the latter case, B1 and B2 contain disjoint paths P1
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Figure 1: Disjoint crossing paths and a tripod

and P2 whose ends a, c and b, d, respectively, interlace on C. Such paths will be referred to
as disjoint crossing paths. See Figure 1(a). We will need another type of subgraphs of G that
are attached to C. A tripod is a subgraph T of G that consists of two main vertices v1, v2 of
degree 3, whose branches join them with the same triple of vertices u1, u2, u3, together with
three vertex disjoint paths π1, π2, π3 joining u1, u2, and u3 with C. Moreover, T intersects C
only at the ends of π1, π2, and π3. One or more of the paths πi are allowed to be trivial, in
which case ui ∈ C. See Figure 1(b). If all three paths π1, π2, and π3 are trivial (just vertices),
then the tripod is said to be degenerate. We use the same name for attachments of the tripod
in the case when the corresponding path is trivial.

3 The disk

Let D be the closed unit disk in the euclidean plane. Given a graph G and a cycle C in G,
we would like to find an embedding of G in D so that C is embedded on ∂D. Of course, this
is a case of the embedding extension problem for which an easy answer is at hand. First,
we construct the auxiliary graph G̃ = Aux(G,C) which is obtained from G by adding a new
vertex v (called the auxiliary vertex) and joining it to all vertices on C. It is easy to see that
an embedding extension of C on ∂D to G exists if and only if the auxiliary graph G̃ is planar.
Its plane embedding also determines an embedding extension. In case of the non-planarity
of G̃, a Kuratowski subgraph K̃ of G̃ determines the subgraph K = K̃ − v of G which is an
obstruction for the embedding extension in the disk. Although K ∪ C can have arbitrarily
large branch size, it can easily be modified to an obstruction Ω for which Ω∪C has bounded
branch size. Our answer seems to solve the question reasonably well. However, there is
a better solution. Namely, it is known that in case when G is 3-connected, a pair (G,C)
for which there is no disk embedding extension necessarily contains either a pair of disjoint
crossing paths or a tripod. This simple but useful result was “in the air” for quite some time.
It seems to have appeared for the first time in a paper by Jung [9] in a slightly weaker version.
It also appeared in a paper by Seymour [21] (with the complete proof in [22]), Shiloach [24],
Thomassen [25], all in relation to the non-existence of two disjoint paths between specified
vertices. This result recently appeared in a more explicit form in Robertson and Seymour’s
work on graph minors [20]. In this section we will prove a slightly more specific result by also
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taking care of the case when G is not 3-connected. Moreover, we will show how to obtain
such an obstruction in linear time.

Theorem 3.1 Let G,C,D be as above. Let G̃ = Aux(G,C). There is a linear time algorithm
that either finds an embedding of G in D with C on ∂D, or returns a small obstruction Ω.
In the latter case, Ω is one of the following types of subgraphs of G− E(C):

(a) a pair of disjoint crossing paths,

(b) a tripod, or

(c) a Kuratowski subgraph contained in a 3-connected component of G̃ distinct from the
3-connected component of G̃ containing C.

Before giving the proof of Theorem 3.1 we state a lemma whose easy proof is left to the
reader.

Lemma 3.2 Let H be a graph with a cycle C and let e be an edge of H which is not a chord
of C. If the edge-contracted graph H/e contains a tripod or a pair of disjoint crossing paths
with respect to C (or C/e if e ∈ E(C)), then H also contains a tripod or a pair of disjoint
crossing paths.

Proof. (of Theorem 3.1). By testing G̃ for planarity we can check if G̃ is planar. If yes,
then we also get a required disk embedding of G.

Suppose now that G̃ is non-planar. Determine the 3-connected components of G̃, for
example by using the linear time algorithm of Hopcroft and Tarjan [7]. Note that C (with
some of its edges which possibly became virtual) and the auxiliary vertex are in the same
3-connected component. Denote this 3-connected component by R. If R is planar, then the
obstruction to the planarity of Q̃ lies in one of the other 3-connected components. We get
(c) in one of the planarity tests. From now on we may thus assume that R is non-planar.
Let us show how to get disjoint crossing paths or a tripod.

Let K be a Kuratowski subgraph of R found by a planarity test on R. Denote by H the
graph (K∪C)−w where w is the auxiliary vertex of G̃. Note that the branch size of H is not
necessarily small. We will first try to find disjoint crossing paths or a tripod in H. Consider
the C-components in H. First of all we check if two of them overlap. In order to perform
efficient checking, we split the bridges into two classes: the bridges that contain main vertices
of K (possibly as their vertices of attachment) are main bridges of C in H, and the remaining
bridges are called chords since they are just paths joining two distinct vertices of C. There
are at most 20 main bridges. To be more efficient in the sequel, we can temporarily replace
every bridge by a single vertex joined to all of its vertices of attachment on C.

Step 1: Are there two main bridges that overlap? If yes, we either have a (degenerate)
tripod or disjoint crossing paths. If not, proceed with the next step. Since only the main
bridges have to be considered, this step can be carried over in constant time.

Step 2: Is there a main bridge that overlaps with a chord? If yes, we have disjoint crossing
paths. Otherwise continue with Step 3. This question can easily be answered in linear time.
Observe that the number of candidates for one of the disjoint crossing paths in the main
bridges is small.
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Step 3: Are there two overlapping chords? Note that no chord contains a main vertex.
Thus, at most two chords are attached at the same vertex. A simple way to find overlapping
chords is to start building a stack by traversing C once around starting at an arbitrary
vertex of C. If there are two chords at the same point on C, we first consider chords that
have already been met during the traversal. If both chords are not new, we give priority to
the one that is on the top of the stack (if none is on the top, their order is not important).
Then we process the new chords. If both are new, we give priority to the one whose other
attachment is further away in the direction of the traversal. Every new chord met during the
traversal is put to the top of the stack. Meeting the chord for the second time, we check if
the top element in the stack is the same chord. If yes, the chord is removed from the stack
and the traversal is continued. If not, then we have another chord at the top. It is easy to
see that these two chords overlap and they give rise to disjoint crossing paths.

We may now assume that no two distinct bridges of C in H overlap. This means that the
obstruction is in one of the main bridges. Such a bridge B can be discovered in O(1) time
since the number of main bridges is small, and each of them has small branch size. We will
also assume that B is minimal in the sense that for every branch e of B, the graph (B−e)∪C
is planar (if not, we can remove e and repeat the above procedure in order to get (a), (b), or
a new bridge B with smaller number of branches). Note that B ∪ C is non-planar and has
small branch size. Therefore B can be used as a legitimate obstruction in some applications.
However, our goal is to show more: we want a tripod or disjoint crossing paths.

Since B ∪C has constant branch size, it is easy to find a tripod or disjoint crossing paths
in B whenever B contains one of them. Assume from now on that this is not the case. We
will prove that under this assumption, B has at most two vertices of attachment on C. Let
K ′ be a Kuratowski subgraph of B ∪ C. By the minimality property of B, K ′ contains the
whole B plus possibly some parts on C. If two main vertices of K ′ lie on C, then they are
either non-adjacent in K ′, or connected by a branch which is contained in C. Therefore it is
easy to see that at most three main vertices of K ′ lie on C (the case of four vertices of K3,3

forming a cycle on C is the only possibility, but they give rise to disjoint crossing paths).
Similarly, we can exclude three main vertices of K ′ being on C. (In the case analysis for
the last claim, an application of Lemma 3.2, using the “contraction” argument as also used
below, makes the number of cases much smaller.)

Now, if B has a vertex of attachment on C that is not a main vertex ofK ′, we may contract
the corresponding branch e of B∪C and obtain the non-planar graph (B/e)∪C = (B∪C)/e
with more main vertices of K ′/e (≈ K ′) on C. Inductively, we have a tripod or disjoint
crossing paths. By Lemma 3.2, also B ∪C contains a tripod or disjoint crossing paths.

Suppose now that B has t ≤ 2 vertices of attachment on C, and recall that we know
how to get in linear time a tripod or disjoint crossing paths in case of three or more vertices
of attachment. Let B be the C-component in R that contains B as a subgraph. Since R
is 3-connected, there are disjoint paths e1 . . . , e3−t in B starting at C − B and terminating
in B − C whose only vertices in B are their endpoints. Such paths can be found in linear
time by applying, for example, the appropriate modification of the augmented paths method
used to test connectivity of graphs [18, Chapter 9]. The connectivity test should be applied
on the graph B ∪ C with the t attachments of B removed. Since t ≤ 2, the graph H =
B∪C∪e1∪· · ·∪e3−t contains a copy ofK ′ that does not contain the endpoints of e1 . . . , e3−t on
C (this fact is really needed only in case t = 2). Therefore, the graph H ′ = H/(e1∪· · ·∪e3−t)
also contains a copy ofK ′. Note that the only 3-separations in Kuratowski subgraphs intersect
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at the three vertices of the same color class in K3,3. Therefore H ′ is equal to C plus a single
bridge (plus possibly a branch between two vertices on C that can be replaced by a segment
on C), except when the three vertices of K ′ ⊆ H ′ that lie on C are the three vertices of
the same color class of K3,3. In the latter case we clearly have a tripod in H ′. In the other
cases we can apply the results from above since H ′ is of appropriate form and has three
attachments on C: We can find a tripod in it. By Lemma 3.2, we have a tripod or disjoint
crossing paths in H.

4 The cylinder

In this section we will consider the embedding extension problems in the cylinder. Let C1

and C2 be disjoint cycles in the graph G, and for an integer k ≥ 0, let P1, P2, . . . , Pk be
vertex disjoint paths in G joining C1 and C2 (with no interior points on C1 ∪ C2). Suppose,
moreover, that the endpoints of the paths Pi appear on both cycles C1, C2 in the same
(cyclic) order. The embedding extension problem in the cylinder with respect to the subgraph
K = C1 ∪ C2 ∪ P1 ∪ · · · ∪ Pk, where K is embedded in such a way that C1 and C2 cover
the boundary, will be referred to as the k-prism embedding extension problem. Note that in
cases when k ≤ 2, we have two essentially different problems depending on the embeddings
of C1 ∪ C2 on the boundary of the cylinder.

