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Let G be a graph  embedded  in a surface of genus g. It is shown tha t  if the  face-width  of 
the  embedd ing  is at  least  clog(g)/loglog(g), t hen  such an embedd ing  is un ique  up to W h i t n e y  
equivalence.  If the  face-width is at least clog(g),  then  every embedd ing  of G which is not  W h i t n e y  
equivalent  to our embedd ing  has  str ict ly sinaller Euler characteris t ic .  

1. Introduction 

All graphs in this paper are undirected, finite and simple. We follow standard 
terminology as used, for example, in [2]. A subgraph C of a graph G is induced 
if every pair of non-adjacent vertices in C is also non-adjacent in G. It is non- 
separating if G -  V( C) is connected. 

Embeddings of graphs in the plane are well understood thanks to the following 
results: 

(a) (Whitney [9]) Every 3-connected planar graph has essentially unique embed- 
ding in the plane. (This means that face boundaries and local rotations are 
uniquely determined.) 

(B) (Whitney [9]) If G is a 2-connected planar graph, then any two ernbeddings of 
G in the plane are Whitney equivalent. (One can be obtained from the other 
by a sequence of simple local re-embeddings. See, e.g. [4] fbr definition of 
Whitney-equivalence.) 

(C) (Folklore) If G is a graph that is embedded in the plane, then all its face 
houndaries are cycles of G if and only if G is 2-connected. 

(D) (Tutte [8]) If G is a 3-connected graph embedded in the plane, then the 
th.ce boundaries are precisely all induced non-separating cycles of G (and 
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conversely). In such a case, any pair of facial cycles are either disjoint or 
they intersect in a vertex or an edge. 

These results can be generalized to graphs embedded in general surfaces by 
introducing the face-width of an embedding as defined below. We will consider 
only 2-cell embeddings in closed surfaces. They can be described in a purely 
combinatorial way by specifying: 

(1) a rotation system rr = (rev;V E V(G)); for each vertex v of the given graph G 
we have a cyclic permutat ion Try of edges incident with v, representing their 
circular order around v on the surface. 

(2) A signature )~: E ( G ) ~  {-1 ,1} .  Suppose that  e =uv.  Following tile edge e on 
the surface, we see of the local rotations rev and reu are chosen consistently or 
not. If  yes, then we have A(e) =1,  otherwise we have A ( e ) = - 1 .  

The reader is referred to [3] for more details. We will use this description as 
a definition: An embedding of a graph G is a pair II = (re, ~) where 7r is a rotation 
system and ~ is a signature. Having an embedding H of G, we say that  G is If- 
embedded. A cycle with an odd nmnber of edges e having k(e) = - 1  is said to be 
II-onesided. Other cycles are H-twosided. 

Given an embedding II = (re,,\), an angle of II is any pair of edges {e, rcv(e)} 

where v G V(G) and e is an edge incident to v. The cyclic sequence e, try(e), re2(e), 

rrva(e), ... is called K-clockwise ordering around v. We define If-facial walks as 
closed walks in the graph which are determined by the following process, called 
the face traversal procedure. I t  starts with an arbitrary angle, say {el, e2}, where 
e2 = try(el). Initially, we use H-clockwise ordering around vertices when selecting 
the next edge on the facial walk that  we traverse (like we did when selecting e2 
after el). Every time when we traverse an edge e with A ( e ) = - 1 ,  we will change 
to the H-anticlockwise ordering (or back to If-clockwise if it was H-anticlockwise). 
Starting at v with {el,e2}, we first traverse the edge e2=v~t. Arriving to its other 
end u, we select the angle {e2,ea} where ea = 7ru(eg.) is the next edge in the 11- 
clockwise order around u if we still use the H-clockwise ordering. Then we continue 
the traversal along the edge ca. If we use H-anticlockwise ordering, then we select 

the angle {e2,e3}, ea =re~-l(e2), and proceed with the traversal along the edge ca. 
Continuing the traversal in the same way, we obtain a closed walk which stops when 
we reach our initial angle {el, e2}. This closed walk is said to be K-facial. All other 
If-facial walks are determined in the same way by starting with other angles. They 
correspond, bijeetively, to faces of the corresponding topological embedding. Two 
embeddings are equivalent if they have same facial walks. 

Let F ( I I ,G)  be the set of H-facial walks. The number 

7(II) = 2 - j v ( a ) l  + IE(C , ) I -  IF(If, a ) l  

will be called the characteristic of the embedding II. Note that  it is closely related 
to the genus and to the negative value of the Euler characteristic of the surface of 
the underlying topological embedding. It  is known that  "7(I-[)_> 0 and that  7 ( i f ) =  0 
if and only if II  corresponds to an embedding of G in the plane. 
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If  H is an embedding of a graph G and H is a subgraph of G, then the induced 
embedding of H,  which we will denote by HIH , is obtained fl'om tha t  of G by 
ignoring all edges in E(G) \  E(H) and by restricting A to E(H). More precisely, 
if e--uv C E(H), then the successor of e in the clockwise ordering around v is the 

first edge in the sequence Try(e), 7r2(c), ... which is in H.  It is easy to see tha t  
 (nlH) 

If G is a [ i -embedded graph and C is a II-twosided cycle of G, then we define 
the left graph and the right graph of C as follows. Select a vertex v r V(C), and let ~ 

and e t be the edges of C incident with v. If e' =7~(e ) ,  then all edges e, Try(e), ~r2(c), 

