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A conjecture of Cyvin (Cyvin, S .  J. J. Math. Chem. 1992,9,389) concerning mono-q-polyhex graphs is proved 
for q I 6 and disproved for q > 6. The correct result for q > 6 is then established. 

1. INTRODUCTION 

A polyhex can be defined as a graph H which is obtained 
from the hexagonal lattice L6 of the plane by taking a cycle 
C in the graph of L6 and defining H to be the part of L6 in 
the disk bounded by C, including C. Similarly, a mono-q- 
polyhex, q an integer greater than 3, is obtained from the 
mono-q-hexagonal lattice (all faces are hexagons except one 
which is a q-gon, and three faces meet at each vertex) by 
specifying a cycle Csuch that the q-gon is included in the disk 
bounded by C. 

A simple description of the mono-q-hexagonal lattice is as 
follows. Let L1 be one-sixth of the hexagonal lattice obtained 
by taking one of its hexagons Q, the middle point x of Q, and 
the six rays from x through each vertex of Q toward infinity 
(see Figure 1). Then L1 is one of the wedges of the plane 
between the two consecutive rays. The mono-q-hexagonal 
lattice is then obtained by taking q copies of L1 and identifying 
their sides in circular order. Note that L3, L4, L5, and L6 can 
be realized in 3-space so that all the hexagons remain congruent 
(as an unbounded cone with its apex in the middle of the 
q-gon), while L7, LS, ... cannot be modeled with congruent 
hexagons due to their hyperbolic nature. The above description 
of L, also helps us to represent the mono-q-polyhexes by 
specifying the q wedges in the copies of L1 (see Figure 2). 

Let H by a mono-q-polyhex, and let nint and h denote the 
number of internal vertices of H and the number of hexagons 
(if q = 6, let h be the number of hexagons minus 1, so that 
the q-face is not counted by h) ,  respectively. A useful relation 
was derived by Gutman2 in case of q = 6: 

nint I 2h + 3 - r(12h + 9)'/21 (1) 

and it was conjectured by Cyvinl that (1) can be generalized 
to 

nint I 2h - 1(4rh + ?)'/2 - rl (2) 

where r = q / 2 ,  and [XI denotes the ceiling of x .  
In this paper we prove (2) for q 5 6 (theorem 2.1) and also 

show that this bound is the best possible (theorem 2.2). On 
the other hand, for every q 1 7 we construct infinitely many 
counterexamples for ( 2 ) .  The correct result for q > 6 is then 
provided as theorem 3.1. 

The mono-q-polyhexes have some chemical significance as 
interesting molecular graphs. Take, for example, the (4)- 
circulenes. The corannulene C20H10 is a (5)~irculene;~ the 
mronene C24H12 corresponds to a (6)circulene. A (7)circulene, 
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Figure 1. The hexagonal lattice. 

Figure 2. A wedge of a mono-5-polyhex. 

C28HL4, has also been synthesized," and a synthesis of (8)- 
circulene O32Hl6 has been a t t e m ~ t e d . ~  

2. CASE q I 6  
In this section we will prove the following two theorems. 
Theorem 2.1. Let H be a mono-q-polyhex where q I 6 .  

Theorem 2.2. Let q 1 3 and r = 412. There are infinitely 
Then (2) holds. 

many mono-q-polyhexes for  which 

nint = 2h + r - (4rh + (3) 

Let us first describe the special extrema1 mono-q-polyhexes 
of theorem 2.2. Note that the square root will be an integer 
or a half-integer (if q is odd) in this case. It is worth mentioning 
that it also follows from our proofs that the constructed 
examples are the only ones for which (3) holds if q I 6 (while 
in ( 2 )  we may have equality for many other mono-q-polyhexes). 

Let k 1 0 be an integer, and let H(q,k) be the mono-q- 
polyhex that contains the q-gon Q plus all the hexagons that 
are at a distance (measured by the number of hexagons) of 
at most k from Q. One easily verifies that the number of 
hexagons in H(q,k)  (not counting Q if q = 6) is equal to 

h = q(l + 2 + 3 + ... + k )  = qk(k + 1)/2 ( 4 )  
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Similarly, 

nint = q( l  + 3 + 5 + ... + 2k - 1) = qk2 ( 5 )  

Using (4) and ( 5 ) ,  it is easy to verify that eq 3 is satisfied. We 
thus have proved theorem 2.2. 