(a) (b)

P P

C C

P FP

C C

1 1

1 1

1 2

2 2

F

Figure 2: The 1- and 2-prism embedding extension problem

In testing for the k-prism embedding extension of K to G we make use of the auxiliary
graph G̃ which is obtained from G by adding two new auxiliary vertices v1 and v2, and for
i = 1, 2, joining vi to all vertices of Ci. If k ≥ 3, then an embedding extension of K to
G exists if and only if G̃ is planar, and a planar embedding of G̃ determines a cylinder
extension. Something similar holds also in cases when k ≤ 2. More details will be provided
later. Note that in the cylinder case, the auxiliary graph contains two auxiliary vertices while
the auxiliary graph for the disk embeddability has just one. Although we are using the same
name and notation, there will be no confusion since it will always be clear from the context
which case is applied.

If there are local bridges attached to one or more of the paths Pi, we may get arbitrarily
long chains of successively overlapping local bridges on Pi (see Figure 3). There are examples
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where after eliminating any of the branches, there exists an embedding extension. So we
can have arbitrarily large minimal obstructions. On the other hand, in applications using
the obstructions, certain connectivity conditions on the involved graphs can be achieved. In
that case, the local bridges can be eliminated efficiently (in linear time; see [15] and [10] for
more details). Since we are usually allowed to change the paths Pi during the pre-processing
time, it makes sense to assume that there are no local bridges attached to any of the paths
P1, . . . , Pk.

P

C

F

P

C

1

1

2

2

F

Figure 3: A large obstruction using local bridges

Obstructions for the k-prism embedding extension problem with k ≥ 3 are easy to find.
They are not much more complicated than the closed disk obstructions classified in Theorem
3.1. Besides the disjoint crossing paths and the tripods, we get another type of obstruction.
A dipod (with respect to the cycle C) is a subgraph H of G consisting of distinct vertices
a, b, c, d ∈ V (C) that appear on C in that order, distinct vertices v, u where v �∈ V (C), and
u �∈ V (C) unless u = b, and branches va, vc, vu, ub, and ud (Figure 4). The branches are
internally disjoint from C. If u = b, the branch ub vanishes. See Figure 4(b). We also define a
triad (with respect to a subgraph K of G) as a subgraph of G consisting of a vertex x �∈ V (K)
and three paths joining x with K that are pairwise disjoint except at their common end x.

For K = C1∪C2∪P1∪· · ·∪Pk embedded in the cylinder with C1 and C2 on its boundary,
let F1, . . . , Fk be the faces of K. We suppose that for i = 1, 2, . . . , k, ∂Fi contains Pi and
Pi+1 (index modulo k).

Theorem 4.1 Let K ⊆ G be the subgraph of G for the k-prism embedding extension problem,
where k ≥ 3. Suppose that no K–component of G is attached to just one of the paths Pi of
K, 1 ≤ i ≤ k. Then there is no embedding extension of K to G if and only if G − E(K)
contains a subgraph Ω of one of the following types:

(a) A path joining two vertices of K that do not lie on the boundary of a common face of
K, or (with k = 3) a triad attached to P1, P2, and to P3.

(b) A tripod attached to the boundary of one of the faces Fi. Not all three attachments of
the tripod lie on just one of the paths Pi, Pi+1 on ∂Fi.
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Figure 4: A dipod

(c) A pair of disjoint crossing paths with respect to the boundary of one of the faces Fi.
None of the two paths is attached to just one of the paths Pi, Pi+1 on ∂Fi.

(d) A dipod with respect to the boundary cycle of some Fi. In this case, the vertices a, c,
and d from the definition of the dipods all lie on one of the paths Pi, or Pi+1, while
b ∈ ∂Fi does not lie on the same path.

(e) A Kuratowski subgraph contained in a 3-connected component L of the auxiliary graph
G̃ of G, where L is such that it does not contain auxiliary vertices of G̃.

There is a linear time algorithm that either finds an embedding extension of K to G, or
returns an obstruction Ω which fits one of the above cases.

Proof. We can find embedding extensions, if they exist at all, by testing the auxiliary graph
G̃ for planarity. Suppose now that embedding extensions do not exist. Our goal is to show
how to find the required obstruction Ω.

Since k ≥ 3 and there are no local bridges at the paths Pj , every K–component is
embeddable in at most one of the faces Fi. If one of the bridges contains a path whose ends
do not belong to the boundary of the same face, then this path is clearly an obstruction for
the embedding extendibility. If a bridge B of K does not have all of its vertices of attachment
on the boundary of a single face Fi, then B either contains such a path, or it contains a triad
attached to P1, P2, and P3. (Note that the latter case is needed only in case when k = 3.) So,
we have (a). Otherwise, every K–component is attached to ∂Fi for exactly one i, 1 ≤ i ≤ k.
Therefore, there is no embedding extension if and only if for some i, 1 ≤ i ≤ k, we have
a closed disk obstruction (cf. Theorem 3.1) in the subgraph Gi consisting of C = ∂Fi and
all the K–components attached to C. By Theorem 3.1, an obstruction to the (Gi, C) disk
embeddability is either a pair of disjoint crossing paths, or a tripod, or a Kuratowski subgraph
in a 3-connected component of G̃i not containing the auxiliary vertex. In the last case, G̃i is
the auxiliary graph of Gi with respect to C for the disk embedding extension problem. Since
there are no local bridges attached to the paths Pi and Pi+1, the 3-connected components of
G̃i not containing the auxiliary vertex are also 3-connected components of G̃. Consequently,
the Kuratowski subgraph obstruction in Gi gives (e).
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Suppose now that in Gi we have a tripod T . If T is not local on Pi and not local on
Pi+1, we have (b). Otherwise, assume all three attachments of T are on Pi. Denote by
v1, v2, u1, u2, u3, π1, π2, π3 the elements of T as they are shown on Figure 1, and suppose that
π2 is attached at Pi between π1 and π3. Construct a path P , internally disjoint from C, that
connects C − Pi with an interior vertex x of T . The existence of P is guaranteed since the
bridges containing T are not local on Pi. If x is on πs for some s ∈ {1, 2, 3}, then we can
replace the segment of πs from x to Pi by P and get a tripod satisfying (b). If x is an interior
vertex of the branch u2v1, then T ∪ P contains a dipod satisfying (d). By the symmetries of
T , the only essentially different remaining case is when x is on the branch u1v1, where x �= u1

but possibly x = v1. Let Q1 be the path Pxv1u2π2 and let Q2 be the path π1u1v2u3π3 in
T ∪ P . If Q1 and Q2 are in the same K–component of G, then we can find a path P ′ from
Q1 to Q2 that is disjoint from C, and Q1 ∪ Q2 ∪ P ′ is a dipod satisfying (d). On the other
hand, if Q1 and Q2 are in different bridges B1, B2 of K, respectively, let P ′ be a path from
the interior of Q2 to C that is disjoint from Pi. Such a path exists, again, because B2 is
not local on Pi. Now, Q1 ∪Q2 ∪ P ′ contains disjoint crossing paths satisfying (c), unless the
endpoints of P and P ′ on C coincide. But in this case, Q1 ∪Q2 ∪ P ′ is a degenerate dipod
with the attachment b (see Figure 4(b)) corresponding to the common point of P and P ′.

It remains to consider the case of disjoint crossing paths, say Q1 and Q2, obtained as an
obstruction in Gi. If both Q1 and Q2 are attached locally to Pi, we change one of them so
that it has an attachment on C − Pi. For this purpose, the same method as above can be
applied. If just one of the paths (possibly after the previous change) is local on Pi, the same
procedure can be applied as it was undertaken above with the paths Q1 and Q2 in case of the
tripods. We either get a dipod or disjoint crossing paths satisfying (d) or (c), respectively.

It is easy to perform the above construction in linear time. To find disk obstructions we
use Theorem 3.1, and to find paths P , P ′, etc., we can use standard graph search.

Once we know how the case k ≥ 3 works, we can also solve the 0-prism embedding
extension problem. If C1, C2 are cycles of G embedded on the boundary of the cylinder,
an orientation of the cylinder yields consistent orientations of C1 and C2. If P1, . . . , Pk are
disjoint (C1, C2)–paths, they are said to be attached consistently if their ends on C1 follow
each other in the inverse cyclic order than on C2, i.e., the embedding of C1 ∪ C2 can be
extended to C1 ∪ C2 ∪ P1 ∪ · · · ∪ Pk. Note that for k ≤ 2, the paths are always attached
consistently.

Before stating our next result on obstructions, let us formulate a lemma which will be
used in its proof.

Lemma 4.2 Let G be a 3-connected graph, C a cycle of G, and B a C-component in G. Let
G(B,C) be the graph obtained from B ∪C by adding a new vertex adjacent to all vertices on
C. Then G(B,C) is 3-connected.

Proof. The graph is clearly 2-connected. It is also easy to see that it has no 2-separations.

Theorem 4.3 Let C1 and C2 be disjoint cycles of a graph G that are embedded on the
boundary of the cylinder. There is no embedding extension to G if and only if G − E(C1) −
E(C2) contains a subgraph Ω of one of the following types:
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(a) Three disjoint paths from C1 to C2 that are not attached consistently on C1 and C2.

(b) Disjoint paths P1, P2, P3 where P1, P2 join C1 with C2, both endpoints of P3 are on C1

(respectively, on C2) and the endpoints of P3 interlace with the endpoints of P1 and P2

on C1 (respectively, on C2).

(c) A tripod or a pair of disjoint crossing paths with respect to C1 (respectively, C2). If G
is not 3-connected, then this obstruction may have a vertex, two vertices, or a segment
of one of its branches contained in C2 (respectively, in C1).

(d) A path P from C1 to C2 together with a tripod T with respect to C1 ∪ C2 disjoint from
P which has two attachments on C1 and one on C2, or vice versa.

(e) Disjoint paths P1, P2, P3 from C1 to C2 attached consistently on C1 and C2 together
with a triad attached to P1, P2, and to P3.

(f) A Kuratowski subgraph contained in a 3-connected component L of the auxiliary graph
G̃ of G, where L is such that it does not contain auxiliary vertices of G̃.

Moreover, there is a linear time algorithm that either finds an embedding extension of C1∪C2

to G, or returns an obstruction Ω for the embedding extendibility. In the latter case, Ω fits
one of the above cases (a)–(f).

