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Let G be a graph embedded in a surface of genus g. It is shown that if the face-width of
the embedding is at least clog(g)/loglog(g), then such an embedding is unique up to Whitney
equivalence. If the face-width is at least clog(g), then every embedding of G which is not Whitney
equivalent to our embedding has strictly smaller Euler characteristic.

1. Introduction

All graphs in this paper are undirected, finite and simple. We follow standard
terminology as used, for example, in [2]. A subgraph C of a graph G is induced
if every pair of non-adjacent vertices in C is also non-adjacent in G. It is non-
separating if G—V(C) is connected.

Embeddings of graphs in the plane are well understood thanks to the following
results:

(A) (Whitney [9]) Every 3-connected planar graph has essentially unique embed-
ding in the plane. (This means that face boundaries and local rotations are
uniquely determined.)

(B) (Whitney [9]) If G is a 2-connected planar graph, then any two embeddings of
G in the plane are Whitney equivalent. (One can be obtained from the other
by a sequence of simple local re-embeddings. See, e.g. [4] for definition of
Whitney-equivalence.)

(C) (Folklore) If G is a graph that is embedded in the plane, then all its face
boundaries are cycles of ¢ if and only if G is 2-connected.

(D) (Tutte [8]) If G is a 3-connected graph embedded in the plane, then the
face boundaries are precisely all induced non-separating cycles of G (and
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conversely). In such a case, any pair of facial cycles are either disjoint or
they intersect in a vertex or an edge.

These results can be generalized to graphs embedded in general surfaces by
introducing the face-width of an embedding as defined below. We will consider
only 2-cell embeddings in closed surfaces. They can be described in a purely
combinatorial way by specifying:

(1) A rotation system w= (my;v € V(G)); for each vertex v of the given graph G
we have a cyclic permutation 7, of edges incident with v, representing their
circular order around v on the surface.

(2) A signature A: E(G)— {—1,1}. Suppose that e=uv. Following the edge e on
the surface, we see of the local rotations 7, and m, are chosen consistently or
not. If yes, then we have A(e)=1, otherwise we have A(e)=—1.

The reader is referred to (3] for more details. We will use this description as
a definition: An embedding of a graph G is a pair II=(m,A) where 7 is a rotation
system and XA is a signature. Having an embedding II of G, we say that G is II-
embedded. A cycle with an odd number of edges e having A(e) =—1 is said to be
[I-onesided. Other cycles are [I-twosided.

Given an embedding II = (7, ), an angle of 11 is any pair of edges {e,ny(e)}
where v€ V(@) and ¢ is an edge incident to v. The cyclic sequence e, m,(e), T2(e),

73(e), ... is called I-clockwise ordering around v. We define II-facial walks as
closed walks in the graph which are determined by the following process, called
the face traversal procedure. It starts with an arbitrary angle, say {ej,ea}, where
eo2 = my(eq). Initially, we use II-clockwise ordering around vertices when selecting
“the next edge on the facial walk that we traverse (like we did when selecting ep
after e). Every time when we traverse an edge e with A(e) =—1, we will change
to the IT-anticlockwise ordering (or back to II-clockwise if it was Il-anticlockwise).
Starting at v with {e},eq}, we first traverse the edge ep =vu. Arriving to its other
end u, we select the angle {ey,e3} where es = my(e2) is the next edge in the 1T-
clockwise order around u if we still use the Il-clockwise ordering. Then we continue
the traversal along the edge e3. If we use [I-anticlockwise ordering, then we select
the angle {eg,e3}, e3=7"(e2), and proceed with the traversal along the edge e3.
Continuing the traversal in the same way, we obtain a closed walk which stops when
we reach our initial angle {e),es}. This closed walk is said to be II-facial. All other
I1-facial walks are determined in the same way by starting with other angles. They
correspond, bijectively, to faces of the corresponding topological embedding. Two
embeddings are equivalent if they have same facial walks.

Let F(II,G) be the set of II-facial walks. The number
y(IT) = 2= V(G)| +|E(G)| - [F(IL, G)|

will be called the characteristic of the embedding I1. Note that it is closely related
to the genus and to the negative value of the Euler characteristic of the surface of
the underlying topological embedding. It is known that v(IT) >0 and that (II) =0
if and only if II corresponds to an embedding of G in the plane.
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If IT is an embedding of a graph G and H is a subgraph of GG, then the induced
embedding of H, which we will denote by II|H, is obtained from that of G by
ignoring all edges in F(G)\ E(H) and by restricting A to E(H). More precisely,
if e=wuv e E(H), then the successor of e in the clockwise ordering around v is the
first edge in the sequence m,(e), w2(e), ... which is in H. It is easy to see that
Y(ILH) <~(IT).