Let H be a mono-q-polyhex. Denote by n2 and n3 the number 
of vertices on the boundary of H that are of degree 2 or 3 in 
H, respectively. By summing the degrees of vertices in H we 
get 

2e = 3nint + 3n3 + 2n2 (6) 

where e is the number of edges. By counting the number of 
incident vertex-face pairs in two ways we obtain the following 
relation: 

6h + q = 3nint + 2n3 + n, (7) 

Note that H has nint + n3 + nzvertices and h + 2 faces (counting 
the unbounded face as well). Therefore we get by using Euler’s 
formula and (6) and (7) 

3nint + 2n3 + n, - q = 6h = -6(nint + n3 + n,) + 6e = 
3nint + 3n3 

It follows that 

2h = nint + n3 (8) 

and 

n, = n3 + q (9) 

The rest of this section is devoted to the proof of theorem 
2.1. We suppose that H i s  a mono-q-polyhex for which (2) 
does not hold, i.e., 

nint > 2h + r - (4rh + ?)‘Iz (10) 

We will first show that Hgives rise to another mono-q-polyhex 
H’violating (2) such that H’has no two consecutive boundary 
vertices of degree 3. This will be achieved by a sequence of 
additions of hexagons to H, as it is described below. After 
that, we will show that (2) is satisfied for mono-q-polyhexes 
having the above property of H’, thus obtaining a contradiction. 

Consider the operation on H shown schematically in Figure 
3. The drawing has to be understood as a part of the mono- 
q-hexagonal lattice, and the bold path is a part of C, the 
boundary of H. It is assumed that H i s  “below” Cat  this part 
of C. Suppose that the boundary cycle C of H has a local pit 
as shown on the left in Figure 3. Suppose, moreover, that the 
two vertices a and b above the pit are not vertices of H. Then 
we may change C to another cycle C’as shown on the right- 
hand side of Figure 3 (we add a hexagon). Then C’determines 
another mono-q-polyhex H’. We claim that H’ also violates 
(2). Let n’int and h’ be the parameters of H’. Then n’int = 
nint + 2 and h’ = h + 1. By (lo), it follows that 

n{nt > 2h’+ r - (4rh + r2)l12 > 2h’+ r - (4rh’+ ?)‘ I2 

which we were to show. 
The operation of Figure 3 is called theflattening of a pit. 

We use the same name for the operation in Figure 4. It is 
clear that the claim of the previous paragraph also holds in 
this case. The same is true if we have a pit corresponding to 
four consecutive vertices on C that are of degree 3 in H. 

Figure 3. Flatten a pit. 

Figure 4. Flatten a deep pit. 

Suppose that we have a pit (as in Figure 3) whose vertex 
a belongs to H. In this case, the addition of the hexagon to 
flatten the pit can result in a non-simply connected complex. 
We will show that in this case one can find another pit on C 
which can be flattened. Clearly, we have a E V(C). Let c 
be the vertex on C at the pit that is adjacent to a, and let SI 
and SZ be the two segments of C from a to c. Then exactly 
one of S1 and S2, say SI, together with the edge ac bounds 
a disk D whose interior is disjoint from H. Since D is 
isomorphic to a polyhex, it is easy to see that there are other 
pits on the segment SI. We may try to flatten those pits. If 
the operation is not possible, we get a smaller disk, etc. Sooner 
or later we end up with a pit which can be flattened. As a 
consequence we have the following important fact: Zfthere 
are two consecutive vertices on C whose degree in His equal 
to 3, then there is a pit that can beflattened. 

When a pit is flattened, the length of C does not increase 
but the number of hexagons bounded by C increases by 1. 
Therefore, after a finite number of steps we get a mono-q- 
polyhex H’for which no further flattening is possible. Hence 
the boundary C’of H’has the property that no two consecutive 
vertices on C’are of degree 3 in H’. Moreover, by (9) ,  there 
are exactly q edges on C’ with both endpoints of degree 2 in 
H ’. 

We will prove by induction on h that H’satisfies (2). By 
using (8) and (9), it is easy to show that (2) is equivalent to 

n2n3 2 2qh (11) 

where n2 and n3 are the number of vertices of degree 2 and 
3, respectively, on the boundary of H’. 