(a) (b)

(d)

(c1)

(e)(c2)

C

C

C

C

1

1

2

2

Figure 5: 0-prism obstructions

Proof. First of all we try to find three disjoint (C1, C2)–paths in G. If such paths exist,
let k = 3, and let P1, P2, P3 be the paths. Otherwise, let k ≤ 2 be the maximal number of
disjoint paths from C1 to C2. All these can be obtained in linear time by standard connectivity
algorithms using flow techniques [18, Chapter 9].
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(a) (b)

(e)

(c)

(d)

C

C

C

C

1

1

2

2

Figure 6: Some obstructions of type (c) meeting both cycles

Let us first consider the case when k = 3. If P1, P2, P3 are not attached consistently at
C1 and C2, then Ω = P1 ∪ P2 ∪ P3 is a small obstruction satisfying (a). Otherwise, we first
reduce the problem to the 3-connected case. Without loss of generality we can remove the
3-connected components of the auxiliary graph that do not contain the auxiliary vertices (or
we get (f)). So, we assume from now on that G̃ is 3-connected. Next we try to replace the
paths P1, P2, and P3 by disjoint paths joining the same pairs of endpoints so that no local
bridge of K ′ = C1 ∪ C2 ∪ P1 ∪ P2 ∪ P3 will be attached to some Pi only. It can be shown
that this is always possible to do since G̃ is 3-connected, but it is not entirely obvious how to
perform it in linear time. For i = 1, 2, 3, let Gi be the graph consisting of Pi together with
all its local bridges and with an additional edge joining the ends of Pi. If Gi is planar, then
an algorithm from [15] replaces Pi with a new path P ′

i joining the same endvertices which is
internally disjoint from K ′ − Pi, and such that no local bridge of (K ′ − Pi) ∪ P ′

i is attached
to P ′

i . So, we either achieve our goal, or get one of Gi, say G1, to be non-planar. Let us first
deal with the latter possibility. Let C be the cycle composed of the paths P2 and P3 together
with the segments on C1 from P3 to P1 and from P1 to P2, and the segments on C2 from P2

to P1 and from P1 to P3. Denote by B the (C1 ∪C2∪P2 ∪P3)–component in G that contains
P1. If B contains a vertex of (C1 ∪ C2) − C, then a path in B from that vertex to an end
of P1, together with P2 and P3 determines three non-consistently attached paths from C1 to
C2, and so we have case (a). Therefore we may assume that B is attached to C only. Let
H = B ∪C. It is clear that H is 2-connected, and by Lemma 4.2, its auxiliary graph H̃ with
respect to C is 3-connected. Moreover, H̃ is non-planar since G1 is contained in H (with the
edge joining the ends of P1 replaced by a path in C). By Theorem 3.1, we can find in H a
tripod T or disjoint crossing paths Q1 and Q2 with respect to C. Let us first consider the
case when we have disjoint paths Q1, Q2. For j = 1, 2, denote by ej the foot of P1 on Cj ,
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and let C◦
j be the open segment of Cj obtained from Cj ∩ C by removing its endpoints. If

Q1 ∪ Q2 is not attached to C◦
1 , take a path P in B − C from e1 to Q1 ∪ Q2. Such a path

clearly exists since Q1, Q2 are both contained in the same bridge. Using this path, we can
change Q1 or Q2 to get disjoint crossing paths that are attached to C◦

1 . We repeat the same
procedure at C◦

2 . Up to symmetries, there are three possible outcomes:

(i) Q1 joins C◦
1 and C◦

2 : If Q2 is attached on P2 and P3, take a path P in B − C joining
Q1 and Q2. Now, the paths Q1, P2, P3 and the triad Q2 ∪ P satisfy (e). Otherwise, it
is easy to see that we get a subgraph of type (a), or (b) contained in Q1 ∪Q2 ∪P2 ∪P3.

(ii) Q1 is attached to C◦
1 and Q2 is attached to C◦

2 : Excluding the above possibility (i),
we may assume that the other attachment of Q1 is on P2 − C1. Then Q1 ∪ Q2 ∪ P2

contains disjoint crossing paths between C1 and C2. Together with P3 they determine
a subgraph of type (a).

(iii) Q1 is attached to C◦
2 and both endpoints of Q2 are on P2: Let P be a path in B − C

joining Q1 and Q2. Then Q1 ∪Q2 ∪ P ∪ P2 is a tripod on C1 ∪ C2, and together with
P3 we have (d).

Suppose now that T is a tripod with respect to C that is contained in B. If T is not
attached on C◦

1 , let P be a path in B−C from e1 to T . Then T ∪P either contains a pair of
disjoint crossing paths (which we already covered above), or a tripod T ′ with an attachment
on C◦

1 . If T ′ is not attached to P3, then T ′ ∪P2 contains a tripod T ′′ with respect to C1 ∪C2

that is either attached to C1 only (case (c)), or is attached to C1 and C2 (in this case T ′′∪P3

satisfies (d)). Similarly, if T ′ is attached only to C − P2. We are left with the case when T ′

is attached to C◦
1 and to P2 and P3. In this case we construct a path in B − C from e2 to

T ′. It gives rise to disjoint crossing paths, or to a tripod that are disjoint from P2 or P3, and
both of these cases were already covered above.

From now on we may assume that we have P1, P2, P3 without local bridges. Let K ′ =
C1∪C2∪P1∪P2∪P3. By Theorem 4.1 we either extend the embedding of K ′ to G, or find an
obstruction. The first outcome is fine, while in the second case we get one of the obstructions
(a)–(d) of Theorem 4.1. Obstruction (a) of Theorem 4.1 together with P1, P2, P3 necessarily
contains one of our cases (a), (b), or (e). Case (b) of Theorem 4.1 together with P1, P2, P3

implies our cases (c) or (d). The possibility (c) of Theorem 4.1 yields either (a), (b), or (c).
Finally, a dipod D of type (d) in Theorem 4.1 attached three times on P1, say, gives rise to
a tripod with respect to C1 ∪ C2 contained in D ∪ P1 (plus a segment on P2 (or P3) if D is
attached to P2 (respectively, on P3)). This tripod is disjoint from one of the paths, and fits
our case (d).

Finally, we have reached the cases k = 0, 1, 2. The first two (k = 0, 1) are easy. We
are faced with two disk embedding extension problems, and to solve each of them, we apply
Theorem 3.1. The resulting obstruction fits (c). If a cutvertex v of G separating C1 and C2

is on C2 (assuming that the block containing C1 is non-planar), the obstruction may contain
v. (The possible cases are shown in Figure 6(a), (c), and (d).) Note that this is the first time
that disjoint crossing paths or a tripod with respect to C1 have a vertex on C2.

Suppose now that k = 2. Let Q be the block of G containing C1 and C2. If the embedding
of C1 ∪ C2 extends to Q, then we test the other blocks of G for planarity. We either get an
embedding extension to G, or one of the blocks is non-planar. In the latter case we have
(f). So we may assume from now on that G is 2-connected and that there is no embedding
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extension. Since k = 2, Menger’s theorem guarantees that C1 and C2 are in distinct 3-
connected components of the auxiliary graph G̃. If all 3-connected components of G̃ are
planar, then G̃ is also planar. (This is easily seen by constructing a plane embedding of a
graph by using plane embeddings of graphs forming its 2-separation.) Unfortunately, it may
happen that the plane embedding of G̃ obtained this way will not determine an embedding
extension since C1 and C2 are not oriented consistently. In this case, let Q1 ⊃ C1 andQ2 ⊃ C2

be the graphs used in merging at the time when C1 and C2 merge in the same part, and let
e be the corresponding virtual edge. Fixing the embedding of Q1, there are two possibilities
for the embedding of Q2 that differ from each other only by the choice of orientation. One
of them gives the consistent orientation of C1 and C2.

We may assume now that one of the 3-connected components of G̃ is non-planar. If the
two 3-connected components containing C1 and C2, respectively, are planar then we get (f).
Suppose now that the 3-connected component Q1 ⊃ C1 of G̃ is non-planar. This is equivalent
to the property that Q1 minus the auxiliary vertex has no embedding into the disk having C1

on its boundary. By Theorem 3.1, we know how to handle this case. Since Q1 is 3-connected,
we get disjoint crossing paths or a tripod in it. This almost always gives rise to a subgraph
of G satisfying (c). The only trouble may arise if our obstruction in Q1 contains the virtual
edge e having its pair in the 3-connected component Q2 of G̃ that contains C2. In this case,
the replacement of e by a path P in Q2 − e should be done carefully so that P ∩C2 is either
empty, a vertex, or a segment on C2. Since this is easy to achieve, we are through with our
case analysis. It is worth remarking that some of the possibilities when P ∩C2 is non-empty
lead to cases (b) or (d). Some of the really new cases are shown in Figure 6, where each
of the bold segments can be contracted to a point. The cases shown in Figure 6 include all
possibilities that arise when the obstruction in Q1 is either a pair of disjoint crossing paths,
or a tripod whose intersection with C2 is a vertex, or a segment.

At the end we remark that all the steps of the algorithm that follows the above proof are
easy to implement in linear time.

It is worth remarking that all cases of Theorem 4.3 are indeed obstructions for the 0-prism
embedding extension problem, and that they are minimal (except in some cases of (c) when
the intersection with the other cycle is non-empty) in the sense that if any of the branches
is removed from such an obstruction, there exists an embedding extension. Note that the
branch size of minimal 0–prism obstructions is at most 12. The obstructions (a)–(e) (without
showing their “degenerate” versions) are presented in Figure 5.

5 The 2-prism embedding extension problem

It may happen that minimal obstructions for the k-prism embedding extension problems are
arbitrarily large. However, under the additional assumption that there are no local bridges
attached to the paths Pi (1 ≤ i ≤ k), large minimal obstructions are unavoidable only for the
k-prism embedding extension problem with k = 1 or 2. An example of such an obstruction
is shown in Figure 7. Since the general case of large minimal obstructions look like our
example in Figure 7, we use the name millipede. More precisely, a millipede M for the 2-
prism embedding extension problem is a subgraph of G − E(K) which can be expressed as
M = B◦

1 ∪ B◦
2 ∪ · · · ∪ B◦

m (m ≥ 2) where B◦
1 , . . . , B

◦
m are subgraphs of distinct K–bridges

B1, B2, . . . , Bm (respectively) and satisfy the following conditions:
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(1) Each of B◦
1 and B◦

m is embeddable in exactly one of the faces of K. If m is even, then
B◦

1 and B◦
m are embeddable in the same face of K. If m is odd, then B◦

1 and B◦
m are

embeddable in distinct faces of K.

(2) For 2 ≤ i ≤ m− 1, B◦
i is embeddable in both faces of K.

(3) For each i = 1, 2, . . . ,m − 1, B◦
i and B◦

i+1 cannot be embedded simultaneously in the
same face of K.

(4) No other pair B◦
i , B

◦
j (1 ≤ i < i + 2 ≤ j ≤ m) interferes with each other, i.e., for any

embedding of B◦
i , there is an embedding of B◦

j in the same face of K unless such an
embedding is not possible by (1) (when i = 1 or j = m).