If G is a [T-embedded graph and C is a [I-twosided cycle of 7, then we define
the left graph and the right graph of C as follows. Select a vertex vV (C), and let ¢

and ¢ be the edges of C incident with v. If ¢ =75 (e), then all edges e, my(e), 72(e),

. 71'5(6) are said to be on the left side of C. As in the face tracking procedure,
we will determine left edges at every vertex of C' by traversing C edge by edge.
After traversing an edge f of C' with A(f)=—1, we change clockwise orientation to
anticlockwise, and vice versa. In particular, traversing the edge ¢’ =vu [rom v to wu,

the left edges at u are €, m,(¢), 72(e’), ..., 7l (') (where 7l (¢/) € E(C)) if we have
U 3 u

the clockwise orientation. On the other hand, having the anticlockwise orientation,
the left edges are 7l (e’), wlt1(e"), ..., ¢/. Since C is Il-twosided, the orientation
is again clockwise when we come back to the initial vertex v after traversing the
entire cycle C. An edge e which is not incident with C is said to be on the left side
of C if it is connected by a path in G — C to an end of an edge on the left side of
C (and incident with C). Now the left graph G;=G;(I1,C) is defined as the graph
induced by all edges on the left of C. The right graph G, = G,(11,C) is defined
analogously.

Let C be a I-twosided cycle and G; and G, its left and right graph. If

GiNGr=C, then C is said to be II-bounding. An easy count shows that in such a
case

(M yMGy) + (I Gy) = ~(T0).

If v(T1|G) =0 or ¥(I1|G,) =0, then C is a [I-contractible cycle. In particular, every
II-facial cycle is II-contractible. If C' is II-contractible and (I1|G;) =0, then we call
the subgraph G;— E(C) the II-interior of C and denote it by int (I1,C). We also
write Ext (II,C) = Gp. Similarly if v(IT|G,) =0. By (1), int (T1,C) and Ext (II,C)
are well defined if v(IT)5£0.

The same notations as above can be introduced for I-onesided cycles hy
defining that such a cycle C is always II-nonbounding and IT-noncontractible.

Let G be a Il-embedded graph and let F' be a II-facial walk with angles {e, /}
at vertex u and {g,h} at vertex v. Add the edge uv to G and extend the embedding
so that wuv is inserted in 7, between e and f and in 7, hetween g and h. If the
product of signatures on a segment of F' from {e, f} to {g,h} is 1, then we set
A(uv)=1, and otherwise A(uv)=—1. We denote the obtained embedding of G +uv
again by II. The performed operation is called a face splitting at u and v.

If Fy,...,Fr_q (k>1) are distinct II-facial walks and vg,...,v;_1 are distinct
vertices of G such that v; and v;y; (index modulo k) are both in F; (i=0, ...,
k—1), then we can add to GG a cycle C=wvgv; ... v by a sequence of face splittings
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at vertices v, vj11, 1=0,...,k—1. The smallest integer £ >1 such that there are
[I-facial walks Fy,...,F}..1 and vertices vp,...,vp_1 for which the corresponding
cycle C is TT-noncontractible is called the face-width (or representativity) of 11 and
denoted by fw(II). With this notation, generalizations of (C) and (D) can be
expressed as follows [5]:

(C) If G is a lI-embedded graph, then all II-facial walks are cycles of G if and only
if G is 2-connected and fw (II) >2.

(D) If G is a I1-embedded graph, then the II-facial walks are induced nonseparating
cycles of G if and only if G is 3-connected and fw (IT) > 3. In such a case, any
two [l-facial cycles are either disjoint or they intersect in a vertex or an edge.

Properties (A) and (B) can also be generalized. Robertson and Vitray [5]
proved that if G is a 3-connected graph embedded in a surface of genus g with
face-width greater than 2¢g+2, then such an embedding is unique and necessarily
a minimal genus embedding (either orientable, or non-orientable). This result has
been slightly improved by Mohar [4] who replaced the genus of II in the bound
by the minimal genus of an embedding of G, and who also observed that in the
non-3-connected case embeddings with large face-width are unique up to Whitney
equivalence. It turns out that instead of minimizing the genus, it is more convenient
to minimize the characteristic of the surface. Then the distinction between the
orientable and non-orientable case disappears and stronger results are obtained. We
say that an embedding IT of G is minimal if v(II) is minimal among all embeddings
of G. Let II be an embedding of G which satisfies certain property. Then II is said
to be unique embedding with this property if every embedding of G with the same
property is equivalent to G.

The purpose of this paper is to improve above mentioned results by consider-
ably weakening the assumptions on the face-width. We will show that embeddings
II whose face-width is larger than clog(v(Il))/loglog(v(II)) (where ¢ is some small
constant) are unique up to Whitney equivalence (Theorem 5.4). Moreover, em-
beddings with fw (II) > clog(~y(I1)) are also characteristic minimal (Theorem 6.1).
On the other hand, examples constructed by Archdeacon [1] show that our bounds
are not too far from the best possible bounds on the face-width which guarantee
uniqueness.

