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It is shown that there is a constant ¢ such that if G is a graph embedded in a
surface of genus g (etther orientable or non-orientable) and the length of a shortest
non-bounding cycle of G is at least ¢ log(g + 1), then G is six-colorable. A similar
result holds for three- and four-colorings under additional assumptions on the girth
of G. i 1994 Academic Press, Inc.

1. INTRODUCTION

Graphs in this paper are finite, simple, and undirected. A k-coloring of a
graph G is an assignment of “colors” 1, 2, .., k to the vertices of G in such
a way that adjacent vertices receive different colors. A graph is k-colorable
if it admits a k-coloring. The chromatic number ¢(G) of a graph G is
the least integer k for which G is k-colorable. A cycle of a graph G is a
connected two-regular subgraph of G.

Let S be a surface (closed, without boundary). It is well known [AH,
He, RY] that graphs which can be embedded in S have bounded
chromatic number. More precisely, if G is embedded in S, then
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where #(S) is the Euler characteristic of S. If S is not the Klein bottle, then
there are graphs (e.g., complete graphs) for which the equality holds in (1).

Albertson and Stromquist [AS] proved that if G is a graph embedded
in the torus, C a shortest non-contractible cycle in G, and w* is the length
of a shortest non-contractible cycle that is not homotopic to C, then if
w*>8, G has a five-coloring. Their result was further extended by
Hutchinson [H] who showed that if G has a two-cell embedding on an
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orientable surface of genus k, and G has a representation on the standard
4k-gon representing the surface (with each side of unit length) such that
every edge has length less than {, then G has a five-coloring. In each case
the proof consists of applying the four-color theorem to suitable pieces of
the surface. Their assumptions guarantee that the four-colorings can be
patched together to form a five-coloring. Our results do not use the four-
color theorem, nor explicitly construct a coloring. We show in particular
that there is a constant ¢ such that every graph embedded in a surface of
genus g (either orientable, or non-orientable) and with the shortest non-
bounding cycle of length at least ¢log(g+ 1) is six-colorable. The same
condition, together with the additional assumption that the girth of G is at
least four (respectively, six) guarantees that G can be four-colored (respec-
tively, three-colored). It is surprising that the only “non-elementary” fact
used in the proofs is the Euler’s formula.

Our results improve and generalize results obtained by Cook [C],
Kronk [K], Kronk and White [KW], and Woodburn [W7]. They also
generalize the result of Grotzsch and some of its improvements [ Gro, Gru,
SY] on the three-colorability of triangle-free planar graphs. The gap
between the Grotzsch requirement of the girth being at least four, against
our value of six, indicates the possibility of improvements of our
Theorem 3.3. It should be noted, however, that our requirement on the
length of a shortest non-bounding cycle being larger than ¢log(g+ 1)
cannot be dropped (or replaced by a constant) since there are graphs with
arbitrarily large girth and chromatic number [E].

After completing the manuscript of this paper it came to our attention
that Thomassen [T] proved a five color theorem with similar hypotheses.
Although his result is superior to ours, we point our that our results
accomplish the Thomassen’s five color theorem in various ways. For
example, the result of [T] is proved only for orientable surfaces and needs
the length of a shortest non-contractible cycle (which may be shorter than
the length of a shortest non-bounding cycle) to be bounded below by an
exponential function of the genus g. Moreover, our proofs need quite
elementary techniques, and this fact sheds new light on the map coloring
problems.

2. SHORT NON-BOUNDING CYCLES

Let S be a surface and let G be a graph embedded in S. A cycle C of G
is bounding (resp. non-bounding) if it is bounding (resp. non-bounding) as
a closed curve in S; i.e., S — C is disconnected (resp. connected). Denote by
nbd(G) the length of a shortest non-bounding cycle in G. By elementary
results of algebraic topology the bounding cycles of a two-cell embedded
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graph G in S lie in a subspace of the cycle space of G with codimension
2—x(S). It follows that two-cell embedded graphs always have non-
bounding cycles (and so 0 <nbd(G) < o0) if S is not the two-sphere. More
generally, an embedded graph (not necessarily two-cell) contains a non-
bounding cycle if the embedding obtained from the given one by replacing
each non-simply connected face by a union of discs (one for each boundary
component of the face) is not a spherical embedding. In particular, a non-
planar graph always contains non-bounding cycles.

LemMma 2.1. Let G be a graph embedded in a surface S of genus g.
Denote by 6 the minimal vertex degree of G. Suppose that one of the
Sfollowing conditions is satisfied:

(a) 6 =6 and each vertex of degree six is either contained in a non-
triangular face, or has a neighbor of degree seven or more.