. . . ,  7rvk(e) are said to be on the left side of C. As in the face t racking procedure,  
we will determine left edges at every vertex of C by traversing C edge by edge. 
After traversing an edge f of C with ) , ( f ) = - 1 ,  we change clockwise orientat ion to 

anticlockwise, and vice versa. In particular,  traversing the edge e~= v'u l'rom v to u, 

the left edges at tt are e', ~r,~(e'), 7r~(e'), . . . ,  7r~,.(e') (where zrl~(e' ) E E ( C ) ) i f  we have 
the clockwise orientation. On the other hand, having the anticlockwise orientation, 

the left edges are 7r~(e'), ~r{+l(e'), . . . ,  e'. Since C is II-twosided, the orientat ion 
is again clockwise when we come back to the initial vertex v after traversing the 
entire cycle C. An edge e which is not incident with C is said to lye on the left side 
of C if it is connected by a path  in G -  C to an end of an edge on the left side of 
C (and incident with C). Now the left graph G l = G l(II, C) is defined as the graph 
induced by all edges on the left of C. The right graph G.,. = Gr(H,C) is defined 
analogously. 

Let C be a II-twosided cycle and G l and G,. its left and right graph. It' 
GINGr=C,  then C is said to be If-bounding. An easy count shows tha t  in such a 
c a s e  

(1) + = 

If ~/([I]GI)=0 or ~/( i i [Gr)=0,  then C is a [I-contractible cycle. In particular,  every 
II-facial cycle is R-contractible.  If C is If-contractible and 7(1-flGl.) =0 ,  then we call 
the subgraph G l -  E(C) the H-interior of C and denote it by int (H,C) .  We also 
write Ext  (H, C) = Gr. Similarly if  (iiIa,.) = 0. By (a), int (II, c )  and Ext  (H, C) 
are well defined if 7 ( I I ) r  

The same notat ions as above can be introduced for II-onesided cycles bv 
defining tha t  such a cycle C is always I I -nonbounding  and II-noncontract ible.  

Let G be a I I -embedded graph and let F lye a H-facial walk with angles {c, f }  
at vertex u and {g, h} at vertex v. Add the edge 'av to G and extend the embedding 
so tha t  uv is inserted in 7r~L between e and f and in Try between g and h. If the 
produc t  of signatures on a segment of F fl'oin {e , f}  to {.q,h} is 1, then we set 
A(uv) = 1, and otherwise ,k(uv)=-1. We denote the obtained embedding of G + uv 
again by II. The performed operat ion is called a face splitting at u and v. 

If [ b , . . - ,  Fk-1 (k > 1) are distinct If-facial walks and vo , . . . , vk_ j  are distinct 
vertices of G such that  vi and vi+~ (index modulo k) are bo th  in Fi (i = 0 . . . .  , 
k - l ) ,  then we can add to G a cycle C = v o v  1 ... vk_ 1 by a sequence of face splittings 
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at vertices vi, Vi+l, i = 0,. . .  , k - 1 .  The smallest integer k _> 1 such that  there are 
H-facial walks Fo, . . . ,Fk_  1 and vertices vo , . . . , vk_  1 for which the corresponding 
cycle C is H-noncontractible is called the face-width (or representativity) of II and 
denoted by fw(9) .  With this notation, generalizations of (C) and (D) can be 
expressed as follows [5]: 

(C') If G is a H-embedded graph, then all [I-facial walks are cycles of G if and only 
if G is 2-connected and fw (ii) _> 2. 

(D') If G is a H-embedded graph, then the If-facial walks are induced nonseparating 
cycles of G if and only if G is 3-connected and fw (H) _> 3. In such a case, any 
two If-facial cycles are either disjoint or they intersect in a vertex or an edge. 

Properties (A) and (B) can also be generalized. Robertson and Vitray [.5] 
proved that if G is a 3-connected graph embedded in a surface of gemls 9 with 
face-width greater than 29+ 2, then such an embedding is unique and necessarily 
a minimal genus embedding (either orientable, or non-orientable). This result has 
been slightly improved by Mohar [4] who replaced the genus of II in the bound 
by the minimal genus of an embedding of G, and who also observed that in the 
non-3-connected case embeddings with large face-width are unique up to Whitney 
equivalence. It turns out that instead of nfinimizing the genus, it is more convenient 
to minimize the characteristic of the surface. Then the distinction between the 
orientable and non-orientable case disappears and stronger results are obtained. We 
say that an embedding II of G is minimal if 3'(9) is minimal among all embeddings 
of G. Let II be an embedding of G which satisfies certain property. Then 13 is said 
to be unique embedding with this property if every embedding of G with the same 
property is equivalent to G. 

The purpose of this paper is to improve above mentioned results by consider- 
ably weakening the assumptions on the face-width. We will show that embeddings 
9 whose face-width is larger than clog(v(II))/ loglog(7(II))  (where c is some sInall 
constant) are unique up to Whitney equivalence (Theorem 5.4). Moreover, era- 
beddings with fw (II)_> c log(7(H)) are also characteristic minimal (Theorem 6.1). 
On the other hand, examples constructed by Archdeacon [1] show that  our bounds 
are not too fat" front the best possible bounds on the face-width which guarant, ee 
uniqueness. 

It came to our attention that some time earlier than this paper has been 
completed, Seymour and Thomas [6] obtained results similar to ours. In par- 
ticular, they present an improvement of our Theorem 6.1 by showing that 
fw ([I) _> 1001og(~,(II))/loglog('y(II)) already implies minimality of embeddings (for 
3-connected graphs). This result also implies a uniqueness result in flavor of out 
Theorem 5.4. On the other hand, Theorem 5.4 has simpler proof and it consider- 
ably improves the constants in bounds of Seymour and Thoma~s. 