It came to our attention that some time earlier than this paper has been
completed, Seymour and Thomas [6] obtained results similar to ours. In par-
ticular, they present an improvement of our Theorem 6.1 by showing that
fw (IT) > 1001log(y(I1))/ loglog(~(I1)) already implies minimality of embeddings (for
3-connected graphs). This result also implies a uniqueness result in flavor of out
Theorem 5.4. On the other hand, Theorem 5.4 has simpler proof and it consider-
ably improves the constants in bounds of Seymour and Thomas.

2. Some preliminary lemmas
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In this section we assume that G is a ll-embedded graph and that (TT) > 0.
Our first lemma shows that we can restrict our attention to 3-connected graphs if
we are interested only in embeddings with fw (II) > 3.

Lemma 2.1. ([5, 4]) There exists a unique 3-connected block Go of G such that
fw (IU'|Gg) =fw (Il') for every embedding IU' of G with fw (IT') >3. If11 and I are
two such embeddings which coincide on Gy, then they are Whitney equivalent. In
particular, all other 3-connected blocks of G are planar.

An immediate consequence of Lemma 2.1 is the fact that minimal embeddings
of G and Gy are the same [4, Proposition 3.1].

The next result is easy to see.

Lemma 2.2. If C is an induced nonseparating cycle of G, then C' is either Il-facial
of II-nonbounding. 1

Cycles C1 and (9 of G are Il-crossing if either
(i) C1NCy is a vertex v and the edges incident with v, ey, f1 of Cy and eg, fo of
(9, respectively, appear in 7, in the interlaced order, say ej, ea, f1, fo, or
(ii) CyNCy is an edge e =uv and the following holds. Suppose that e;#e is the
edge on C; incident with u and that f;#e is the edge of C; incident with v
(i=1,2). If the order of e;, ep and e in m, is e1, e9, e then the order of fi, fo,

einmy is fi, fo, e (if Me)=1), or fo, f1, e (if AMe)=—1).

For further reference we state the following obvious result:

Lemma 2.3. IfC| and Cy are Il-crossing cycles, then they are both H-nonbounding.
In particular, they are Il-noncontractible.

Let € be a non-empty set of disjoint cycles of G and let C CG be the union of
all cycles from . Then 8 is said to be [I-bounding if G can be written as G =G UG,
such that G)NG, =C and such that every cycle from € is (IT|G;)-facial and (I1|G,.)-
facial. (In particular, every cycle in € is II-twosided.) The next lemma is taken
from [4].

Lemma 2.4. Let  be a set of disjoint cycles of G. If every subset of € is TI-
nonbounding, then

y(II) = (TG - 8)) = 2{8] — k
where k is the number of IT-onesided cycles in €. In particular, v(IT) > 2|6| — k.
Lemma 2.5. Let € be a set of cycles of G. If every cycle C € 8 is H-crossing with

at most r and with at least one of the cycles from 6 and is disjoint from all other
cycles in €, then

() 2 16l/(r +1).

Proof. We will select pairs of cycles €; = (Ci,Cé), 1=1, 2, ..., k with the following
properties:
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(a) Cq, ..., Cy are pairwise disjoint.

(b) If 1<i<j <k then C] is disjoint from Cj.

(c) Fori=1, ..., k, if C; is [I-onesided, then C!=Cj, Otherwise, C} is I-crossing
with C;.
Such pairs are obtained as follows. Suppose that we have already selected €1,

..y B;—1, where i > 1. Denote by n; the number of [I-onesided cycles among C|,
.., C;_1 and let ng be the number of [I-twosided cycles. Then we choose for C; an

arbitrary cycle from € that is disjoint from C7, ..., C;_1 and from C{, e ;_1.

By our assumptions, at least
(2) 8] — 2rng ~ (r + 1)n1 > |8 = (r + 1)(2n2 + nq)

cycles from € are at our disposal. After selecting C;, let Cz'- be an arbitrary cycle
from & satisfying (c). It is clear that the obtained pairs 6y, ..., 6; satisfy (a)—(c).

Suppose now that a subset of {Cy,...,C}} is II-bounding. Let C; be a cycle in
this subset with the smallest index ¢. Clearly, C; is Il-twosided. By (a)~(c), C; and
C; are II-crossing but C} is disjoint from all other cycles in our separating family.

A contradiction. By selecting as many pairs €; as possible, the inequality (2) shows
that 2ng+ny > |6]/(r+1). Consequently, an application of Lemma 2.4 completes
the proof. [ |

We will use another result which implies large characteristic of an embedding.

Lemma 2.6. Let € be a set of disjoint [1-noncontractible cycles of G. If the union
of cycles in 6 is an induced and nonseparating subgraph of G, then

Y1) - (I|(G - 6)) > 28] — k
where k is the number of Il-onesided cycles in 8.