(5) B◦
i (1 ≤ i ≤ m) are minimal in the sense that the removal of any branch from B◦

i

destroys either (1), or (3).

C

C

P
1

1

P2

2

Figure 7: A millipede

It is easy to see that a millipede is a minimal obstruction for the embedding extendibility. It
follows from the minimality property (5) that each B◦

i (1 ≤ i ≤ m) contains at most 6 feet
(at most a triple for overlapping with B◦

i−1 and possibly another triple for overlapping with
B◦

i+1) and has at most 11 branches. (We will see that it suffices to consider only millipedes
in which every B◦

i contains at most 4 feet.) Let us remark that the millipedes constructed
by our succeeding theorems will satisfy an even stronger “minimality” condition: Properties
(1), (2) and (4) will hold not only for the subgraphs B◦

i but also for their “master-bridges”
Bi.

Given the 2-prism embedding extension problem with C1, C2, P1, P2, F, F
′ as in Figure

2(b), and K = C1 ∪ C2 ∪ P1 ∪ P2, we define the overlap graph O(G,K) of K-bridges in G
as follows. Its vertices are the K-bridges, and two of them are adjacent in O(G,K) if they
overlap in one of the faces, i.e., they can be embedded in the same face, say F , but their
union cannot be embedded in F . The extended overlap graph AO(G,K) is obtained from
the overlap graph by adding two new vertices, w and w′, which are adjacent to each other.
Moreover, w is adjacent to all bridges of K that are not embeddable in F , and w′ is adjacent
to all bridges that are not embeddable in F ′.
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Lemma 5.1 The embedding of K for the 2-prism embedding extension problem has an ex-
tension to G if and only if the extended overlap graph AO(G,K) is bipartite.

Proof. If a K-bridge B cannot be embedded in any of the faces F,F ′, then B together with
w and w′ determines a triangle, and the extended overlap graph is not bipartite. Therefore
we may assume from now on that every bridge can be embedded in at least one of the faces,
F , or F ′.

Suppose now that we have an embedding extension. Color the bridges that are embedded
in F using color 1, and color the bridges in F ′ using color 2. Moreover, let w be colored 1,
and let w′ be colored 2. It is easy to see that this determines a 2-coloring of AO(G,K), so
the extended overlap graph is bipartite.

Conversely, if the extended overlap graph is bipartite, choose one of its 2-colorings having
w and w′ colored 1 and 2, respectively. Consider the bridges colored 1. Each of them can be
embedded in F since otherwise it would be adjacent in AO(G,K) to w which also has color
1. Moreover, all these bridges can be embedded in F simultaneously, since no two of them
overlap. Similarly, the bridges colored 2 have an embedding in F ′, and we get a required
embedding extension.

The above lemma provides a simple answer for the 2-prism embedding extension problem.
It also yields an algorithm that is linear in the number of edges of AO(G,K). Having a
2-coloring, we easily get an embedding extension. Otherwise, an odd cycle in AO(G,K)
determines an obstruction. Unfortunately, the usual 2-coloring algorithm can be of quadratic
complexity in terms of the size of G since the number of edges of AO(G,K) may be quadratic
in terms of the number of bridges, and this number can be linear in terms of |E(G)|. Therefore
we have to solve the biparticity problem of AO(G,K) with some additional care in order to
fulfil our linearity goal. One possible approach is explained in more detail in [12].

(a) (b) (c) (d) (e) (f)

P P P P P PP P P P P P1 1 1 1 1 12 2 2 2 2 2

Figure 8: H–graphs

In the following results, we will use some special subgraphs of K-bridges. Let B be a
K-bridge in G. For each branch e of K that B is attached to, let e1 and e2 be feet of B
attached as close as possible on e to one and the other end of e (including the possibility
of being attached to the end). Furthermore, let these feet be chosen in such a way that
their total number is as small as possible, i.e., if there is just one attachment on e, we select
e1 = e2, and similarly when different branches ofK share an attachment of B. Let H = H(B)
be a minimal subtree of B that contains all chosen feet. The obtained graph H is said to
be an H–graph of B. Suppose now that B is attached only to P1 ∪ P2. Then H contains
at most 4 feet. If there are three or just two distinct feet in H, then H is unique up to
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homeomorphisms. But in the case of four distinct edges, there are four homeomorphically
distinct cases for H (see Figure 8). Let us remark that the last case of Figure 8 is excluded if
B can be embedded in F since it contains disjoint crossing paths. Note that H–graphs can be
constructed in linear time by standard graph search algorithms. The following simple result
justifies the introduction of H–graphs.

Lemma 5.2 Let G be a graph and K be a subgraph that is 2-cell embedded in some surface.
Let B and B′ be K-bridges in G that can be embedded in the same face F of K. If ∂F is a
cycle in G and neither B nor B′ is a local bridge, then B and B′ overlap in F if and only if
their H–graphs overlap in F .

Theorem 5.3 Let K ⊆ G be the subgraph of G for the 2-prism embedding extension problem,
and let F,F ′ be the faces of K. Suppose that no K–component of G is attached just to one
of the paths P1, P2 of K. Then there is no embedding extension of K to G if and only if
G− E(K) contains a subgraph of one of the following types:

(a) A path that is internally disjoint from K and connects a vertex of ∂F − (P1 ∪ P2) with
a vertex of ∂F ′ − (P1 ∪ P2).

(b) A tripod T with respect to the boundary of one of the faces F,F ′. Not all three attach-
ments of T lie on just one of the paths P1, P2, and if all are in P1 ∪P2, then the tripod
is non-degenerate.

(c) A pair of disjoint crossing paths with respect to the boundary of one of the faces F,F ′.
Each of the two paths is attached to a vertex of K − (P1 ∪ P2).

(d) A non-degenerate dipod with respect to the boundary cycle of F or F ′. The vertices a, c
from the definition of dipod lie on P1 ∪ P2, and not all attachments of the dipod lie on
just one of the paths P1 or P2.

(e) Internally disjoint triads T1, T2 attached to the same triple of vertices on P1∪P2 together
with a path joining the main vertices of T1 and T2. Not all three attachments of T1 ∪T2

are on just one of the paths P1, or P2.

(f) Subgraphs H1,H2,H3 that are pairwise overlapping in F or in F ′. They are mini-
mal pairwise overlapping subgraphs of H-graphs of distinct K-bridges. H2 and H3 are
attached to P1 ∪ P2 only.

(g) A millipede.

(h) A Kuratowski subgraph contained in a 3-connected component L of the auxiliary graph
G̃ of G, where L is such that it does not contain auxiliary vertices of G̃.

Moreover, there is a linear time algorithm that either finds an embedding extension of K to
G, or returns an obstruction Ω of one of the above types.

Proof. We may check the embedding extendibility by testing the planarity of the auxiliary
graph G̃ (cf. case k = 2 in the proof of Theorem 4.3 for details). Moreover, if there is no
embedding extension, then we can reduce the problem to the case when G is 2-connected (or
we get (h)). Note that C1 and C2 are in the same block of G. If C1 and C2 are in the same
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3-connected component of G̃, then we can also reduce the problem to the case when G̃ is
3-connected (or we get (h)). If this is not the case, let G̃′ be the graph obtained from G̃ by
adding the edge joining the auxiliary vertices. By considering the 3-connected components
of G̃′, we can also in this case either get (h) (since the 3-connected components of G̃′ are
also 3-connected components od G̃ except for the one containing C1 and C2), or reduce the
problem to the case when G̃′ is 3-connected. The latter case will be assumed henceforth.

Consider theK–components ofG. Suppose that B is one of them, and that the embedding
of K cannot be extended to K ∪B. We either have (a), or B is attached to the boundary of
one of the faces of K, say to ∂F . In the latter case, let L = ∂F ∪B. Since G̃′ is 3-connected,
the auxiliary graph L̃ of L (with respect to ∂F ) is 3-connected by Lemma 4.2. Clearly, L̃
is non-planar, and by Theorem 3.1, B contains a tripod or a pair of disjoint crossing paths
with respect to ∂F . Since B is not local on P1 or P2, we can use the same strategy as in
the proof of Theorem 4.1 to change the obtained obstacle so that not all of its attachments
are on just one of P1 or P2. Usually we will get case (b), or (c). But there are also two
exceptions. The first possibility is when we get a degenerate tripod with all attachments on
P1 ∪ P2. Add a path P in B between the two triads in the tripod. If P joins the two main
vertices of the tripod, then we have case (e). In all other cases, the union of P and the tripod
contains a non-degenerate tripod, i.e., a subgraph satisfying (b). The other case is when we
have disjoint crossing paths that do not satisfy (c). One of the paths is then attached only
to P1 ∪ P2. Hence, by adding a path in B that joins the two paths, we get a non-degenerate
dipod satisfying (d).

From now on we may assume that every K–component is embeddable either in F , or in F ′

(or both). A linear time algorithm of [12] shows how to solve this problem. That algorithm
finds an induced odd cycle Γ in the extended overlap graph AO(G,K). There are 4 cases to
be distinguished.

(i) Both vertices w and w′ lie on Γ: In this case, the edge ww′ is on Γ since Γ is an
induced cycle. Let B1, . . . , Bm be the K-bridges corresponding to the sequence of vertices
of Γ from w to w′ (but not including these two). By our assumptions, m > 1. By the
definition of AO(G,K), B1 cannot be embedded in F , and Bm cannot be embedded in F ′.
Note that m is odd, so the conclusion here fits condition (1) of the definition of millipede.
Next we describe how to get the subgraph B◦

i of Bi, for i = 1, 2, . . . ,m. Since the cycle Γ
of AO(G,K) is induced, no bridge Bi, 2 ≤ i ≤ m − 1, is adjacent to w, or w′. This means
that Bi itself is embeddable in F and in F ′. Therefore also arbitrary subgraphs B◦

i of Bi

satisfy (2). The bridges Bi and Bi+1 (i < m) cannot be simultaneously embedded in the
same face, and at least one of them is embeddable in both faces of K. By Lemma 5.2, their
H-subgraphs (which are easy to find) overlap in the same way as the bridges themselves. By
taking such obstructions for all bridgesBi, we get small subgraphs of B1, . . . , Bm satisfying (1)
and (3). Since these subgraphs are small, we can check for each of them whether it satisfies
the minimality requirement (5), and remove the superfluous branches whenever necessary.
Finally, (4) is satisfied automatically since Γ is an induced cycle of AO(G,K). Therefore we
have a millipede.