Let Q be the q-face of H’. Suppose first that Q does not 
lie on the boundary of H’. Let H” be obtained from H’ by 
deleting all hexagons that lie on the boundary of H’. We 
claim that H”is connected (and thus it is a mono-q-polyhex). 
Suppose that this is not true. Then there are connected 
components H1 and HZ of H” having faces Q1 and Q2, 
respectively, which are “at a distance of at most two” from 
each other. (Note that either Ql or Q2 can be the q-gon.) 
More precisely, Q1 and Q2 are related as the central hexagon 
in Figure 1 with one of the hexagons denoted by a, b, c, d, and 
the hexagons between them belong to the removed boundary 
part of H’. It can be shown that in each of the four possibilities 
(a smart order for the analysis of the four cases where we 
exclude the previous ones is a, b, c, d), we get two consecutive 
vertices of degree 3 on the boundary of H‘. A contradiction. 
The same conclusion holds also in cases when one of Q1 and 
Q 2  is the q-gon. Despite being a mono-q-polyhex, H” also 
satisfies the property that no two consecutive vertices on its 
boundary are of degree 3 in H”. If this were not the case, then 
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Figure 5. All hexagons on the boundary. 

H‘ would violate the same condition. By the induction 
hypothesis for H“, we have n”2n“3 I 2qh”. But n”2 = n3 = 
n2 - q, n”3 = n3 - q, and h” = h - n3. Therefore, 

n‘;n’$ = n2n3 - q(n3 + n2 - q) 1 2qh”= 2qh - 2qn, 

By using (9) we derive ( 1  1 ) .  
The other case is when Q is on the boundary of H’. Let us 

first consider the case q = 6. In this case we may use any 
hexagon to be Q. Therefore we may assume that every hexagon 
is on the boundary. In this case, H’is one of the polyhexes 
shown in Figure 5 .  For them, ( 1  1 )  is easy to prove. 

We are left with the case q < 6 and Q on the boundary. By 
adding 6 - q vertices of degree 2 on an edge of Q on the 
boundary of H‘, we get a mono-6-polyhex for which we have 
the inequality ( 1  1 ) .  It can be written as 

(n2 + 6 - q)n3 1 12h (12)  

It follows that n2n3 1 12h - (6 - q)n3 = 2qh + (6 - q)(2h - 
n3). By ( 8 )  we have 2h - n3 1 0, and ( 1  1 )  follows. 

3 .  CASE q > 6 

Suppose now that q > 6. Take the polyhex H(6,k) 
introduced in the proof of theorem 2.2 and subdivide an edge 
on the boundary by inserting q - 6 vertices of degree 2. We 
get a mono-q-polyhex satisfying ( 2 )  for q = 6 and not for the 
real value q > 6. These examples thus disprove Cyvin’s 
conjecture given in ref 1 .  We claim that the bound 

( 1 3 )  

is the best possible. (Note that 2h + 3 - (12h + 9)1/2 I 2h 
+ r - (4rh + r2)lI2 with the equality only in the case when 
h = 0.) Also in this case we may use the flattening of pits 
in order to get a mono-q-polyhex H’ with no two adjacent 
vertices on the boundary having degree 3 in H’. Now, ( 1  3 )  
is equivalent to the condition 

nint 1 2 h  + 3 - (12h + 9)l l2  

n3(n3 + 6) 1 12h (14)  

Now we use induction. If the q-gon Q is not on the boundary 
of H’, we delete all hexagons on dH’to get H”. By the induction 
hypothesis we have n”3(n”3 + 6) 1 12h. As n”3 = n”2 - q = 
n3 - q and h”= h - n3, we easily derive (14) .  The remaining 
case is when Q is on the boundary of H’. Since H‘has no two 
adjacent vertices of degree 3 on its boundary, two consecutive 
edges of Q lie on dH’. Then we may replace these two edges 
by a single one and obtain a mono-(q - 1)-polyhex satisfying 
(13)  (by induction on q) .  Since h and fint have not been 
changed by this, ( 1 3 )  holds for H’as well. We proved the 
following: 

Theorem 3.1. I f q  1 6 then (13) holds. For everyfixed 
value of q, there are infinitely many mono-q-polyhexes f o r  
which the equality holds in (13). 
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