Proof. No subset of the cycles can be [I-bounding. Consequently, Lemma 2.4
applies. |

We will also use the following result which can be proved easily:

Lemma 2.7. If C is a II-contractible cycle of G, then every cycle in CUint (T1,C) is
II-contractible. [ |

If X CV(G), then an X-component is either an edge with both ends in X or
a connected component L of G- X together with all edges between L and X.

Lemma 2.8. Let G be a Il-embedded graph. Suppose that X is a separating set
of vertices of G such that |X| < fw(II) and such that for any separating sets X1,
Xo € X with XqUXo = X we have |[X1NXq| > 2. Then G = Gy UGy where
G1NGo= X1 C X such that:
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(i) X is an induced and nonseparating set in G, i.e., G1 is a single X 1-component
inQG.

(i1) By face splittings one can add to G a Il-contractible cycle ' such that
V(C) C X and such that Gy = int(IL,C). In particular, Gy conlains no
[M-noncontractible cycles.

Proof. Let B be an arbitrary X-component and let ¥ C X be the set of vertices
incident with edges from B and with edges that are not from B. Each y €Y is
contained in at least two Il-facial walks whose angle at y contains an edge of B and
an edge from E(G)\ F(B). (Such angles are said to be mized.) On the other hand,
every such Il-facial walk contains at least two vertices of ¥ with mixed angles.
Choose such a facial walk F| and vertices vy, va € YNV (F}) such that one of the
segments of F] from vy to vg is contained in B. Let Fy be another such Il-facial
walk containing vy and such that in the local rotation 7, only edges of 5 appear
between the angles of I'] and F5. By continuing in the same way, we gel a sequence

of distinct IT-facial walks Fy, I, ..., F} and distinct vertices vy, vo, ..., vt (2> 2)
such that v; and v; ¢y arve in F; for i =1, ..., t —1. Moreover, in F; we have a

vertex vpy1 which is also in some Fy, 1 </ <t. We may assume that [ =1 and
that v1 =wv1. By face splittings we can add a cycle C = vyug...vpvq and since
t <{X | <ftw(Il), C is II-contractible. Hence, X1 ={vy,..., v} is a separating set of
(3. By construction, only edges of B arc on the left side (say) of C at every vertex
vy, 2<i<t. If there is an edge e¢ E(B) incident to vy that is on the left side of C,
then Xo=(X\X1)U{v1} is a separating set of G. By our assumption on X, this is
not possible, and thus B is the only X-component that is on the left side of C. If
B contains a IT-noncontractible cycle, then by Lemma 2.7 we have B CExt (I1,C).
Then all other X-components are contained in int (II,C), and their union does not
contain [I-noncontractible cycles.

It remains to show that at least one of the X-components contains a II-
noncontractible cycle. It follows from assumptions on X that |X| > 2. Hence
fw (IT) > 3 and thus v(II) >0 [5]. Therefore, G contains a Il-noncontractible cycle.
We leave it to the reader to show that one of such cycles is contained in a single
X-component. A similar approach as above can be used. [ |

3. Local changes

Let II=(m,A) be an embedding of a graph G and suppose that v€ V(G) is a
vertex of degree d. If my = (e1e2...¢4), let Fj be the II-facial walk containing the

angle {e;,e;11} (index modulo d), j=1, ..., d.

Lemma 3.1. Let [I'=(7/,\) be an embedding of G which differs from 11 only at m,
such that w}, = (esy1...e1e1...es€141...eq) for some s and t, 1 <s <t <d. Then
[y (I1) = (D) <2.
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Proof. The face tracking procedure shows that the only U-facial walks that are
affected by changing I to II' are Fjy, Fs, and F;. The claim is then obvious since
the number of faces changes by at most 2. |}

Lemma 3.2. Let II' = (n',)) be an embedding of G which differs from I only at
v such that 7}, = (eses_1...€1€541...€q), and X (e) = —A(e) if e € {e1,...,es} and
X(e)=A(e) otherwise. Then |y(Il')~~(1I)| <1. If Fy=Fy, then v(I") =~(I1).

Proof. From the face tracking procedure we see that only the II-facial walks Fy
and Fy are changed. The claim of then obvious. |

Suppose that C is a cycle of G. Define w(Il,C) as follows. Il C is II-facial,
then w(Il,C)=0. Otherwise, w(II,C) is the smallest number of segments of Il-facial
walks whose union is C. A simple corollary to above local re-embedding lemmas is
the following result.

Corollary 3.3. Suppose that II is an embedding of a graph G and that C is a cycle
of G. Then there is an embedding II' of G such that C is II'-facial and such that

(1) < 4(IT) 4 2w(I1, ©).