(ii) w ∈ V (Γ): We get a millipede in the same way as in Case (i), except that m is even.
(iii) w′ ∈ V (Γ): Same as Case (ii).
(iv) w,w′ �∈ V (Γ): We will show that in this case the length m of Γ is rather small. Let

B1, . . . , Bm be the K-bridges corresponding to the successive vertices on Γ. Suppose first that
m = 3. If two of the bridges, say B1, B2, are adjacent in AO(G,K) to w (or w′), then we
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replace Γ by the triangle B1, B2, w (respectively, B1, B2, w
′), and by (ii) (respectively, (iii))

we get a millipede. If one of them is adjacent to w, another to w′, we get a millipede of length
3 as it was the case in (i). (This works even though the corresponding cycle in Γ obtained
by replacing the edge B1B2 by the path B1ww

′B2 is not induced.) We may therefore assume
that B2 and B3 are embeddable in F and F ′ and that B1 is embeddable at least in F . For
i = 1, 2, 3, let Hi be an H-graph of Bi. By Lemma 5.2, the H-graphs overlap as much as the
original bridges. We therefore have (f).

Suppose now that m ≥ 5. As above, the cases when two of the bridges Bi are adjacent
to w or w′ (possibly one to w, another to w′) can be reduced to the previously treated cases.
We may thus assume that at most one of the bridges is not embeddable in both F and in
F ′. If there is a bridge that cannot be embedded in one of the faces, we will assume that
this is B1, and that this bridge can be embedded in F . Let us write Bi ≺ Bj if Bi ∪Bj can
be embedded in F and Bi is embedded closer to C1 than Bj. Since none of the bridges is
local on P1 or P2, the relation ≺ is well defined. The relation ≺ is transitive, and since G̃′ is
3-connected, it is also asymmetric. Therefore it has minimal elements. We may assume that
B1 is a minimal element for this relation. (If B1 is only embeddable in F we thus assume
that it is attached to C1 − (P1 ∪ P2), and then B1 is clearly minimal by the definition of the
relation ≺.) We claim that for i = 1, 2, . . . ,m− 2, Bi ≺ Bi+2. Suppose that this is not true.
Let i be the smallest index for which Bi+2 ≺ Bi. Since Bj and Bj+2 do not overlap, they
are ≺–comparable for every j and thus such an index i exists. By our choice of B1, we have
i > 1. Since Bi+2 is attached closer to C1 than Bi, and Bi overlaps with Bi−1, Bi+2 has
an attachment on P1 or P2 that is closer to C1 than one of the attachments of Bi−1 on the
same path. Similarly, since Bi+2 overlaps with Bi+1 and Bi+1 � Bi−1, the bridge Bi+2 has
an attachment that is further away from C1 than an attachment of Bi−1 on the same path
P1, or P2. This implies that Bi+2 overlaps with Bi−1. But this is not possible since m ≥ 5.
This proves the claim. In particular, we know that Bm−2 ≺ Bm. Since B1 is ≺–minimal and
≺–comparable with Bj if j �= 1, 2,m, we have B1 ≺ Bm−2. By transitivity we have B1 ≺ Bm.
This contradicts the fact that B1 and Bm overlap. The proof is thus complete.

Figure 9: One-sided millipedes

In the last part of the above proof, we have learned even more than needed. A straight-
forward extension gives the following result. Let us call a millipede two-sided if it is attached
to C1 − (P1 ∪P2) and to C2 − (P1 ∪P2). Otherwise it is one-sided. Some one-sided millipedes
are shown in Figure 9.

Proposition 5.4 If M is a one-sided millipede, then the number of K-bridges it includes is
at most 4. In particular, M is a small obstruction.
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6 The 1-prism embedding extension problem

It remains to determine minimal obstructions for the 1-prism embedding extension problem.
Let us first extend a few definitions used in previous sections for the purpose of this section.
If F is a face of an embedded graph K ⊆ G, and P,P ′ are paths in G with endpoints on
∂F but otherwise disjoint from K, they are said to be disjoint crossing paths with respect
to F if they cannot be simultaneously embedded in F . The essentially different cases of
disjoint crossing paths with respect to the face F of a 1-prism embedding extension problem
are shown in Figure 10 (up to symmetries). The only case where we have one of the paths
attached to P1 is (d) which also includes the possibility of the attachment at C1 ∩ P1 or
C2 ∩ P1. Tripods with respect to the face F are another kind of obstructions for the 1-prism
embedding extension problem. They are defined in the same way as in the case when the
face is bounded by a cycle, with the additional requirement that it should be an obstruction.
It turns out that tripods with respect to F can be divided into four classes:

1. Attached twice to C1 −P1 or twice to C2 −P1 with the third attachment anywhere else
on ∂F and with no restrictions on non-degeneracy.

2. Attached to C1 − P1, to C2 − P1, and to P1. The attachment on P1 is non-degenerate.

3. Attached once to C1 − P1 (or to C2 −P1) and twice to P1. The attachment on P1 that
is closer to C1 (respectively, closer to C2) is non-degenerate.

4. Attached only to P1. The middle attachment on P1 is non-degenerate.

(a) (b) (d)(c)

C

P P

C

1

1 1

2

Figure 10: Disjoint crossing paths with respect to F

The 1-millipedes are another type of obstructions for the 1-prism embedding extension
problem. These obstructions are of the same type as the millipedes are for the 2-prism
embedding extension problem, and they can be arbitrarily large, though minimal, as well.
A 1-millipede is a subgraph consisting of a path P2 joining C1 and C2 and disjoint from P1,
together with a millipede for the 2-prism problem with respect to K ∪ P2. Moreover, the
following additional requirement is imposed on 1-millipedes:

(6) For j = 3, 4, . . . ,m− 2, denote by l−i and r−i the vertices of attachment of B◦
i−1 ∪B◦

i−2

on K closest to C1 and C2, respectively. Similarly, let l+i and r+i be the extreme vertices
of attachment of B◦

i+1∪B◦
i+2. Then r+i is strictly closer to C2 than r−i and l−i is strictly

closer to C1 than l+i .
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Note that (6) is void if m < 5. It should also be pointed out that we assume that l−3 ∈ C1−P1

(an attachment of B◦
1), and this is considered as being strictly closer to C1 than any vertex

on P1. Similarly on the other side, where r+m−2 ∈ C2 − P1.
Yet another type of obstruction will be needed. Let x1, x2 ∈ V (P1) and suppose that x2

is closer on P1 to C1 than x1 is. A subgraph Ω of G − E(K) is a left side obstruction with
respect to x1 and x2 if it satisfies:

(i) Ω contains a path joining C1 − P1 with x1 (respectively, a path joining C2 − P1 with
x2).

(ii) No attachment of Ω to K is closer to C2 than x1 (respectively, closer to C1 than x2)
and no attachment of Ω is on C2 − P1 (respectively, C1 − P1).

(iii) Ω can be embedded in F in such a way that all feet of Ω attached to P1 (strictly)
between x1 and x2 are touching P1 at the right side of F . (The left and the right are
well defined with respect to Figure 2.)

(iv) Ω cannot be embedded in F in such a way that all feet of Ω attached to P1 (strictly)
between x1 and x2 are touching P1 at the left side of F .

We define similarly the right side obstructions. Their attachments on P1 between x1 and x2

can be embedded on the left side of F but cannot be embedded on the right side.

(a) (b) (c)
C 1

C
2

x x x x

x x x x

2 2 2 2

1 1 1 1

Figure 11: The minimal left side obstructions

Examples of left side obstructions are given in Figure 11. We will prove in Theorem 6.3
that Figure 11 contains all minimal left side obstructions attached to C1 −P1, where case (c)
of Figure 11 represents arbitrary two-sided millipedes for the following 2-prism embedding
extension problem. Add the edge x1x2 (x1 and x2 are formerly non-adjacent) and embed it
across the face F so that it is attached to x1 on the left and to x2 on the right. Add also a
path P2 from C1 − P1 to x1. Let P ′

1 be the segment of P1 from C1 till x2 and let C ′
2 be the

cycle consisting of the segment x2x1 on P1 together with the new edge. Then we consider
the 2-prism problem with respect to K ′ = C1 ∪ C ′

2 ∪ P ′
1 ∪ P2 embedded in the cylinder as

described above. Note that the first bridge in a two-sided millipede for this problem will be
attached between P1 and P2 on C1, while the last one will be attached to the segment of P1

between x2 and x1. It is easy to see that such a millipede is a left side obstruction. Note
that one-sided millipedes do not give rise to left side obstructions.
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Having a left side obstruction Ω1 attached to C1 − P1 and a left side obstruction Ω2

attached to C2 − P1 (with respect to the same pair x1, x2), which do not intersect out of
P1, their union Ω1 ∪Ω2 cannot be embedded in F . This way we get a rich family of 1-prism
embedding obstructions.

Before stating the main result of this section, we will prove a lemma about 3-connected
subgraphs which will be needed in the proof. Let us recall that a graph H is nodally 3-
connected if the graph obtained from H by replacing each branch with an edge between the
corresponding main vertices is 3-connected.

Lemma 6.1 Let G be a graph with disjoint nodally 3-connected subgraphs K and L. Let
π1, π2, π3 be disjoint paths in G joining three main vertices of K with a triple of main vertices
of L. Let J = K ∪ L ∪ π1 ∪ π2 ∪ π3. If for every branch e of K ∪ L, no two consecutive (on
e) connected components of e ∩ (π1 ∪ π2 ∪ π3) belong to the same path πi, then J is nodally
3-connected.

Proof. J is clearly 2-connected. Suppose now that there is a 2-separation J = J1 ∪ J2,
J1 ∩ J2 = {x, y} where x and y are main vertices of J and each of J1, J2 contains two or
more branches of J . One of the paths πi is disjoint from x, y and is thus totally contained in
J2, say. Since K,L are nodally 3-connected, J2 contains all main vertices of K ∪ L. By our
assumption, J has no parallel branches. Thus J1 contains a main vertex z of J . Clearly, z is
obtained as the intersection of one of the paths, say π1, with a branch e in K, say. Since J2

contains all main vertices of K ∪L, x, y both lie on e and both lie on π1. Follow π1 from z in
a direction out of the branch e. The first intersection with K ∪ L must be on e. Otherwise
we could reach a main vertex of K ∪L different from x, y. By our assumption on J , there is
a main vertex w between the two intersections of π1 with e such that w �∈ π1. That vertex
is neither x nor y and belongs to J1. By repeating the above arguments with w, we see that
x, y also belong to another path, π2, or π3. This is a contradiction.