2. Some preliminary lemmas 
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In this section we assume tha t  G is a [ I -embedded graph and tha t  7(1-[) > 0. 
Our first l emma shows that  we can restrict our a t tent ion to 3-connected graphs if 
we are interested only in embeddings with fw (II)_> 3. 

Lemma 2.1. ([5, 4]) There exists a unique 3-connected blo& Go of G such that 

fw(II ' lGo)=fw(II '  ) for every embedding H' of G with fw(II ' )_>3.  I f l I  ~ and I] n are 
two such embeddings which coincide on Go, then they are W h i t n ~  equivalent. In 
particular, aB other 3-connected blocks of G are planar. 

An immediate  consequence of Lemma 2.1 is the fact tha t  minimal embeddings 
of G and Go are the same [4, Proposi t ion 3.1]. 

The next result is easy to see. 

Lelnma 2.2. I f  C is an induced nonseparating cycle of G, then C is either II-[hcial 
of [I-nonbounding. | 

Cycles C1 and C2 of G are [I-crossing if either 

(i) C1 ~C2 is a vertex v and the edges incident with v, el, f l  of C1 and e2, f2 of 
C2, respectively, appear  in Try in the interlaced order, say el, e2, f l ,  f2, or 

(ii) C1 Ch C} is an edge e = uv and the following holds. Suppose tha t  eir  is the 
edge on Ci incident with u and that  f i # e  is the edge of Ci incident with v 
( i = 1 , 2 ) .  If  the order of el, e2 and e in 7r~,, is el, e2, e then the order o f f 1 ,  .f2, 
c in 7Cv is f l ,  .f2, e (if A ( e ) = l ) ,  or f2, f l ,  e (if A ( e ) = - l ) .  

For further reference we state the following obvious result: 

Lemma 2.3. I f  C1 and C2 are II-crossing qycles, then they a.re both II-nonboundins-. 
In particular, they are II-noncontractible. 

Let ~ he a non-empty  set of disjoint cycles of G and let C C_ G be the union of 
all cycles from ~. Then ~ is said to be [I-boundin 9 i f G  can be wri t ten as G=GIUGT, 
such tha t  GtNGT = C and such that  every cycle from ~ is (nlar and (nlc,,)- 
facial. (In particular, every cycle in ~ is II-twosided.) The next lemma is taken 
from [4]. 

Lemma 2.4. Let ~ be a set of disjoint cycles of G. I f  evel:y subset o['~ is FI- 
nonbounding, then 

"y(n) - 7 ( n l ( G  - ~)) > 21V t - ~, 

where k is the number of II-onesided cycles in ~. In particular, ? (1]) > 21~ I - k. 

Lemma 2.5. Let ~ be a set of cycles of G. I f  every cycle C E ~ is H-crossing with 
at most r and with at least one of the cycles from ~ and is disjoint from all other 
cycles in ~, then 

7(H) > I~l/(r + 1). 

Proof.  We will select pairs of cycles ~i = (Ci, C~), i = 1, 2, . . . ,  k with the following 
properties: 
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(a) C1, . . . ,  Ck are pairwise disjoint. 

(b) If l<_i<j<_k then C~ is disjoint from (-~. 

(c) For i =  1, . . . ,  k, if Ci is II-onesided, then C~ = C~:, Otherwise, C~ is H-crossing 
with Ci. 

Such pairs are obtained as follows. Suppose that  we have already selected ~1, 
�9 . . ,  ~ i - 1 ,  where i > 1. Denote by nl the number of H-onesided cycles among C1, 
. . . ,  Ci - i  and let n2 be the number of H-twosided cycles. Then we choose for C4 an 

arbitrary cycle from ~ that is disjoint fronl C1, . . . ,  C i - 1  and from C[, . . . ,  C~_ 1. 

By our assumptions, at least 

(2) [~1 - 2rn2 - (r + 1)nl > - (r + 1)(2~2 + ~.1) 

cycles from ~ are at our disposal. After selecting Ci, let C~ be an arbitrary cycle 

from ~ satisfying (c). It is clear that the obtained pairs ~i ,  ..-, ~i satisfy (a) (c). 
Suppose now that a subset of {C1,... ,C/c} is H-bounding. Let Ci be a cycle in 

this subset with the smallest index i. Clearly, C~ is H-twosided. By (a)-(c), C{ and 

Ci are H-crossing but C~ is disjoint from all other cycles in our separating family. 

A contradiction. By selecting as many pairs ~i as possible, the inequality (2) shows 
that  2n2 + nl >__ [~l/(r + 1). Consequently, an application of Lemtna 2.4 completes 
the proof. II 

We will use another result which implies large characteristic of an embedding. 

Lemma 2.6. Let ~ be a set of disjoint II-noncontractible cycles of G. I f  the union 
of cycles in ~ is a n  induced and nonseparating subgraph of G, then 

~ ( n )  - ~ ( n l ( a -  ~)) >_ 21~ I - k 

where k is the number of II-onesided cycles in ~. 

Proof. No subset of the cycles can be H-bounding. Consequently, Lemma 2.4 
applies. I I  

We will also use the following result which can be proved easily: 

Lemma 2.7. If  C is a H-contractible cycle of G, then every cycle in CUint (II, C) is 
If-contractible. | 

If X C_ V(G),  then an X-component is either an edge with both ends in X or 
a connected component L of G -  X together with all edges between L and X. 