Proof. By induction on w = w(Il,C). If w =0, then II' = IT will do. For the
induction step we can use Lemma 3.1 or Lemma 3.2. Appropriate application of
these lemmas decreases w by 1 and increases the characteristic of the embedding
by at most 2 or 1, respectively. 1

Lemma 3.4. Let u, ve V(G). Consider an angle {e, f} at u and an angle {g,h} at
v. Identify u and v into a single vertex w and define an embedding I = (7', \) of
the obtained graph G’ so that ' coincides with m except that nl,=(ee’... fgg’ ... h)
where w1, = (ee’...f) and m, = (gg'...h). If the angles {e,f} and {g,h} are
on the same Yl-facial walk W, then either v(Il') = 4(I1) (if W =ef...gh...), or
(M) =~({1)+1 (if W=ef...hg...). Otherwise, y(II') =~(II) +2.

Proof. If {e,f} or {g,h} appear on W = efW1ghWy, then W gives rise to two
IT'-facial walks. If W = efWihgWs, then A(W)) = A(W2) = —1 and hence W
changes into the II'-facial walk W'=ehW 1 fagWy L. All other facial walks remain
unchanged. Since |V(G')| =|V(G)| -1, the change of the characteristic is either
0 or 1, respectively. If the angles are on distinct II-facial walks W1 and W9, then

they give rise to a single I'-facial walk, and all other facial walks remain the same.
The characteristic thus increases by 2. |
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4. Comparing non-equivalent embeddings

In this section we will assume that G is a 3-connected graph with non-
equivalent embeddings IT and IT' whose face-widths are k= fw (II) and A’ = fw (IT'),
respectively. We will also assume that k> 3.

A cycle of G is (ILII')-unstable if it is Il-facial and II'-nonfacial. Let C be a
(IL,IT")-unstable cycle and let Dy, ..., D; be (II,II'}-unstable cycles that IT'-cross
with C. Such cycles are called a (IT,IT')-daisy of size ¢ centered at C if they are
pairwise disjoint at C, i.e., D;ND;NC =0 for any 1 <i<j <1t If Dy, ..., D,
form a daisy, we shall implicitly assume that they are enumerated according to the
(cyclic) order of their intersection with C. Since G is 3-connected and k>3, (D)
shows that this order is uniquely determined (up to cyclic shifts and reflections).

Lemma 4.1. Let C be a (II,I1')-unstable cycle. Then there is a (ILII')-daisy
centered at C that is of size w—1, where w=w(Il',C). If " is a (IL,1I)-unstable

cycle that T'-crosses C, then the daisy can be chosen such that it contains C.

Proof. Denote by M the maximal size of a (II,II')-daisy centered at €', We claim
that M=w or M=w-—1.

Let us first assume that there is a vertex v € V(') such that the two edges of '
incident to v are not consecutive in 7.,. Then there is a [I-facial cvcle D that is IT'-
crossing with €' and such that DNC ={v}. By Lemma 2.3, D is (I, IT')-unstable.
Traverse C starting at v. The IT'-facial segments on C on one or the other side
of C (as seen during this traversal) are called left and right facial segments on C,
respectively. Let @ be the bipartite graph whose vertices are the left and the right
facial segments of C and whose edges correspond to segments sharing an edge of
C. Each edge of C'is in a left and in a right facial segment and there is a bijection
between F(C) and E(Q). Suppose that e, f € E(C) and that the corresponding
edges of (@ do not have common endvertices. Then theve are vertices uy, u, between
e and f on C such that G has an edge incident with w; that is on the left of C
and an edge incident with u, that is on the right of C'. This implies that there is
a (II,IT')-unstable cycle that crosses C' and intersects C' only between ¢ and [. It
follows that every matching R in @ determines a set of |[R| (II,1I')-unstable cycles
that II'-cross C and that are pairwise disjoint at C' (and vice versa). Similarly, a

vertex cover of () determines a set of IT’-facial segments of C' which cover C' (and
vice versa). By the Konig-Egervdry Theorem [2] it follows that M =u.

Suppose now that for each v € V(C), edges of C incident to v are -

consecutive. Suppose that C contains an edge ¢=wwv snch that no (I1,II')-unstable
cycle which I1'-crosses C contains e. We may assume that there is a (IT, [T')-unstable
cycle D through v which is [T'-crossing with €. In this case we use the same proofl
as above with the only difference that the edge of DN does not contribute to ad-
jacency in the graph Q. (Now a cover of C with I1'-facial segments induced by a
vertex cover of ) may not contain the edge of DNC'. But the segment containing e
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can be changed so that all of C is covered.) Similarly if C is I'-twosided (when D
is not needed at all). In all these cases we get a (II,11')-daisy of size w. By insert-

ing C' and removing at most two cycles which intersect C’ we get a (I1,1I')-daisy
as claimed by the lemma.

It remains to consider the case when C' is IT'-onesided, of odd size with consec-
utive edges ey, €g, ..., ea,1 and IT'-facial segments on C equal to ejeo, eges, ...,

ears1€1. Clearly, w=r+1, and any of the (I, II')-unstable cycles at ' is contained
in a (II,I1')-daisy of size r centered at C. [ ]
Cycles in a daisy centered at C can have non-empty intersection out of . We

will need daisies consisting of disjoint cycles. Then the following lemma will be
used.