(b) =4, the girth of G is at least four, and each vertex of degree four
is either contained in a non-quadrangular face, or there is a vertex at distance
at most two from this vertex whose degree is at least five.

(c) 0=3, the girth of G is at least six, and each vertex of degree three
is either contained in a non-hexagonal face, or there is a vertex at distance
at most three from this vertex whose degree is at least four.

Then nbd(G) < clog(g + 1), where c is a constant (independent of G and g).

Proof. 1t is easy to see that a graph G satisfying (a), {b), or (c) is non-
planar. Therefore it contains a non-bounding cycle.
For a vertex ve F(G) denote by

B,=B,(v)={ue V(G) | dists(u, v)<i}, i=0,1,2, ..,

and let G, be the subgraph of G induced on B,. Suppose that G, contains
a non-bounding cycle. Let C be a shortest one. Then C is isometric in G;;
ie., the distance in G, between any two vertices of C is equal to their
distance on C. If, for example, vertices x, y e V(C) are joined by a path P
whose length is smaller than the distance between x and y on C (and
E(P)n E(C) = &, which we may assume), then each of the two cycles C,,
C, of Cu P different from C is shorter than C, and at least one of them
is non-bounding since their sum is equal to C. Assume now that 4/+ 1 <
nbd(G). Then G, contains no non-bounding cycle. If there was one, say C,
let x, y be diametrically opposite vertices on C. Since their distance from
v is at most i, their distance in G, is at most 2i. Since C is isometric in G,
it follows that the length of C is at most 4i+ 1 which is a contradiction
with the choice of i.
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The absence of non-bounding cycles in G; implies that the induced
embedding of G; (obtained by replacing non-simply connected faces by
discs) is spherical. Denote by V,, E,, and F, the number of vertices, edges,
and faces, respectively, of G, under this embedding. Moreover, let f ;
(j=3) be the number of faces of G, of size j, and let v, ; (j= 1) be the
number of vertices of G, of degree j in G,. Note that degrees in G, of
vertices of B, , are equal to the degrees in G. Clearly,

V.= Z Ui j» Fi= z ﬁ.j, (2)
jz1 =3
and
2E, = Z Joi ;= Z in,j- 3)
Jj=1 jiz3

Let us now prove the sufficiency of (a). Using the Euler’s formula
V,— E;+ F,=2 for the spherical embedding of G, and applying (2) and (3)
we obtain

=(6V,—2E;)— (4E,— 6F)) 4)

==Y (j-6)v,,—2 Y (j-3) 1, (3)
izl jiz4

<5 Z Z (j—6)v, ;-2 Z (J=3) £, (6)
5

<5 Z Z (6i+1)v Z i (7)

In passing from (6) to (7) we used the inequalities 43(j—6)=6/+ 1 (if
Jj=7)and 4(j—3)=j (if j=4). It follows that (7) is positive, and this
implies
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where ¢ is the number of vertices in B,_, of degree six. If ue B,_, is a
vertex of degree six, let u’ be an arbitrary neighbor of # in B, _, (we assume
that /> 3). Then we have the following three cases:
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(a) deg(u')=7.
(b) deg(u')=6, all faces containing u' are triangles, but 4’ has a
neighbor of degree seven or more.

(c) deg(x’)=6 and u’' lies on a face of size four or more. (Note that
since u' € B;_,, it also lies on a non-triangular face in G,.)

We say that u is of type a, b, or ¢, if ¥’ has the above property (a), (b),
or (c), respectively. Let ¢, 1,, ¢, denote the number of vertices in B; _; of
degree six which are of type a, b, ¢, respectively. Every vertex in B, | of
degree j=7 corresponds (as the vertex «') to at most j vertices u of type
a and at most 5/ vertices v of type b. Therefore,

z 6jui.‘/‘>tu+th' (11)

iz

Similarly, every vertex u' € B, , of degree six and lying on the boundary of
a non-triangular face of size j>4 corresponds to at most six vertices of
type ¢, and hence

o]
Y iz e (12)
iz4
It follows by (11) and (12) that the last three terms in (10) sum to a non-
negative number, therefore implying that

216
v,

=z—V, | 1
i 215 i -1 (3)

(The above proof applies only for 3 <i< 3 (nbd(G)— 1), but note that the
case i <2 is trivial.) We see that the growth of G is exponential as far as
i 1s small enough to guarantee the spherical embedding of G,. We have

216\’
Vizl{— 14
=(35) (14)
as far as i< £(nbd(G) —1).
Similar (and even easier) calculation for G as done above for G, this
time using the Euler’s formula for the surface S, shows that

IV(G) =0(g +1). (15)

Now (14) and (15) imply that i = O(log(g+ 1)) which gives the required
result.