Lemma 2.8. Let G be a II-embedded graph. Suppose that X is a separating set 
of vertices of O such that IXI < fw(II) and such that for any separating sets' X1, 
X2 C_ X with X1 U X 2 = X we have IX1 N X2[ >_ 2. Then G = G1 U G2 where 
G1 n G2 = X1 c X such that: 
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(i) X1 is an induced and nonseparating set in G1, i.e., G1 is a single X l - c o m p o n e n t  
in G. 

(ii) B y  face splittings one can acid to G a II-contractible cycle C sudl  that 
V ( C )  C X1 and sud~ that G2 = in t (H ,C) .  In particular, G2 contains no 
I]-noncontractible cycles. 

Proof.  Let B be an arbi t rary  X-conli)onent, and let Y _C X be the set of vertices 
incident with edges from /3 and with edges that  are not fl'om B. Each :~] ~ Y is 
contained in at least two H-facial walks whose angle at y contains an edge of B and 
an edge froin E ( G ) \ E ( B ) .  (Such angles are said t o  be mixed.) On the other  hand, 
every such R-facial walk contains at least two vertices of Y with mixed angles. 
Choose such a facial walk F1 and vertices vl,  v2 C Y n V(F~ ) such tha t  one of the 
segments of F1 from vl to v2 is contained in B. Let. F'2 be another  such II-facial 
walk containing v2 and such tha t  in the local rotat ion 7cv2 only edges of B appear  
between the angles of F1 and F2. By continuing in the same way, we get a sequence 
of distinct H-facial walks Fi,  F'2, . . . ,  i~ and distinct vertices 'vl, v2, . . . ,  "c't (t. _>_ 2) 
such tha t  vi and vi+ 1 are in Fi for i = 1, . . . ,  t 1. Moreover, in Ft we have a 
vertex vt+~ which is also in some FI, l < l < t .  We may assume tha t  l = l  and 
tha t  'ut+ 1 = v' 1 . By face splittings we can add a cycle C = v lv2 . . ,  vt'c,1 and since 
t < I Xl < fw (rI), c is II-contractible.  Hence, X1 = {vl, . . . , 'c ' t  } is a separat ing set of 
G. By construction, only edges of B arc on the left side (say) of C at every vert, ex 
vi, 2 < i < t. If there is an edge e r E ( B )  incident to vl thai; is on the left side of C, 
then X2 = ( X \ X 1 ) U { V l }  is a separating set of G. By our assumption on X, this is 
not  possible, and thus B is the only X-componen t  tha t  is on the left side of C. If 
B contains a H-noncontract ible cycle, then by Lemtna 2.7 we have B C Ext  (II, C). 
Then  all other X-components  are contained in int (H, C), and their union does not 
contain II-noncontraet ible cycles. 

It  remains to show that  at least one of the X-componen t s  contains a H- 
noncontract ible  cycle. It follows from assumptions on X tha t  IX] - "> 2. Hence 
fw (H) _> 3 and thus 7(H) > 0 [51. Therefore, G contains a H-noncontract ible  cycle. 
We leave it to the reader to show tha t  one of such cycles is contained in a single 
X-component .  A similar approach as above can be used. | 

3. Local changes 

Let Yi = (Tr,,k) be an embedding of a graph G and suppose that  v C V ( G )  is a 
vertex of degree d. If try = (e le2 . . .ed) ,  let Fj be the U-facial walk containing the 

angle { e j , e j + l }  (index modulo d), j = l ,  . . . ,  d. 

Lemma 3.1. Let  H/--  (re l, A) be an embedding  of  G which differs from H only at ~rv 

such that  7r v' = (es+ 1 ... ere l . .. e set:+l . .. ed) for some s and ~, 1 _< s < t < d. Then 

< 2  
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Proof. The face tracking procedure shows that  the only H-facial walks that  are 
affected by changing Il to H / are Fd, Fs, and Ft. The claim is then obvious since 
the number of faces changes by at most 2. | 

Lemma 3.2. Let  H I =  (7r l, A l) be an embedding of  G which differs from II only at 

v such that  7%' = ( e s e s - 1 . . . e l e s + l . . . e d )  , and A ' ( e ) = - A ( e ) i f e E { e l , . . . , e s }  and 

A'(e)=A(e) otherwise. Then [ ' y (H ' ) -7 ( I I ) l  _<1. I f  F d = F s ,  then ~(n ' )=~( l - I ) .  

Proof. From the face tracking procedure we see that  only the U-facial walks F d 
and Fs are changed. The claim of then obvious. | 

Suppose that  C is a cycle of G. Define w(i i ,C)  as follows. If C is If-facial, 
then w(II, C ) =  0. Otherwise, w(II, C) is the smallest number of segments of Fi-facial 
walks whose union is C. A simple corollary to above local re-embedding lemmas is 
the following result. 

Corollary 3.3. Suppose that  H is an embedding  of  a graph G and that  C is a cycle 
of  G. Then there is an embedding FI ! of  G such that  C is rICfacial and such that 

t) < + 2 (ii, c).  

Proof. By induction on w = w(FI, C). If w = 0, then II ! = H will do. For the 
induction step we can use Lemma 3.1 or Lemma 3.2. Appropriate application of 
these lemmas decreases w by 1 and increases the characteristic of the embedding 
by at most 2 or 1, respectively. | 

Lemma 3.4. Let  u, v E V(G) .  Consider an angle {e, f}  at u and an angle {g, h} at 

v. Ident i fy  u and v into a single vertex w and define an embedding  FI r = (~r l, A) of 

the obtained graph G ~ so that r /  coincides with 7~ except  that  7rrw = (eel . . .  f g f  . . . h) 

where 7ru = ( e e ' . . . f )  and ~rv = ( g f  . . .h ) .  I f  the angles { e , f }  ~znd {g ,h}  are 

on the same If-facial wall, W ,  then either 7(H')  = 3'(FI) (i f  W = e f  . . . g h . . . ) ,  or 

y(H')  =3,(1])§ 1 (if  W = e f . . .  hg . . . ) .  Otherwise,  7(i l  ~) = 7 ( H ) +  2. 