Lemma 4.2. Let Dy, ..., D; be a (IL1I')-daisy centered at C. Suppose that k,
k' > 4. Then any two distinct and (cyclically) non-consecutive cycles D; and D,

from the daisy are disjoint. Moreover, if k, ¥’ >5, then D; and D; are at distance
at least 2 in G.

Proof. Let y be a vertex of D;NC and z be a vertex of D;NC. If D; and D; intersect,
then they share a vertex z ¢ V(C). Add edges zy, vz, and zz by splitting faces
D;, C and Dy, respectively. Since k>4, the obtained triangle A is Il-contractible.
By construction, one of the segments of C' between y and z is in int (I, A) and the

other one is in Ext (II, A). Therefore, the II'-noncontractible cycles D;_1 and D, ;
are not contained in the same X-component of G, where X ={z,y,z}. By Lemma

2.8 (for the embedding I1') we get a contradiction with &' > 4.
To prove the second part, note that a possible edge xx’ between D; and D;

cannot lie on C. Now we take X ={z,2’,y,2} and conclude as above by applying
Lemma 2.8. [ |

5. Uniqueness

In this section we will assume that G is a 3-connected graph with nonequivalent
embeddings IT and I’ whose {ace-widths are k=fw (II) and &’ = fw (II'), respectively.

Theorem 5.1. Suppose that fw(II) = k > 4. Then we can find, for each (11,11')-
unstable cycle C, a (ILII')-daisy centered at C consisting of at least | (k' —1)/2]

pairwise disjoint cycles. If k>5 and k' > 5, then the cycles are also pairwise non-
adjacent. If C' is a (I1,1I')-unstable cycle that 1I'-crosses C, then the daisy can be

chosen so that it contains C'.

Proof. Note that w(Il',C) > k. If k' < 4, the claim follows from Lemma 4.1.
Otherwise it follows from Lemmas 4.1 and 4.2. [ ]
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From now on we assume that & >4 and k' >4. We shall construct a family €
of (I1,1T")-unstable cycles by using the following procedure. We start by taking a
(I1,1T")-unstable cycle Cy. Let Bo={Cp} and let €1 be a set of | (K'—1)/2] pairwise
disjoint cycles obtained by Theorem 5.1 that form a (ILIT')-daisy center ed at Cl.
Having constructed g, ..., €,_1 (i > 2), we define €; to he the nnion of daisies
D(C), for each C €6, 1\ (BpU...UB; o), where D(C) is a (IT,1')-daisy centered
at C' that contains a cycle C' €€, _9, and consists of at least | (k' —1)/2] pairwise
disjoint cycles obtained by Theorem 5.1. On €, between any two consecutive cycles
of the (IT,IT")-daisy D(C'), therc is a (ILII')-unstable cycle that can be added to
the daisy (but may intersect with other cycles). Also, note that the cycle €7 is well
defined as a cycle whose daisy D(C) contains €. Our next lemma shows that this

cycle C7 is unique if 7 is not too large.

Lemma 5.2. If0<2i <min{k,k'}, then every cycle C' € €;\(6pU...UE,_ ) intersects
with a unique cycle C' € 6oU... U6, _ . If 2i+1 <min{k.k'}. then no two cycles
from €; intersect.

Proof. Suppose that C intersects with two cycles, Q€ 6, and R€ %, where g <i and
r<1. For any cycle D in our sets 6 (j > 1) we denote by ¢(D) a cycle in €;_; that
includes D in its daisy. Then ¢(Q), e(@(@)), ... and ¢(R), o((R)), ... determine
a sequence of at most ¢+r+1<2i—1 I-facial cycles from Q to I such that any two
consecutive cycles I'-cross. Including C', we get a sequence of at most 2i I-facial
cycles that (cyclically) intersect its two neighbors in the sequence. Since 2/ < k,
splitting of these Il-facial cycles gives rise to a Il-contractible curve whose interior
and exterior contain (I, II')-unstable cycles. On the other hand, since 2i </, we
get a contradiction by using Lemma 2.8. The details are left to the reader.

A similar proof works for the other assertion. |

Let k=min{k,k'} and v=|(x—4)/2], A=[(k' ~3)/2]. The above construction

gives rise to a tree-like structure €gU.. .U, 4y of (IT,TI')-unstable cycles. By Lemma
5.2, they can be taken so that their number is

PUSRI

(3) 1+(A+1)+(A+1)A+...+(A+1)A”:1+(A+1)T—T
and so that each of the cycles intersects with exactly A+ 1 of other cycles in the
family (if it is in 6; for 1 <v) or with exactly one other cycle (il it is in 6,1 ;). Now
we have:

Lemma 5.3. If k' >7 and k>4, then
(4) "/(II,) > AV
Proof. By (3) and Lemma 2.5, we have

/\1/+l

(5) ~(IT') > <1 +(1+A)T_]i> /(A +2).
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For A>2 we have (A+1)A> (A ~1)(A+2). This inequality and (5) imply that
(6) M) > v L
A+2 A
Since (') is an integer, we get (4). ]
The main result of this section is now evident:

Theorem 5.4. Suppose that I1 is an embedding of G and that fw (IT) > k where k> 7
is the smallest integer such that

(7) V—;—%J e > y(10).