Our next result describes minimal obstructions for 1-prism embedding extension problems.
In cases (f)–(h) of Theorem 6.2, obstructions (and, in particular, 1-millipedes) are defined
with respect to the following 2-prism embedding extension problem. Suppose that in G−P1,
there is no path from C1 − P1 to C2 − P1. Let P2 be a path from C1 − P1 to a vertex x
on P1 such that x is as close as possible to C2. Let y be the neighbor of x on P1 that is
closer to C1 than x. Then let P ′

1 be the segment of P1 from C1 to y, and let C ′
2 be a cycle

yx1xx2y where x1 and x2 are new vertices. We consider the 2-prism problem for the subgraph
K ′ = C1 ∪C ′

2 ∪P ′
1 ∪P2 of the graph G′ obtained from K ′ by adding all K–bridges in G with

an attachment on C1 − P1. (In particular, no attachment on P1 of these K–bridges is closer
to C2 than x.) In case (g) (and (h)) an additional edge xz is added into G′. The vertex
z ∈ V (P ′

1) has the property that in G there is a path internally disjoint from P1 joining
C2 − P1 with z. The 2-prism problems for (f)–(h) in case when P2 joins C2 − P1 with P1

are defined similarly. It should also be mentioned that the millipedes appearing in (h) are
defined with respect to above 2-prism embedding extension problems.

Theorem 6.2 Let G and K = C1∪C2∪P1 ⊆ G be graphs for a 1-prism embedding extension
problem. Suppose that no K–component of G is attached just to P1. Then there is no
embedding extension to G if and only if G − E(K) contains a subgraph Ω of one of the
following types:
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(a) Disjoint crossing paths with respect to the face of K.

(b) A tripod with respect to the face of K. If G − P1 contains a path joining C1 and C2,
then at least one attachment of the tripod is not on P1.

(c) A path P2 joining C1 and C2 and disjoint from P1 together with a dipod attached three
times to P1 and once to (C1 ∪C2)− (P1 ∪P2). If the dipod is degenerate, its degenerate
attachment is not on P1.

(d) A path P2 from C1 to C2 disjoint from P1 together with a 2-prism embedding extension
obstruction of type (b)–(f) of Theorem 5.3 with respect to K ∪P2. (It may happen that
such an obstruction is not minimal. In this case, a part of P2 can be removed.)

(e) A 1-millipede.

(f) Same as (d) but with P2 joining C1 − P1 (or C2 − P1) with a vertex x ∈ P1. No other
attachment of the obstruction is closer to C2 (respectively, to C1) than x.

(g) Same as (f) where P2 joins C1 − P1 with x ∈ P1 (respectively, C2 − P1 with x ∈ P1)
where one of the branches of the obstruction joins x with another vertex z ∈ P1. In Ω,
this branch is replaced by a branch joining C2 − P1 (respectively, C1 − P1) with z.

(h) A one-sided 1-millipede attached to C1 (or C2) and to a segment of P1. The path P2 of
the 1-millipede joins C1−P1 (respectively, C2−P1) with the attachment x on P1 closest
to C2 (respectively, C1). If the 1-millipede contains a branch joining x with another
vertex z on P1, then this branch is possibly replaced in Ω by a branch joining C2 − P1

(respectively, C1 − P1) with z.

(i) Union Ω = Ω1 ∪ Ω2 where Ω1 ∩ Ω2 ⊆ P1. For i = 1, 2, Ωi contains a path πi joining
Ci−P1 with P1. The end x2 of π2 on P1 is closer to C1 than the end x1 of π1. Moreover,
Ω1 and Ω2 are both left side, or both right side obstructions with respect to x1 and x2.

(j) A Kuratowski subgraph contained in a 3-connected component of the auxiliary graph G̃.
The 3-connected component does not contain auxiliary vertices.

Cases (f), (g), (h), and (i) appear only when in G − P1 there is no path from C1 to C2.
Moreover, there is a linear time algorithm that either finds an embedding extension of K to
G, or returns an obstruction Ω for the embedding extendibility. In the latter case, Ω fits one
of the above cases (a)–(j).

Proof. First of all, we can check the embedding extendibility by applying Theorem 4.3.
Suppose now that there is no embedding extension of K to G. Consider the block(s) of G
containing C1 and C2. If there is an embedding extension of K to this (these) block(s), then
there is also an embedding extension to G, unless we have (j). If C1 and C2 are in different
blocks of G, then there is no embedding extension if and only if one of them, say the one
containing C1, has no embedding extension in the disk with C1 on the boundary. We leave this
case to the end of the proof since we will reduce it to the 2-connected case. Suppose now that
C1 and C2 are in the same block of G. To simplify notation, we will assume that this block is
G itself, i.e., G is 2-connected. Then there is no embedding extension if and only if one of the
3-connected components of the cylinder auxiliary graph G̃ is non-planar. (See the details in
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the proof of Theorem 4.3, case k = 2.) If the 3-connected component(s) of G̃ containing the
auxiliary vertices is (are) planar, then we have (j). Otherwise, let G be the graph obtained
from G̃ by adding an edge between the auxiliary vertices. Since G is 2-connected, the cycles
C1 and C2 and the auxiliary vertices will be in the same 3-connected component of G. The
other 3-connected components of this graph are also 3-connected components of G̃, and can
thus be eliminated.

We assume from now on that G is 3-connected. First of all, we try to find two disjoint
paths in G − P1 joining C1 and C2. The search for such paths can be performed in linear
time by standard flow techniques which were also used in our previous results. Suppose first
that we have found such paths P2 and P3. If P1, P2, P3 are not attached consistently on C1

and C2, then we have (a). Suppose now that this is not the case. Then we try to change P2

and P3 in such a way that there are no local bridges of K ∪ P2 ∪ P3 attached only to P2 or
only to P3. To achieve this goal, we use the same technique as in the proof of Theorem 4.3.
Let K ′ = K ∪ P2 ∪ P3. For i = 2, 3, let Gi be the graph consisting of Pi together with all
its local K ′–bridges and with an additional edge joining the ends of Pi. If Gi is planar, then
an algorithm from [15] replaces Pi with a new path which has no local bridges attached to
it. So, we either achieve our goal, or get one of Gi, say G3, to be non-planar. Let C be the
cycle composed of the paths P1 and P2 together with the segments on C1 from P1 to P3 and
from P3 to P2, and the segments on C2 from P1 to P3 and from P3 to P2. Denote by B the
(K ∪ P2)–component in G that contains P3. If B contains a vertex of (C1 ∪ C2) − C, then
a path in B from that vertex to an end of P3 together with P2 determines an obstruction of
type (a). Therefore we may assume that B is attached only to C. Since G3 is non-planar,
C ∪ B is non-planar. By Lemma 4.2, the auxiliary graph of C ∪ B with respect to C is
3-connected. By Theorem 3.1, we can find in B a pair of disjoint crossing paths or a tripod
with respect to C. We can change the obtained obstruction as in the proof of Theorem 5.3 to
get a 2-prism obstruction in the graph H = K ∪P2 ∪B with respect to its subgraph K ∪P2.
It follows from the proof of Theorem 5.3 that the only obstructions that appear in this case
are types (b)–(e) of Theorem 5.3. Thus we have our case (d).

Suppose now that P2 and P3 do not have local K ′–bridges. By Theorem 4.1, the obstruc-
tions to the non-extendibility of the embedding of K ′ to G are rather simple. Since G is
3-connected and in G there are three disjoint paths from C1 to C2, also the auxiliary graph
G̃ of G is 3-connected. Therefore we need to consider only cases (a)–(d) of Theorem 4.1.
Case (a) of Theorem 4.1 gives our case (a) or (d) (the latter one being case (d) of Theorem
5.3). Case (b) yields case (b) of Theorem 5.3, thus our case (d). (Here we need to be careful
in selecting two paths among P1, P2, P3 for which we get the 2-prism obstruction. We need
to take P1. The other path is P3 if the tripod obstruction of case (b) is attached to P2.
Otherwise, we take P2.) Case (c) of Theorem 4.1 yields case (c) of Theorem 5.3, thus our
case (d). Finally, in case (d) of Theorem 4.1, we either have cases (b) or (d) of Theorem 5.3
(thus our case (d)), or we have a degenerate dipod attached three times to P1 and disjoint
from P2, say. In the latter case, we get our possibility (c). (Note that (c) is contained in (d)
if the dipod is non-degenerate.)

Next we suppose that there are no two paths P2, P3 as asked for above. Suppose that
there is a path P2 disjoint from P1 joining C1 and C2. Let B be the K-bridge containing P2.
We will show that B either contains a subgraph of type (a), or (b), or else P2 can be changed
so that the local bridges on P2 will disappear. In the latter case, we will be able to get an
obstruction of type (a), (d), or (e).
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For i = 1, 2, let Si be the segment on Ci between the “leftmost” and the “rightmost”
attachment of B to Ci − P1. Let B′ = (B − P1) ∪ S1 ∪ S2. For i = 1, 2, if Si is not just a
vertex, let xi be the end of P2 on Si. Otherwise, we add to B′ a pendant edge attached to the
vertex Si, and we let xi be the new vertex on this edge. Let Q0, Q1, . . . , Qt be the shortest
sequence of blocks of B′ satisfying the following conditions:

(i) x1 ∈ V (Q0), x2 ∈ V (Qt), and
(ii) for i = 1, 2, . . . , t, Qi−1 and Qi intersect at a cutvertex wi of B′.

By the minimality requirement for t, the blocks Qi and the cutvertices wi are all distinct
and uniquely determined. We also define w0 = x1 and wt+1 = x2. Let us mention that the
sequence w0, Q0, w1, Q1, . . . , wt, Qt, wt+1 can be determined in linear time by standard bicon-
nectivity algorithms. We also note that w1, w2, . . . , wt are vertices of P2. By our assumption,
B′ contains no two disjoint paths from C1 to C2. Thus, by Menger’s Theorem, we have t ≥ 1.