Proof. If {e , f}  or {g,h} appear on W = e f W l g h W 2 ,  then W gives rise to two 

Ill-facial walks. If W = e f W l h g W 2 ,  then A(W1) = A(W2) = - 1  and hence W 

changes into the IIqfacial walk W t = e h W l l f g W 2  - I .  All other facial walks remain 

unchanged. Since [V(G~)I = ] V ( G ) I -  1, the change of the characteristic is either 
0 or 1, respectively. If the angles are on distinct H-facial walks W1 and VV2, then 
they give rise to a single IILfacial walk, and all other facial walks remain the same. 
The characteristic thus increases by 2. | 
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4. Comparing non-equlvalent embeddings 

In this section we will assume that  G is a 3-connected graph with non- 
equivalent embeddings II and IY whose face-widths are k = fw (H) and t,/= fw 0I/) ,  
respectively. We will also assume tha t  h > 3. 

A cycle of G is (II, Ill)-unstable if it is 1-N-facial and IY-nonfacial. Let C be a 

(II, H~)-unstable cycle and let D~, . . . ,  Dt be (H,IY)-nnstable cycles tha t  [ICeross 

with C. Such cycles are called a (II,IY)-daisy of size t centered at C if they are 
pairwise disjoint at C, i.e., D i n D j N C = O  fox. any l < i < j < l .  If D] . . . .  , l)l. 
form a daisy, we shall implicitly assume that  they are enumerated  according to the 
(cyclic) order of their intersection with C. Since G is 3-connected and ~: >_ 3, (D') 
shows tha t  this order is uniquely deternfined (up to cyclic shifts mid reflections). 

Lemma 4.1. Let C be a (II, H~)-unstable cycle. Then there is a (1I H~)-(l~isy 

centered at C that is of size w - 1, u.'here w = w(IY, C). I f  C ~ is a (H, H~)-unst:abh~ 
cycle that, HCcrosses C, then the daisy can be chosen such that it contains C I. 

Proof. Denote by _~r the maximal  size of a (II, Hl)-daisy centered at C:. X~'e claim 
that ]IJ = w or 11,I = w -  1.  

Let us first assume that  there is a vertex v C V(C)  such tha t  the two edges of C 

Then there is a H-facial cycle D tha t  is Fir L incident to v are not consecutive in rrv. 

crossing with C and such that  D n C =  {v}. By Lemma 2.3, D is (lI,H~)-unstable. 

Traverse C s tar t ing at v. The HCfacial segments on C on one or the other side 
of C (as seen during this traversal) are called left and right facial segments on C, 
respectively. Let Q he the bipart i te graph whose vertices are the left and the right: 
facial segments of C and whose edges correspond to segments sharing an edge ol 
C. Each edge of C is in a left and in a right facial segment and there is a bijection 
between E(C)  and E(Q).  Suppose tha t  e, f d E(C)  and that  the corresponding 
edges of O do not have common endvertices. Then there are vertices 'u.l, ur between 
e and f on C such that  G has an edge incident with '~l l tha t  is on the left of C 
and an edge incident with Ur that  is on the right of C. This implies tha t  there is 
a (H,H~)-unstable cycle tha t  crosses C and intersects C only between e and f .  [ |  

follows tha t  every matching R in Q determines a set of IR] (H, H~)-unstable cycles 

tha t  HLcross C and tha t  are pairwise disjoint at C (and vice versa). Similarly, a 

vertex cover of Q deternfines a set of IY-facial segments of U which cover C (and 
vice versa). By the KSnig EgervSry Theorem [2] it follows t.hat 11/I=v,. 

Suppose now tha t  for each v C V(C),  edges of C incident to v are rr~,- 

consecutive. Suppose tha t  C contains an edge e = t t u  such tha t  no ( I I , I I l ) -unstable  

cycle which HLcrosses C contains e. We may assume tha t  there is a (II, IY)-unstable 

cycle D through v which is IY-crossing with C. In this case we use the same proof  
as above with the only difference tha t  the edge of D A C  does not contr ibute  to ad- 
jacency in the graph Q. (Now a cover of C with IY-facial segments induced by a 
vertex cover of Q may not contain the edge of DNC.  But the segment containing 
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can be changed so that  all of C is covered.) Similarly if C is IY-twosided (when .D 

is not needed at all). In all these cases we get a (II, IY)-daisy of size 'w. By insert- 

ing C l and removing at most two cycles which intersect C / we get a (II ,II l)-daisy 
as claimed by the lemma. 

It  remains to consider the case when C is IY-onesided, of odd size with consec 
utive edges el, e2, . . . ,  e2r+l and IY-facial segments on C equal to ele2, e2e3, . . . ,  

e2r+le].  Clearly, w = r + l ,  and any of the (II, IY)-unstable cycles at C is cont, ained 

in a (II, IY)-daisy of size r centered at C. I 

Cycles in a daisy centered at C can hm:e non-empty intersection out of C. We 
will need daisies consisting of disjoint cycles. Then the following lemma will be 
used. 

Lemma 4.2. Let D1, . . . ,  Dt be a (II, H~)-daisy centered a.t C. Suppose that k, 

l~: l >_ 4. Then any two distinct and (qyclically) non-consecutive cycles Di and Dj 

from the daisy are disjoint. Moreover, if  k, k1>_ 5, t, hen D i and I)j are at, distance 
at least. 2 in G. 

