COMBINATORICA

UNIQUENESS AND MINIMALITY OF LARGE FACE-WIDTH EMBEDDINGS OF GRAPHS

BOJAN MOHAR*

Received July 15, 1994

Let G be a graph embedded in a surface of genus g. It is shown that if the face-width of the embedding is at least $c \log (g) / \log \log (g)$, then such an embedding is unique up to Whitney equivalence. If the face-width is at least $c \log (g)$, then every embedding of G which is not Whitney equivalent to our embedding has strictly smaller Euler characteristic.

1. Introduction

All graphs in this paper are undirected, finite and simple. We follow standard terminology as used, for example, in [2]. A subgraph C of a graph G is induced if every pair of non-adjacent vertices in C is also non-adjacent in G. It is nonseparating if $G-V(C)$ is connected.

Embeddings of graphs in the plane are well understood thanks to the following results:
(A) (Whitney [9]) Every 3-connected planar graph has essentially unique embedding in the plane. (This means that face boundaries and local rotations are uniquely determined.)
(B) (Whitney [9]) If G is a 2 -connected planar graph, then any two embeddings of G in the plane are Whitney equivalent. (One can be obtained from the other by a sequence of simple local re-embeddings. See, e.g. [4] for definition of Whitney-equivalence.)
(C) (Folklore) If G is a graph that is embedded in the plane, then all its face boundaries are cycles of G if and only if G is 2 -connected.
(D) (Tutte [8]) If G is a 3 -connected graph embedded in the plane, then the face boundaries are precisely all induced non-separating cycles of G (and

[^0]conversely). In such a case, any pair of facial cycles are either disjoint or they intersect in a vertex or an edge.
These results can be generalized to graphs embedded in general surfaces by introducing the face-width of an embedding as defined below. We will consider only 2 -cell embeddings in closed surfaces. They can be described in a purely combinatorial way by specifying:
(1) A rotation system $\pi=\left(\pi_{v} ; v \in V(G)\right)$; for each vertex v of the given graph G we have a cyclic permutation π_{v} of edges incident with v, representing their circular order around v on the surface.
(2) A signature $\lambda: E(G) \rightarrow\{-1,1\}$. Suppose that $e=u v$. Following the edge e on the surface, we see of the local rotations π_{v} and π_{u} are chosen consistently or not. If yes, then we have $\lambda(e)=1$, otherwise we have $\lambda(e)=-1$.
The reader is referred to [3] for more details. We will use this description as a definition: An embedding of a graph G is a pair $\Pi=(\pi, \lambda)$ where π is a rotation system and λ is a signature. Having an embedding Π of G, we say that G is Π embedded. A cycle with an odd number of edges e having $\lambda(e)=-1$ is said to be Π-onesided. Other cycles are П-twosided.

Given an embedding $\Pi=(\pi, \lambda)$, an angle of Π is any pair of edges $\left\{e, \pi_{v}(e)\right\}$ where $v \in V(G)$ and e is an edge incident to v. The cyclic sequence $e, \pi_{v}(e), \pi_{v}^{2}(e)$, $\pi_{v}^{3}(e), \ldots$ is called Π-clockwise ordering around v. We define I-facial walks as closed walks in the graph which are determined by the following process, called the face traversal procedure. It starts with an arbitrary angle, say $\left\{e_{1}, e_{2}\right\}$, where $e_{2}=\pi_{v}\left(e_{1}\right)$. Initially, we use ח-clockwise ordering around vertices when selecting the next edge on the facial walk that we traverse (like we did when selecting e_{2} after e_{1}). Every time when we traverse an edge e with $\lambda(e)=-1$, we will change to the Π-anticlockwise ordering (or back to Π-clockwise if it was Π-anticlockwise). Starting at v with $\left\{e_{1}, e_{2}\right\}$, we first traverse the edge $e_{2}=v u$. Arriving to its other end u, we select the angle $\left\{e_{2}, e_{3}\right\}$ where $e_{3}=\pi_{u}\left(e_{2}\right)$ is the next edge in the IIclockwise order around u if we still use the II-clockwise ordering. Then we continue the traversal along the edge e_{3}. If we use Π-anticlockwise ordering, then we select the angle $\left\{e_{2}, e_{3}\right\}, e_{3}=\pi_{u}^{-1}\left(e_{2}\right)$, and proceed with the traversal along the edge e_{3}. Continuing the traversal in the same way, we obtain a closed walk which stops when we reach our initial angle $\left\{e_{1}, e_{2}\right\}$. This closed walk is said to be Π-facial. All other Il-facial walks are determined in the same way by starting with other angles. They correspond, bijectively, to faces of the corresponding topological embedding. Two embeddings are equivalent if they have same facial walks.