IfTI' is an embedding of G whose face-width is also greater or equal to k, then Il is
Whitney equivalent with I1. In particular, if G is 3-connected, then Il is equivalent
with T1.

Proof. By Lemma 2.1 we may assume that G is 3-connected. By exchanging the
roles of IT and I’ in Lemma 5.3, we see that

A1) 2 (k- 3)/2) /22,
This is a contradiction. ]

As a corollary to Theorem 5.4 we see that embeddings Tl with
N 2 log(~(11))
log log((I1)) — log log log (+(IT))

are unique embeddings with so large face-width (up to Whitney equivalence), with
possible exceptions when the right hand side of (8) is smaller than 7.

(8) fw (IT) > 5

It is worth mentioning that examples due to Archdeacon {1] show that our
bounds are not too far from the best possible bounds on the face-width which
guarantee unigueness.

6. Minimality

It was shown by Robertson and Vitray [5] that an embedding IT with fw (IT) >
~(IT) + 3 is not only a unique such embedding but it is also genus minimal. This
has been slightly improved by Mobar [4] so that the genus of TI is replaced by the
minimal possible characteristic of an embedding of the graph. In this section we
strengthen this result to get a logarithmic instead of the linear bound. The proof
of uniqueness employed in Section 5 cannot be used in this case since we do not
have another large face-width embedding to compare it with II. This will result in
a slightly weaker bound. Instead of the O(log(~(11))/loglog(~(II))) lower bound of
Theorem 5.4, we will obtain only a bound of order O(log(v(I1))).

The main result of this section is:
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Theorem 6.1. Suppose that 11 is an embedding of a graph G. Let v ==~,,,,(G) be
the smallest characteristic of an embedding of G. I ~'>9 and

6 ,

9 fw (IT) > ———log(" — 8) + 50

(9) w () > log(9/8) og(" —8)+35

then v(11) =4/, i.e, 11 is minimal. Moreover, any embedding of G of characteristic

+' is Whitney equivalent to 1.

If+' <9, then the bound fw (IT) > 19 already assures uniqueness and minimality.
A slightly better estimate (asymptotically) will also be obiained. 1
. 2log(~' — ¢
(10) fw (I1) > L(_—/—Q —
log(a)
where ¢) and ¢y are suitable constants and « > 1.04 is the real root of the polynomial

¥ — x/8 — 1, then the embedding T is minimal and it is alse a nnique minimal
embedding up to Whitney equivalence.

The rest of this section is devoted to the prool of Theorem 6.1. By Lemuna 2.1
we may assume that G is 3-connected. Let IT' be a minimal embedding of G that
is not equivalent to I1. Then therc is a (II,11)-unstable cycle Cy. It is shown i [d,
Corollary 2.2} that there are cycles Cp, Cy. ..., Cryq where 7= | {k - 3)/2], with
the following properties:

(a) Co, ..., Cryq arc pairwise disjoint and each ol them is l-contractible and

[I'-noncontractible.

(b) For t=0,1,....7, Cou.. U Cint (I1,Cp4q).
(¢) For t=0, .... 7. C;is an indnced and nonseparating cvele of Ext (1. (7).
(d) No subset of {Cy,...,C;} is IT-bounding.

Define 3(¢) to be the largest number of pairwise disjoint (IT, I1')-unstable cycles
contained in int (IT,Cy) UCy whose union in G is induced and nonseparating. Our
goal is to show that B{1) grows exponentialiy.

Let us now fix some ¢, 1 <1 < 7. Denote by Gy = Ext(I1,C) and let 11, 17
be the restrictions of II and IT' to Gy, respectively. It is worth mentioning that
property (¢) implies that G¢ is 3-connected up to possible vertices of degree 2 in
. We also select an embedding H;’ of Gy such that v(IT}) <A(TT) and such that,
according to this condition, the number of (11,11})-unstable cycles of Gy is as small
as possible.

By Lemma 2.6 we get

(1) F(ITY) < (1) < 5(A) - 8( - 1).
We will try to change IT} so that C; will become a facial cvcle. By Lemma 3.3,

there is an embedding H? of Gy where C} is facial and such that

(12) ~(I19) < A7) + 2w (L) Cp) < (1) + 2w(IL), C;) - At - 1).
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In the second inequality we have used (11). Clearly, H? can be extended to an
embedding of G of the same characteristic. By minimality of II" and (12) we get

(13) 2w (I}, Cy) > B(t — 1).