The sufficiency of (b) and (c) is shown in the same way. The details are
left to the reader. |
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Note. We intentionally left out the exact determination of the constant
¢ since with some additional work one can significantly improve the
growth estimate (14) and the bound (15). However, this would increase
the length of the presentation without improving the logarithmic order of
our bounds.

3, THE MAIN RESULTS

THEOREM 3.1.  There is a constant ¢ such that every graph G embedded
in a closed surface S such that nbd(G) > ¢ log(genus(S)+ 1) is 6-colorable.

Proof. Suppose that the result does not hold for a graph G and the
constant ¢ of Lemma 2.1. If necessary, we take ¢ large enough so that
clog2>3. By Lemma 2.1 it suffices to show that a subgraph G’ of G
satisfies the condition (a) of the lemma. A short non-bounding cycle of G’
is also a non-bounding cycle of G, giving a contradiction.

By our assumption G is not six-colorable. Therefore it contains a seven-
critical subgraph G’; i.e., the chromatic number of G’ is seven but each
vertex deleted subgraph of G' is six-colorable. If v is a vertex of G’ of degree
five or less, then the graph G’ — v is not six-chromatic. Therefore the mini-
mal vertex degree of G’ is at least six. Consider a vertex v of degree six in
G’ and suppose that all the faces of G’ at v are triangles. Denote by
vy, .., Ug the consecutive neighbors of v as they appear around v on the
surface. Note that v, and v, ., (1 </<6, indices modulo 6} are adjacent.
Suppose that v has no neighbor of large degree; i.e., vertices v, .., v4 have
degree six. We claim that v, and v; are not adjacent if i Zj+ 1 (mod 6).
If they were, the triangle v;vv; either bounds (which is easily seen to be a
contradiction to the fact that G’ is critical) or is non-bounding (which
contradicts our assumptions on the length of non-bounding cycles.

Consider now a six-coloring of G’ —v. In every such coloring the ver-
tices vy, ..., U use all six colors (otherwise we could extend the coloring to
G'). It follows that among the neighbors of v, (1<i<6) all five colors
different from the color of v, are used, each exactly once (otherwise we
could re-color v;). Therefore exchanging the colors of v, and v, gives rise
to another six-coloring of G’ —vuv. Since v; is not adjacent to v,, the
neighbors of v; no longer have all colors different from the color of v,
(the previous color of v, is missing). We obtain a contradiction. It follows
that v has a neighbor which has degree at least seven, and the proof is
complete. ||

Albertson and Stromquist [AS] asked for a similar bound as in our
theorems in case of five-colorings. We partially answer their question by
the following result:
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THEOREM 3.2. There is a constant ¢ such that if G is any graph embedded
in a closed surface S such that nbd(G) > ¢ log(genus(S) + 1) and the girth of
G is at least four, then G has a four-coloring.

Proof. As in the above proof we may consider a five-critical subgraph
G’ of G, and in view of Lemma 2.1 it suffices to show that G’ satisfies
property (b) of the lemma.

If v 1s a vertex of G’ of degree three or less, then the graph G’ — v is not
four-chromatic. Therefore the minimal vertex degree of G’ is at least four.
Consider a vertex v of degree four in G’ and suppose that all faces of G’
at v are quadrangles (note that there are no triangles by the assumption on
the girth).

Denote by v, ..., vg the consecutive vertices on the link of v, where v, v;,
vs, v, are the neighbors of v. Suppose that v has no neighbor and no
second neighbor of degree more than four. So vertices v,, ..., vy have degree
four. Consider now a four-coloring of G'—v. In every such coloring the
vertices v,, v;, vs, U; use all four colors (otherwise we could extend the
coloring to G'). It follows that among the neighbors of v; (i=1, 3, 5, 7) all
three colors different from the color of v, are used, each exactly once
(otherwise we would re-color v;). Consider now v,. Besides v, and v, it has
two other neighbors. Since v, cannot be re-colored without changing the
colors at its neighbors (this would give rise to a re-coloring of v,), either
the color of v, or the color of v; appears only once among the neighbors
of v,. Therefore exchanging the colors of v, and v,, or v; and v,, gives rise
to another four-coloring of G’ —v. Since v, is not adjacent to v, (the girth
is at least four), the neighbors of v; {or v,) no longer have all colors
different from its color (the previous color of v, is missing). We obtain a
contradiction. ||

THEOREM 3.3. There is a constant ¢ such that if G is any graph embedded
in a closed surface S such that nbd(G) > ¢ log(genus(S) + 1) and the girth of
G is at least six, then G has a three-coloring.

Proof. Assuming G is not three-colorable, we apply Lemma 2.1(c) in its
four-critical subgraph G’. All we have to show is that G’ satisfies the
assumptions of the lemma.