Proof. Let y be a vertex of DiNC and z be a vertex of D./3C. If Di and Dj intersect, 

then they share a vertex x ~ V(C). Add edges xy, yz, and zx by splitting faces 
Di, C and Dj, respectively. Since k > 4 ,  the obtained triangle A is II-contractible. 

By construction, one of the segments of C between y and z is in int (YI, A) and the 

other one is in Ext (II, A). Therefbre, the 1-Y-noncontractible cycles Di_ 1 and Di+l 
are not contained in the same X-component  of G, where X = {x, y, z}. By Lemma 

2.8 (for the embedding IY) we get a contradiction with k1> 4. 

To prove the second part,  note that  a possible edge xx ~ between Di and Dj 

cannot lie on C. Now we take X =  { x , S , y , z }  and conclude as above by applying 
Lemma 2.8. I 

5. Uniqueness 

In this section we will assume that  G is a 3-connected graph with nonequivalent 
embeddings II and rI'  whose face-widths are k = fw  (II) and k~= fw (II ') ,  respectively. 

Theorem 5.1. Suppose that fw (l-I) = k ~ 4. Then we can find, tbr each (II, II~) - 

unstaSle cycle C, a. (rf, IIr)-daisy centered at C consisting of at least L ( t / -  1)/2J 

p~tirwise disjoint cycles. If k >_ 5 and k' > 5, then the cycles are also pairwise non- 
ad.iacent. If C ~ is a (II, IY)-unstable cycle that IY-crosses C, then the daisy can be 

chosen so that it contains C ~. 

Proof. Note that  w([II,C) >_ k r. If k ~ < 4, tile clainl follows from Lemma 4.1. 
Otherwise it follows fronl Lemmas 4.1 and 4.2. | 
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From now on we assume tha t  k _> 4 and /el_> 4. We shall construct  a fanfily 
of (II, II t)-unstable cycles by using the following procedure.  We start, by taking a 

(11,H')-unstat)le cycle Co. Let ~0 = {Co} and let ~1 ])e a set. of L(/c t 1) /2 !  pairwise 

disjoint cycles obtained by Theorem 5.1 that  form a (II.IY)-daisy centered at ( '  -0. 
Having constructed t50, . . . ,  ~5i-i (i _> 2), we define ~5i to be the uniou of (laisics 

d~(C'), for eaeh C ~- ~i-1 \ (~0U. . .  U~.,:-2), \vhere r is a (1], i i ' )-daisy centered 

at C tha t  contains a cycle C ' E  f i - 2 ,  and consists of at leasl t ( ~ : ' - l ) / 2 j  pairwise 
disjoint cycles obtained by Theorem 5.1. On C, betwecn any two consecutive cycles 
of the (Fi,H')-daisy ~)(C), there is a (II, W)-unst.able cycle tha t  can be added io 

the daisy (but may intersect with other cycles). Also, hole tha t  lhe cycle (,i is well 

defined as a cycle whose da i sy /~(C l) contains C'. Ore' nexi  lemma shows l]lal lhis 

cycle U / is unique if i is not too large. 

Lemma 5.2. I fO < 2i < rain{h,/ct}, then every cycle C C , i \ ( g o U . . . d g i - ~  ) intersects  

u,ilh a ~mique qycle C ~ < go U. . .  U g.,:-I. I f  2i + l < rain{k./J},  then ~o Nvo c vcle!s 
f rom g,: intersect .  

Proof.  Suppose that  C intersects with two cycles, Q E gq and/~  C g,. where q < i and 

'r < i. For any cycle D in our sets g.i (J -> 1) we denote by ~(D)  a cycle in g j _  ~ lha l  

includes D in its daisy. Whe,  ... and ; ( R ) ,  ... determine 
a sequence of" at, most q §  _< 2 i - 1  It-facial cycles from Q l;o ]{ such thai, any two 
consecutive cycles 1Y-cross. Including C, we get a sequence of at most  2i I]-f'aeial 
cycles tha t  (cyclically) intersect its two neighbors in the sequence. Since 2i < ~:, 
splitting of these It-facial cycles gives rise to a I t-contractible curve whose intcriol 
and exterior contain (11,rf ')-unstable cycles. On the other hand, since 2i < I,/. we 
get a contradict ion by using Lemma 2.8. The details are left to the reader. 

A similar proof  works for the other assertion. | 

Let n ,=min{k ,k '}  and , ,=  [ ( ~ - d ) / 2 J ,  ) ,=  k(t~"-3)/2]. The  above construction 

gives rise to a tree-like s t ructure  g0U...@g~+:l of' ([I, W)-unstable. cycles. By Lemma 
5.2, they can he taken so that  their numl)er is 

k~,+ t _ 1 
(3) l + ( k + l ) + ( k + l ) k + . . . + ( k + l ) k " = l + ( k + l )  k - I  

and so that  each of the cycles intersects with exacl, ly A + l of other  cycles in the 
family (if it is in gi for i_< 7,) or with exactly one other  cycle (if it is in ~,,+ t). Now 
we have: 

L e m m a  5.3. If k' >_ 7 and  k > 4, then 

(4) ~'(11') _> A". 