Suppose that one of the blocks Qi (1 ≤ i < t) cannot be embedded in the plane with
wi and wi+1 on the boundary of the outer face. Let Ki be its subgraph obtained from the
Kuratowski subgraph of Qi +wiwi+1 by deleting its edge wiwi+1 if necessary. Next, find in G
three disjoint paths π1, π2, π3 from K to the main vertices of Ki (in linear time by using flow
techniques). This is possible since G is 3-connected. We will show next that we can change
the paths πj in such a way that one of them will be attached to the end of P2 on C1 and
one of them to the end of P2 on C2. Since Qi is 2-connected, there are two disjoint paths in
Qi from {wi, wi+1} to main vertices of Ki. Let π′1 and π′2 be obtained from these paths by
adding a segment of P2 from wi to C1 and from wi+1 to C2, respectively. If π′1 is disjoint from
π1, π2, π3, it can replace π1. Otherwise, suppose that π′1 first meets π1 (in direction from C1).
Do the same with π′2: if it does not intersect any of the paths, it can replace π2. If its first
intersection from C2 with π1 ∪ π2 ∪ π3 is on π2 (or similarly π3), then we replace π1 with the
segment of π′1 up to its intersection with π1 followed by the remaining segment of π1, and
we replace π2 with a path consisting of the initial segment of π′2 and the terminal segment
of π2. Our goal for the paths to attach to C1 and to C2 is then satisfied. The remaining
possibility is when π′2 first intersects π1 as well as π′1 does. In this case, let y1, y2, . . . be the
consecutive intersections of π′1 with π1∪π2∪π3. Similarly, let z1, z2, . . . be the intersections of
π′2 with the union of the paths. By our assumption, y1, z1 ∈ V (π1). Suppose that p, q are the
largest indices so that all y1, . . . , yp and z1, . . . , zq belong to π1. Let y be the vertex among
y1, . . . , yp, z1, . . . , zq which is closest to the end of π1 in K ′. Suppose that y ∈ π′1. Replace
now π1 by the segment of π′1 till y and the segment of π1 from y to its end at a main vertex
of Ki. Now, π′2 either does not intersect the paths πj at all, or intersects first a path distinct
from π1, and we can apply the above procedure to fulfil our task.

Now we have three disjoint paths π1, π2, π3 joining K with three of the main vertices of
Ki, where one of the paths starts at C1 ∩ P2 and another one starts at C2 ∩ P2. Note that
these two paths pass through wi and wi+1, respectively. Let H be the graph obtained from
Ki by adding the three paths and the cycle C obtained as follows. Let e1 and e2 be edges of
C1 and C2, respectively, that are adjacent to P1 (both at the same side of P1 with respect to
the given embedding of K in the cylinder). Then let C be the cycle obtained from K−e1−e2
by adding a new edge between the two vertices of degree one. We can change π1, π2, π3 so
that the graph H = C ∪ Ki ∪ π1 ∪ π2 ∪ π3 has no parallel branches. By Lemma 6.1, the
auxiliary graph of H with respect to the cycle C is nodally 3-connected. By Theorem 3.1,
H contains a tripod T (since there are only three attachments on C). By construction of H,
the tripod T is also a tripod in G with respect to the face of K since it is attached twice to
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K − P1, and if the third attachment lies on P1, it is non-degenerate. Thus we have our case
(b).

Consider now Q0 and suppose that it is non-trivial, i.e., S1 is not just a vertex. Let p
and q be the endpoints of the segment S1, and let Q′

0 be the graph obtained from Q0 by
adding the edges pw1 and qw1 to it. If Q′

0 has no embedding in the plane so that the cycle
S1 + pw1 +w1q bounds the outer face, then we can get an obstruction Ω0 by using Theorem
3.1. If Ω0 is attached to the cycle at w1, then we add to it the segment on P2 from w1 to C2.
Now Ω0 is either a pair of disjoint crossing paths with respect to the face of K (case (a)) or
a tripod attached to K − P1 (case (b)).

We perform the similar procedure with Qt. Not having obtained an obstruction, we know
that the graph Q = Q0 ∪Q1 ∪ · · · ∪Qt can be embedded in the face F of K. Since P2 ⊆ Q,
every (K ∪ P2)–bridge in G that is locally attached to P2 is totally contained in Q. Now,
since Q can be embedded in F , the algorithm of [15] enables us to remove the local bridges
at P2 in linear time. Note that also after a possible change of P2 by another path in Q with
the same endpoints, P2 still passes through w1, . . . , wt and that for every (K ∪P2)–bridge B,
there is some i, 0 ≤ i ≤ t, such that B is attached to P2 only between wi and wi+1.

Now we can apply Theorem 5.3 for the subgraph K ′ = K∪P2 of G. We note that P2 plus
a 2-prism embedding obstruction of Theorem 5.3 is not necessarily a minimal obstruction
for our embedding extension problem. Clearly, the deletion of any branches not in P2 is not
possible since we have a minimal obstruction for the embedding extension of K ′. However,
P2 or a part of it may be superfluous in the obstruction and may then be omitted. Note that
case (a) of Theorem 5.3 gives our case (a), and cases (b)–(f) give (d). Case (h) of Theorem 5.3
can be excluded because of our initial connectivity reductions. In the remaining case (g) of
millipedes, we claim that we really get a 1-millipede. We need to show that the corresponding
millipede for K ′ satisfies (6). In order to achieve this property, we change P2 before applying
Theorem 5.3 as explained in the next paragraph.

For i = 0, 1, . . . , t, let Q′
i be K ′ together with all K ′–bridges attached to the segment

wiwi+1 of P2, except for those K ′–bridges whose only attachment on P2 is one of wi, wi+1.
If the embedding of K ′ cannot be extended to the obtained subgraph Q′

i of G, we get an
obstruction of type (a), (d), or a millipede. Having a 1-sided millipede, its length m is at
most 4 (Proposition 5.4), and thus it is clear that it satisfies the required property (6). Two-
sided millipedes are excluded since in Q′

i, bridges of K ′ are either not attached to C1 − P1

(if i �= 0), or are not attached to C2 − P1 (if i �= t) since t ≥ 1. Thus we may assume that
we have an extension of the embedding of K ′ to Q′

i. Suppose first that i �= 0, t. Consider the
induced embedding of Qi ⊆ Q′

i and change the segment wiwi+1 of P2 to be the leftmost path
in Qi from wi to wi+1. After this change of P2, there is just one bridge Ri attached to the
right side of the segment (with respect to the embedding of Q′

i) that has an attachment on
P1 since Qi is 2-connected. Unfortunately, some local bridges attached at the right side of
the segment may arise. In such a case, replace the obtained segment of P2 by the rightmost
path through such local bridges. It is easy to see that, because of the 3-connectivity, local
bridges disappear after this change. On the right side of the new segment, the same bridge
Ri remains as the only bridge on the right of it, while on the left, we can get more than one
bridge. No two of the left bridges overlap. Moreover, every left bridge overlaps with Ri since
Ri is attached to wi and to wi+1. We perform similar change for i = 0, t (and possibly change
the ends of P2 on C1 and C2).
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Suppose that, after the above change of P2, we get a millipedeM when applying Theorem
5.3. If M is one-sided, it satisfies (6) since m ≤ 4. If M is two-sided, then it can contain
at most three bridges from Q′

i. If it contains two or three such bridges, Ri is among them.
Suppose now that for some j, 3 ≤ j ≤ m − 4, r+j � r−j (i.e., (6) is violated). Notation �
means being closer to C1 than to C2 on P1. Then r+j = r−j . By (4), r = r+j is the only
attachment of B◦

j+1 ∪ B◦
j+2 on P1. Since B◦

j � B◦
j+2, B

◦
j+1 overlaps with B◦

j and with B◦
j+2

on P2. This implies that B◦
j , B

◦
j+1, B

◦
j+2 are the three bridges of some Q′

i and that B◦
j+1 = Ri.

Since B◦
j+2 is attached only to P1 ∪ P2, we have j + 2 < m. Thus, there is a bridge B◦

j+3

overlapping with B◦
j+2 and not overlapping with B◦

j+1. But this is, clearly, not possible. We
have a contradiction, so r−j ≺ r+j . The proof that l−j ≺ l+j is similar. Hence, (6) holds.

We have covered the case when, in G− P1, there is a path from C1 to C2. Suppose now
that this is not the case. Then the K-bridges can be partitioned into classes B1,B2 such
that Bi (i = 1, 2) contains exactly those bridges that are attached to Ci − P1. Let x1 be the
vertex of P1 as close to C2 as possible such that there is a bridge in B1 that is attached to
x1. (If none of the bridges in B1 is attached to P1, we let x1 be the end of P1 on C1.) Define
similarly x2 for the bridges in B2. For i = 1, 2, we let Gi be the graph consisting of Ci, the
segment of P1 from Ci to xi, and the bridges in Bi. We will use the same notation later when
providing details for the case when C1 and C2 are in distinct blocks of G. Clearly, this is not
the case if and only if on P1, x1 is strictly closer to C2 than x2.

Let π1 be a path in G1 joining C1 with x1 such that π1 ∩ P1 = {x1}. Define similarly π2

in G2. Suppose that we have an embedding extension of K to G. If π1 is attached to x1 at
the left side of F (with the obvious meaning of the “left” with respect to Figure 2), then π2

is attached at the right side. Then all the attachments of G1 to P1 at x1 and between x1 and
x2 are also on the left. Thus we say that G1 has the left side embedding and, similarly, G2

has the right side embedding with respect to x1 and x2. There are two possibilities for the
non-existence of embedding extensions: either G1 (or G2) admits neither the left nor the right
side embedding, or each of G1 and G2 does not admit the left side embedding (respectively,
the right side embedding), but each of them admits the right (left) side embedding.

Suppose first that G1 admits neither side embeddings. What are the possible obstruc-
tions? Define the graph G′

1 as follows. Let y ∈ V (P1) be the neighbor of x1 that is closer to
C1 than x1. Replace the edge yx1 of G1 by a pair of paths of length two between these two
vertices and denote by C ′

2 the obtained cycle of length 4. In addition to this, add the edge
x1x2. It is easy to see that G1 has neither side embeddings if and only if the obtained graph
G′

1 has no embedding extending the 1-prism embedding of K ′ = C1 ∪ C ′
2 ∪ (P1 ∩ G′

1) with
C1 and C ′

2 on the boundary. (Note: the two embeddings of K ′ are really equivalent to each
other.) This type of 1-prism embedding extension problem has been covered above — the
case when there is a path π1 disjoint from P1 joining the two cycles. Since C ′

2 is joined to C1

only through y and x1, we have just one such path. It is easy to see that G′
1 is 2-connected

and that the auxiliary graph G′
1 with the auxiliary vertices joined to each other is 3-connected

(since there are no local bridges on P1). As shown above, this gives rise to obstructions of
types (a), (b), (d), or (e) for the extension problem of G′

1. The obtained obstruction possibly
contains the new edge x1x2 which is not present in G. By replacing this edge by π2, we get
an obstruction Ω for our original 1-prism embedding extension problem. If Ω is of type (a)
(with respect to G′

1), then it is easy to see that π2 �⊆ Ω and that Ω fits our case (a) as well.
If Ω is of type (b) then, again, π2 is not a part of Ω. Thus Ω fits case (b). Note that in this
case Ω can be a tripod attached only to P1. In the case of type (d), the path appearing in (d)
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is π1 (which may have been changed when constructing the obstruction). We have our case
(f) or (g) with P2 = π1. In case (e) in G′

1, note that Ω cannot be attached to C ′
2 − (P1 ∪P2).