Suppose that G’ does not satisfy property (c) of Lemma 2.1. Let v be a
vertex of degree three in G which belongs to hexagonal faces only and such
that every vertex at distance at most three from v has degree three as well.
Let H be a hexagonal face containing v and consider a three-coloring
of G'—v around H. Denote the vertices on H by v, vy, v,, vs, ¥4, Us,
respectively, and let u, (1 <i<95) be the neighbor of ¢; which is not on H
(Fig. 1a). Note that since the girth of G is six, the vertices u, are well
defined, pairwise distinct, and not adjacent to v.
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Fig. 1. Three-coloring around H.

Every three-coloring of G’ —v uses all three colors on the neighbors of
v since it cannot be extended to G’. Assume that v, and v4 are colored one
and two, respectively. Then u, and v, must use both available colors (two
and three) since otherwise we could re-color v,. Similarly, v, and us must
use both one and three. Suppose first that u,, v,, v,4, us are colored as in
Fig. 1b. Then u, and v; cannot be both colored the same—both colored
one gives a possibility to re-color v, using color two, and both colored two
gives the possibility to exchange the colors of v, and v, without changing
the coloring elsewhere, in each case contradicting the non-extendability
of the three-coloring to G'. A similar conclusion holds for the neighbors of
v4. Therefore u,, vy, u, are colored one, two, one (or two, one, two),
respectively. By the left-right symmetry we may assume one, two, one.
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Consider now u,. If it is colored three, we would re-color v; using color
one. On the other hand, if the color of u; is one, we can exchange colors
two, three on the vertices v,, v, U4, Us. In each case we obtain a forbidden
three-coloring.

The neighbors of v, and v, can also be colored as in Fig. 1c. Clearly, v,
is colored three. Again in this case the neighbors u,, vy of v, are colored
differently—if both are colored three we could exchange the colors of v,
and v,. The same holds for the neighbors of v,. Hence the coloring is as
shown on Fig. tc. Consider now wu,. If its color is one, then we could
exchange the colors of v, and v,. If u, is colored two we could exchange
the colors of v; and »,. In each case we obtain a contradiction.

Up to symmetries there is only one other possibility how to color the
neighbors of v, and vy (Fig. 1d). But it is easy to see that in this case one
of the hexagons containing v must belong to one of the previous cases (b),
or (¢). This completes the proof. |

REFERENCES

[AS] M.O. AuiBerTsonN aND W.R. Stromquist, Locally planar toroidal graphs are
S-colorable, Proc. Amer. Math. Soc. 84 (1982), 449-457.

[AH] K. AppiL AND W. HAKEN, Every planar map is four-colorable, Bull. Amer. Math. Soc.
82 (1976), 711-712.

{C] R.J. Cook, Chromatic number and girth, Period. Marh. Hungar. 6 (1975), 103-107.

[E] P. ErDOs, Graph theory and probability, Canad. J. Math. 11 (1959}, 34-38.

[Gro] H. GrOTZscH, Zur Theorie der diskreten Gebielde. VIH. Ein Dreifarbensatz fiir
dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther Univ. Halle-Wittenberg
Math.-Nuat. Reihe 8 (1958/59), 109-120.

[Gru} B. GriUnBauM, Grotzsch’s theorem on 3-colorings, Michigan Math. J. 10 (1963),
303-310.

{H] J§.P. HutcHinsoN, A five-color theorem for graphs on surfaces, Proc. Amer. Math.
Soc. 90 (1984), 497-504.

[He] P.J. HEAwoon, Map colour thcorem, Quarr. J. Math. 24 (1890), 332-338.

{K] H.V. Kronk, The chromatic number of triangle-free graphs, in “Graph Theory and
Applications,” Lecture Notes in Math., Vol. 309, pp. 179-181, Springer-Verlag, Berlin,
1972.

[KW] H. V. Kronk aND A. T. WHITE, A four-color theorem for toroidal graphs, Proc. Amer.
Math. Soc. 34 (1972), 83-86.

[RY] G. RINGeL anp J. W. T. Younas, Solution of the Heawood map coloring problem,
Proc. Nat. Acad. Sci. U.S.A 60 (1968), 438-445.

[SY] R. STEINBERG AND D. H. YounNGer, Grotzsch’s theorem for the projective plane, Ars.
Combin. 28 (1989), 15-31.

[T] C. THoMassEN, Five-coloring maps on surfaces, J. Combin. Theory Ser. B 59 (1993),
89-105.

[W] R.L. WoobBuRrN, A 4-color theorem for the Klein bottle, Discrete Math. 76 (1989),
271-276.