Proof.  By (3) and Lemma 2.5, we have 

(s) -y(n') -> (1 + (1 + A) 
\ 

X 2 ]  / ( a  +2) .  
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For X_>2 we have ( A + I ) ) , >  ( ~ - 1 ) ( A + 2 ) .  This inequality and (5) imply that  

1 1 
(6) ~'(II') >- A +--~ + ~ - -a 

Since ,~,(II') is an integer, we get (4). III 

The nmin result of this section is now evident: 

Theorem 5.4. Suppose that Fl is an embedding of G and that fw (fl) >/~: where ]~: ~ 7 
is the smallest integer sudJ that 

(7) > 

I f IY  is an embedding of G whose face-widtl~ is also greater or equal to lc, then f['  is 
Whitney equivalent with II. In particuiar, if G is 3-connected, then II' is equivalent; 
wit h H. 

Proof. By Lenmm 2.1 we may assume that  G is g-connected. By exchanging the 
roles of II and 1-V in Lemma 5.3, we see that  

~'(H) > L(~: - 3 ) / <  kk/2J-2 

This is a contradiction. II 

As a corollary to Theorem 5.4 we see that  embeddings II with 

2 log(G(rI)) 
(8) fw (n) _> 5 + 

log log(7(II)) - log log log2('y(II)) 

are unique embeddings with so large face-width (up to Whitney equiwdence), with 
possible exceptions when the right hand side of (8) is smaller than 7. 

It  is worth mentioning that  examples due to Archdeacon [1] show that  our 
bounds arc not too far from the best possible bounds on the face-width which 
guarantee uniqueness. 

6. Minimality 

It wa~s shown by Robertson and Vitray [5] that  an embedding II with fw (II)>_ 
3,(fI) + 3 is not only a unique such embedding but it is also genus minimal. This 
has been slightly improved by Mohar [4] so that  the genus of FI is replaced by the 
minimal possible characteristic of an embedding of the graph. In this section we 
strengthen this result to get a logarithnfic instead of the linear bound. The proof 
of uniqueness employed in Section 5 cannot be used in this case since we do not 
have another large face-width embedding to compare it with II. This will result in 
a slightly weaker bound. Instead of the O(log(7(n))/loglog(7(E))) lower bound of 
Theorem 5.4, we will obtain only a bound of order O(log(7(II))).  

The main result of this section is: 
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T h e o r e m  6.1. Suppose tha t  if is an embeddMg of a graph G Let: ~ ~ =~-,,,i,,(G) be 

the smalles~ d~aracteristic of an embedding of G. I f  1/ >_ 9 axM 

6 
(9) fw (H) > log(9/8~-~-) log(l" - 8) + 50 

then ~y (H) ="7 r, i.e., 1-I is n~inima]. Moreover, ,~y  embedding o[ G of cha.1;~cteristJc 

1 ,t is Whitney" equiva.]ent to I[. 

If 3 '~ < 9, then the bound fw (l-I) > 19 already assures uniqneness and minima lity. 

A slightly be t tc r  est imate (asymptoticMb')  will also bc ohl.~dned. If 

2 log(7' - el) 
(10) (n) > ,:,2 

log(o) 

where cl and c2 are suitM)le constants and o >  1.04 is the real root of the polynomial  

3:3 - . ~ : / 8 -  ~, then the mnbeddmg [t is minimal a.xxd it: is also a n~i~iuc mmim~9~ 
embedding up t,o Whi tney  equivalence. 

The  rest of this section is devoted to 1,he proof of Theorem 6.1. By [ ,emma 2.1 
we may assume that  G is 3-connected. Let lit be a minima.1 embedding of G that 
is not. equivalent t.o 13. Then  t, here is a (II, III)-tmstable cycle C0. I1, is shown in [,l, 
Corollary 2.21 that. ~here aye c:yc~es Co, C1 . . . .  , (7-~+t where r = ~(k ?,)/2J, wit~.~ 
the following properties: 

(a) C0, . . . ,  C~-+] are pairwise dis.joint and each of them is II-contractiMe and 

l-ff-noncontractible 

(b) For t = 0 ,  1 , . . , r ,  C o U . . U C t C _ i n l ( f [ , d ' t T t ) .  
(c) For t = 0, . . . :  r .  Ct is an in(h:ced and nonseparat ing cycle of Ext  (II. ('t). 

(d) No subset of {C0 , . . . ,C r}  is Ht-bounding. 

lbetine ~(t)  t;o be the largest number of pairwise disjoint (H, [l~)-unstable cycles 
contained in int (H~Cz)UCt whose union in G is induced and nonseparatmg.  Our 
go~vI is to show 1,hat f~(t) grows exponen~iafix.,. 

Let us now fix some t, 1 < l <  r. Denote by G, = Ex t (H ,Ce)  and let l i t ,  lit ~, 

be the restrictions of II and H ~ to Gt, respectively. It is ~o r th  mentioning lhat  
p roper ty  (c) imI)lies tha t  Gt is 3-connected up to possible vcrtiees of dep3ee '2 ilJ 

according to this condition, tlm lmmber of (1It, l]t/)-m~stable uyeles of (;t is as sma.ll 
as possible. 

By Lemma 2.6 we get 

( t [ )  ~.(n'/) ~ ~,.(r[',.) < ~.(n') - 0(~. - 1). 

\Ve will t ry to change 1I~/ so that .Ct will become a faeiM cycle. By Lenm~a 3.3. 

there is an embedding H ~ of G~ where Ct. is facial and such that 

(12) .r(n ~ < + c,)  < .r(n') + >,,(n;' ,  c , )  - ). 
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In the second inequality we have used (11). Clearly, ri O can be extended to an 

embedding of G of the same characteristic. By minimality of [[i and (12) we gel, 

( l a )  > - 1) .  