By Lemma 2.2, C; is II/-noncontractible and hence (II;,II})-unstable. From
(13) and Lemma 4.1 we get a (I, II})-daisy D1, Da, ..., D, centered at Cy that
has r > [B(t—1)/2] —1 cycles. We claim that only (cyclically) consecutive cycles
in the daisy can intersect. Suppose that this is not the case. Let y € D; Ny,
z€D;NCy, z€ D;ND; be vertices as in the proof of Lemma 4.2 and suppose that
i and j are not consecutive. Since D; UD;UC; C Cyqy Uint (I1,Cy1 1), splittings
of faces D;, Dj, and Cy determine a Ilz-contractible triangle R whose Il;-interior
Q = int(II;, R) contains one of the cycles from the daisy since ¢ and j are not
consecutive. Choose a vertex w € Q — {z,y,z} of degree in G, at least 3, and join
it in Gy by three internally disjoint paths to {x,y,z}. (This is possible since Gy is
“almost” 3-connected.} Denote by T the union of the paths. The embedding of H/t/
restricted to (G \ Q)UT can be extended to an embedding of G4 by embedding
(7 in the same way as under [I;. The characteristic of the obtained embedding of
Gy is the same as the characteristic of the restricted embedding, hence at most
’y(H'L'). Moreover, it has strictly fewer (IT;, 11} )-unstable cycles since a (I, 11 )-
unstable cycle from the daisy contained in @ became facial. On the other hand, no
cycle which is IT}-facial and Il;-facial became nonfacial since, in (G¢\Q)UT, only
the II7-facial cycles containing edges of @ can change. This contradicts our choice
of 1T}.

Next, we claim that for any two cycles Dy, D; (1 <i<j<r) from the daisy
such that 4 <j—i<r—4, the only I;-facial cycle that intersects with D; and D; is
Cy. Assuming that this is not the case, let C’ be another such cycle. Denote by v,
z, x, ' vertices of D;NCy, D;NCy, D;NC’, and D;NC, respectively. After face
splittings they determine a Il;-contractible 4-cycle whose Ili-interior @ contains at
least three consecutive cycles from the daisy. We may assume that these cycles are
D1, Diyo, D;y3. We know that D; 9 is disjoint from D; and D;.

Let us first assume that D; o is II/-twosided. Let G} =(G—(Q—{x,z",y,z}))U
D;UD;. By Lemma 2.4, the embedding of G} induced by II} has characteristic
y(IIY|G)) < ()~ 2. In G}, = and y are connected by a path in D; whose all
interior vertices are of degree 2. Therefore, x and y are on a common (II/|G})-
facial walk. The same holds for ' and z. By applying Lemma 3.4 four times, we
can get from I1}|G} an embedding of Gy of characteristic at most v(II}') such that
Q is embedded in the same way as under IT;. This contradicts our choice of IT}
since this embedding has fewer unstable cycles than II}.

If Do is II/-onesided, then we define G} to be the subgraph of Gy as defined
above, together with a vertex weV(Q)\{z,2',y,z} and together with three paths
in @ from w to {x,2’,y,z} that have pairwise only w in common. The paths can
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be chosen so that the obtained subgraph (7} contains at most a segment from the
[1/-onesided cycle D;yo. Then we either have v(II/{G}) < ~(IT/) — 1 or the same
inequality can be achieved by a simple re-embedding similar to the operation in
Lemma 3.2. By applying Lemma 3.2 (if necessary), we can get an embedding ol
G} such that w is on common facial walks with any of z. y. z, 2’ (in the correct
order), and the characteristic is increased at most by 1. Using Lemma 3.4, we can
extend this embedding to an embedding of Gy of the same characteristic such thal
@ is embedded in the same way as under II;. This contradicts our choice of TI}.

A corollary to the above claims is that the union of induced nonseparating
cycles Dy, Dsg, Dg. Diz. ... from the daisy is an induced and nonseparating
subgraph of G. The number of cycles is at least

- HE B[(ﬂ(-t~ 1y/2] - %J > &;_ﬁ

- 1.

Since the daisy Dy, ..., Dy is contained in Cypq Uint (IT,Cyo ). we get
Y + +1, 2

(15) AL+ )z |2 +6(-2) > f_UgL) C—2) -1,

Of course, 3(0) =1, 4(¢) is nondecreasing, and by the same method as above we
trivially get B{t+3) > B{t)+ 1 for every ¢ > 0. This implies that #(23) > & and
8(24) >9. Using this fact and (15), we see that for {>24:

» o\ (t-23)/3 .
(16) Bty > (§> +8>1.0417% 18,
This estimate can be used up to t=7. From the definition of 3(7) and Lemma 2.6
we see that 8(7) is a lower bound for v(IT'). A routine calculation shows that this
implies (9).

The recursion (15) with constant coeflicients can be solved exactly by standard
methods. It follows that

(17) Bt) > ca + 0(1)
where > 1.04 is the real root of the polynomial #3 — /8 —1 and c is a constant.

This implies (10).
This completes the proof of Theorem 6.1. |
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