Thus the corresponding 1-millipede is one-sided, and we have (h).
Up to symmetries, the only remaining case is when neither G1 nor G2 admits the left side

embedding. We may as well assume that G1 and G2 admit the right side embeddings. Then
we are looking for minimal left side obstructions. It is clear that we get case (i).

It remains to consider the case when C1 and C2 are in distinct blocks of G. Let G1 and
G2 be the corresponding blocks. We suppose that G1 has no embedding in the plane with
C1 bounding a face. An obstruction for this will obstruct the original embedding extension
problem. Let us remark that using Theorem 3.1 is not a straightforward success since an
obstruction obtained by using that result could intersect P1 too many times. However, the
application of Theorem 3.1 is possible if G1 ∩ P1 is just the end of P1 on C1. Then the
obstruction is either our case (a), or (b) (or (j)). Thus we assume that this is not the case.

Note that G1 ∩ P1 is a segment of P1 from C1 to x1. Let y be the neighbor of x1 that is
closer to P1 than x1. By the assumption made above, y is well-defined. Define G′

1 to be the
graph obtained from G1 by replacing the edge yx1 with two paths of length two between x1

and y. Denote by C ′
2 the obtained cycle of length four consisting of these two paths. Clearly,

G′
1 has an embedding in the plane with C1 and C ′

2 bounding faces if and only if G1 has an
embedding with C1 bounding a face. By our assumption, this is not the case. Thus G′

1 has no
1-prism embedding extension with respect to K ′ = C1∪C ′

2∪ (P1∩G1). Possible obstructions
have been classified above since in this problem we have a path disjoint from the first one.
We get obstructions of types (a), (b), (f), or (h).

Case (i) of the previous theorem is well-described if we know what are the minimal left side
obstructions and how we get them in linear time. Their discovery was covered in the theorem.
The proof of the last theorem was also detailed enough to yield a simple classification of these
obstructions.

Theorem 6.3 Let Ω be a minimal left side obstruction with respect to x1 and x2. Then
Ω is one of the graphs shown in Figure 11 where case (c) represents an arbitrary two-sided
millipede for the 2-prism embedding extension problem described before Lemma 6.1.

Proof. We will use all the notation and assumptions introduced in the preceding proof up to
the point where we encountered the case (i). We suppose that there is a left side obstruction
in G1.

Let P ′
1 be the segment of P1 from C1 to x2, and let C ′

2 be the segment of P1 from x2 to
x1 together with an additional edge x1x2. (If x2 is just preceding x1 on P1, then we add a
path of length two in order not to get parallel edges.) Define G′

1 to be the graph obtained
from C1 ∪P ′

1 ∪C ′
2 by adding all bridges from B1. Then G1 has no left side embedding if and

only if G′
1 has no embedding in the cylinder with C1 and C ′

2 on the boundary (with C1 at
the bottom and C ′

2 with its new edge on the right side). Thus we are looking for 1-prism
embedding extension obstructions in G′

1 with respect to K ′ = C1 ∪C ′
2∪P ′

1. Since in B1 there
is a bridge joining C1 − P ′

1 with x1 ∈ C ′
2 − P ′

1, we get the case with two or three disjoint
paths from C1 to C ′

2 (counting also the path P ′
1). If there are three disjoint paths, they

obstruct the right side embeddings of G1. By applying Theorem 6.2, we get an obstruction
Ω1 of type (a), (b), (d), or (e) with respect to G′

1 since these are the possible cases that arise
when in addition to P ′

1, there is only one path. In cases (d) and (e), we may suppose that
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the corresponding path P2 is π1 (which has possibly been changed during the procedure of
constructing the obstruction, but its end x1 has reminded unchanged). We know, moreover,
that Ω1 has right side embeddings since G1 has such an embedding in F . Let us now consider
particular cases for the obtained left side obstruction.

If Ω1 is of type (a) (in G′
1) then we claim that the disjoint crossing paths Q1, Q2 can be

changed in such a way that one of them is attached to x1. If this is not the case already in
Ω1, add the path π1. Note that each of Q1, Q2 is attached to C1 − P1 and to the segment
of P1 between x2 and x1 since otherwise they also obstruct the right side embeddings. If π1

intersects Q1 or Q2 in an internal vertex, then we can change Q1 or Q2 so that one of them is
attached to x1. Otherwise, we can either replace one of the paths by π1, or Ω1 ∪π1 obstructs
the right side embeddings. Hence the claim. Consequently, we have a left side obstruction
represented in Figure 11(a).

If Ω1 is of type (b), then it is also the right side obstruction. If it is of type (d), corre-
sponding to one of the cases (b), (d), (e), or (f) of Theorem 5.3, it is a right side obstruction
as well. Type (d), case (c) is a right side obstruction except in two cases. One of them is
represented in Figure 11(b), while the other one contains case (a) of Figure 11 after remov-
ing the middle part of π1. Finally, if Ω1 is a millipede, it does not obstruct the right side
embeddings if and only if it is two-sided. So, the last type of minimal left side obstruction is
as claimed.

7 Conclusion

There is an additional property that the millipedes may be assumed to have. This property
is essential for our further applications of the results of this paper and will be stated in our
last results.

An extended millipede (or an extended 1-millipede) is defined by the same conditions (1)–
(4) (and (6)) as the millipede, but (5) is replaced by the requirement that B◦

i (1 ≤ i ≤ m)
is an H–graph of a K–bridge in G. This assures, in particular, that B◦

i (2 ≤ i ≤ m− 1) are
attached to P1 and to P2, but we lose the minimality property of millipedes as obstructions.

For Ω ⊆ G−E(K) we define b(Ω) to be the number of branches of Ω where all vertices of
attachment of Ω (including those of degree 2 in Ω) are considered to be main vertices of Ω.

Theorem 7.1 Let K ⊆ G be a subgraph for a 2-prism embedding extension problem. There
is a linear time algorithm that either finds an embedding extension of K to G, or returns an
obstruction Ω ⊆ G−E(K) for such extensions. In the latter case, the obstruction Ω satisfies
one of the following conditions:

(a) Ω is small, b(Ω) ≤ 20, K ∪Ω has at most four K–bridges, and at most 8 vertices of Ω
are on P2.

(b) Ω = B◦
1 ∪B◦

2 ∪ · · · ∪B◦
m is an extended millipede of length m ≥ 5. Then b(Ω) ≤ 5m and

at most 2m vertices of Ω are on P2. Moreover, if D (⊇ B◦
2 ∪ · · · ∪B◦

m−1) is the union
of all K–bridges in G that are attached only to P1 ∪ P2, then there is an embedding
extension of K to K ∪D.
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Proof. Consider first the 2-prism problem for K ∪D. By applying Theorem 5.3, we either
get an embedding extension toK∪D or a small obstruction since millipedes have attachments
out of P1 ∪ P2. In the latter case we have (a). Otherwise, we apply Theorem 5.3 again, this
time for the original 2-prism problem. What we have gained, is that in the case of millipedes,
we can guarantee the property stated in (b). The stated bounds follow from Theorem 5.3.
Note that the case of millipedes having m < 5 is hidden in our case (a).

Theorem 7.2 Let K = C1 ∪ C2 ∪ P1 ⊆ G be a subgraph for a 1-prism embedding extension
problem. Suppose, moreover, that there is a path in G disjoint from P1 that joins C1 and
C2. There is a linear time algorithm that either finds an embedding extension of K to G, or
returns an obstruction Ω ⊆ G−E(K) for such extensions. In the latter case, the obstruction
Ω satisfies one of the following conditions:

(a) Ω is small, and b(Ω) ≤ 29.

(b) Ω = P2∪B◦
1∪B◦

2∪· · ·∪B◦
m is an extended 1-millipede of length m ≥ 5. Then b(Ω) ≤ 7m.

Moreover, if D (⊇ B◦
2 ∪ · · · ∪B◦

m−1) is the union of all (K ∪ P2)–bridges in G that are
attached only to P1 ∪ P2, then there is an embedding extension of K to K ∪ P2 ∪D.

Proof. Apply the algorithm described in the proof of Theorem 6.2 with the only difference
being that instead of using Theorem 5.3 within that proof, we use Theorem 7.1 instead. The
stated bounds on the branch size also follow from Theorem 7.1.
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[11] M. Juvan, J. Marinček, B. Mohar, Efficient algorithm for embedding graphs in arbitrary surfaces,
in preparation.

[12] M. Juvan, B. Mohar, A linear time algorithm for the 2-restricted embedding extension problem,
submitted.

[13] A. Karabeg, Classification and detection of obstructions to planarity, Linear and Multilinear
Algebra 26 (1990) 15–38.

[14] S. MacLane, A structural characterization of planar combinatorial graphs, Duke Math. J. 3
(1937) 460–472.

[15] B. Mohar, Projective planarity in linear time, J. Algorithms 15 (1993) 482–502.

[16] B. Mohar, Universal obstructions for embedding extension problems, submitted.

[17] B. Mohar, A Kuratowski theorem for general surfaces, in preparation.

[18] C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, 1982.

[19] N. Robertson, P. D. Seymour, Graph minors. VIII. A Kuratowski theorem for general surfaces,
J. Combin. Theory Ser. B 48 (1990) 255–288.

[20] N. Robertson, P. D. Seymour, Graph minors. IX. Disjoint crossed paths, J. Combin. Theory Ser.
B 49 (1990) 40–77.

[21] P. D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293–309.

[22] P. D. Seymour, Adjacency in binary matroids, European J. Combin. 7 (1986) 171–176.

[23] P. D. Seymour, A bound on the excluded minors for a surface, submitted.

[24] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. Assoc. Comput.
Mach. 27 (1980) 445–456.

[25] C. Thomassen, 2–linked graphs, European J. Combin. 1 (1980) 371–378.

[26] W. T. Tutte, Connectivity in Graphs, Univ. Toronto Press, Toronto, Ontario; Oxford Univ.
Press, London, 1966.

[27] S. G. Williamson, Embedding graphs in the plane — algorithmic aspects, Ann. Discrete Math.
6 (1980) 349–384.

[28] S. G. Williamson, Depth-first search and Kuratowski subgraphs, J. Assoc. Comput. Mach. 31
(1984) 681–693.

31