By Lemma 2.2, Ct is /, r i t-noncontractible and hence ([[t,ri{')-unstable. Prom 

(13) and Lemma 4.1 we get a (IIt,ri~')-daisy D1, D2, . . . ,  Dr centered at Ct that  
has r _> [/3(t - 1)/2] - 1 cycles. We claim that  only (cyclically) consecutive cycles 
in the daisy can intersect. Suppose that  this is not the case. Let ~/E Di N Ct, 
z c Dj f3 Ct, z C Di N Dj be vertices as in the proof of Lemma 4.2 and suppose that  

i and j are not consecutive. Since Di U Dj tO C'~ C_ Ct+l  U int (I-[,Ct+l), splittings 
of faces Di, Dj, and Ct determine a Fit-contractible triangle t~ whose [[t-interior 

Q = in t ( l I t ,R)  contains one of the cycles from the daisy since i and j are not, 
consecutive. Choose a vertex w C Q -  {z,y,z} of degree in Gt. at least 3, and join 
it in Gt by three internally disjoint paths to {z,y,z}. (This is possible since G~ is 

"almost" 3-connected.) Denote by T the union of the paths. The embedding of FII/ 
restricted to (Gt \ Q)to T can be extended to an embedding of Gz by embedding 
Q in the same way as under Fit. The characteristic of the obtained embedding of 
Gt is the same as the characteristic of tile restricted embedding, hence at most 
)'(ri't')' Moreover, it has strictly fewer (rit,[[~')-unstable cycles since a (Fit,ri'/)- 
unstable cycle fl'om the daisy conlained in Q became Ncial. On the other hand, no 
cycle which is IY/-facial and II~-facial became nonfacial since, in (at \ O)u T, only 

the ri~Cfacial cycles containing edges of Q can change. This contradicts our choice 

of [[~'. 

Next, we claim that  for any two cycles Di, Dj (1 < i < j ~ 'r) from the daisy 
such that  4 < j - i < . r - 4 ,  the only IIt-facial cycle that  intersects with Di and Dj is 

C,. Assuming that  this is not tile case, let C ~ be another such cycle. Denote by i~], 
z, :r., :c ~ vertices of Di NUt, Dj NC,, D i n c  t, and Dj n C ~, respectively. After face 
splittings they determine a [[t-contractible 4-cycle whose Ht-interior Q contains at; 
least, three consecutive cycles from the daisy. We may assume that  these cycles are 
Di+l, D.,:+2, Di+a. We know that  Di+ 2 is disjoint fl'om Di and Dj. 

Let us first assmne that  D.,:+2 is ri~Ltwosided. Let G' t = (Gt-(O-{;~:, z','g, z}))U 

Di U Dj. By Lelnma 2.4, the embedding of G~ induced by II~ / has characteristic 

~t ,~ t, z and y are connected by a path  in D4 whose all 7(II  t IGt) <_ 7(II~') - 2. In G'  
II ~l interior vertices are of degree 2. Therefore, a: and y are on a common (Fit IGt) - 

facial walk. The same holds for ~'~ and z. By applying Lemma 3.4 four times, we 
can get from " ' ( t.) such that  Pl t IGt an embedding of G, of characteristic at most 7 FI" 

Q is enlbedded in the same way as under rit. This contradicts our choice of [I~ I 

since this embedding has fewer unstable cycles than ri~t. 

rm o i If Di+2 is H t -  nes ded, then we define G~ to be the subgraph of Gr as defined 

above, together wit,h a vertex w E V(Q)\  {z, S,;t/, z} and together with three paths 

in Q from w to {z ,S , y , z }  that  have pairwise only w in common. The paths can 



UNIQUE EMBEDDINGS OF GIIAPH,q :3:5:; 

be chosen so that  the obtained subgraph G~/ contains at most  a segment h'om tim 

H{Conesided cycle Di+ 2. Then we either have " '  
inequality can be achieved by a simple re-embedding similar 1o the operatiol~ in 
Lemma 3.2. By applying Lemma 3.2 (if necessary), we can gel; an embedding of 

G~ such tha t  w is on common facial walks with any of :c, 9, z, .c' (in the correct 
order), and the characteristic is increased at most  by 1. Using Lemma 3.4, wc can 
extend this embedding to an embedding of (,~t of the same characterist ic  such that  
Q is embedded in the same way as under tit. This contradicts our choice of [[5 ~. 

A corollary to the above claims is tha t  the union of induced nonseparal ing 
cycles DI, I-)5, D~, Dig, ... from the daisy is m~ i~duce.d and nonseparat ing 
subgraph of G. The number of cycles is at least 

_ _ ~ 1 .  

Since the daisy D l . . . . .  , Dr is contained in C't+l U i n t ( H , C t + i ) ,  we gel. 

- -  ' - -  S 

Of course, /3(0) = 1, ,~(t) is nondecreasing, and by the same method  as above we 
~,rivi~IIy get /3(t + 3) _>/5(t) + 1 for every t >_ 0. This implies tha t  /~(23) _> 8 m~d 
~ ( 2 4 ) > 9 .  Using this fact and (1.5), we see that  for t>2~l: 

(16) 3(/:) > " + 8 > 1.0,1 *-2:3 + ,q. 

This est imate can be used up to t = r .  From the definition of ,J(r) and Lemma 2.6 

we see that  fl(r) is a lower bound for "y(H'). A routine calculation shows that  this 
implies (9). 

The  recursion (15) with constant coefficients can be solved exactly by s tandard  
methods.  It follows that  

(lr) > + 

where (~ > 1.04 is the real root  of the polynomial  :r 3 -:~:/8 1 and c is a. constant.  
This implies (10). 

This completes the proof  of' Theorem 6.1. | 
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