Let $F(\Pi, G)$ be the set of Π-facial walks. The number

$$
\gamma(\Pi)=2-|V(G)|+|E(G)|-|F(\Pi, G)|
$$

will be called the characteristic of the embedding Π. Note that it is closely related to the genus and to the negative value of the Euler characteristic of the surface of the underlying topological embedding. It is known that $\gamma(\mathrm{I}) \geq 0$ and that $\gamma(\Pi)=0$ if and only if Π corresponds to an embedding of G in the plane.

If Π is an embedding of a graph G and H is a subgraph of G, then the induced embedding of H, which we will denote by $\Pi \mid H$, is obtained from that of G by ignoring all edges in $E(G) \backslash E(H)$ and by restricting λ to $E(H)$. More precisely, if $e=u v \in E(H)$, then the successor of e in the clockwise ordering around v is the first edge in the sequence $\pi_{v}(e), \pi_{v}^{2}(e), \ldots$ which is in H. It is easy to see that $\gamma(\Pi \mid H) \leq \gamma(\Pi)$.

If G is a Π-embedded graph and C is a Π-twosided cycle of G, then we define the left graph and the right graph of C as follows. Select a vertex $v \in V(C)$, and let e and e^{\prime} be the edges of C incident with v. If $e^{\prime}=\pi_{v}^{k}(e)$, then all edges $e, \pi_{v}(e), \pi_{v}^{2}(e)$, $\ldots, \pi_{v}^{k}(e)$ are said to be on the left side of C. As in the face tracking procedure, we will determine left edges at every vertex of C by traversing C edge by edge. After traversing an edge f of C with $\lambda(f)=-1$, we change clockwise orientation to anticlockwise, and vice versa. In particular, traversing the edge $e^{\prime}=v u$ from v to u, the left edges at u are $e^{\prime}, \pi_{u}\left(e^{\prime}\right), \pi_{u}^{2}\left(e^{\prime}\right), \ldots, \pi_{u}^{l}\left(e^{\prime}\right)$ (where $\pi_{u}^{l}\left(e^{\prime}\right) \in E(C)$) if we have the clockwise orientation. On the other hand, having the anticlockwise orientation, the left edges are $\pi_{u}^{l}\left(e^{\prime}\right), \pi_{u}^{l+1}\left(e^{\prime}\right), \ldots, e^{\prime}$. Since C is Π-twosided, the orientation is again clockwise when we come back to the initial vertex v after traversing the entire cycle C. An edge e which is not incident with C is said to be on the left side of C if it is connected by a path in $G-C$ to an end of an edge on the left side of C (and incident with C). Now the left graph $G_{l}=G_{l}(\Pi, C)$ is defined as the graph induced by all edges on the left of C. The right graph $G_{r}=G_{r}(\Pi, C)$ is defined analogously.

Let C be a Π-twosided cycle and G_{l} and G_{r} its left and right graph. If $G_{l} \cap G_{r}=C$, then C is said to be Π-bounding. An easy count shows that in such a case

$$
\begin{equation*}
\gamma\left(\Pi \mid G_{l}\right)+\gamma\left(\Pi \mid G_{r}\right)=\gamma(\Pi) \tag{1}
\end{equation*}
$$

If $\gamma\left(\Pi \mid G_{l}\right)=0$ or $\gamma\left(\Pi \mid G_{r}\right)=0$, then C is a Π-contractible cycle. In particular, every Π-facial cycle is Π-contractible. If C is Π-contractible and $\gamma\left(\Pi \mid G_{l}\right)=0$, then we call the subgraph $G_{l}-E(C)$ the Π-interior of C and denote it by int (Π, C). We also write $\operatorname{Ext}(\Pi, C)=G_{r}$. Similarly if $\gamma\left(\Pi \mid G_{r}\right)=0$. By (1), int (Π, C) and $\operatorname{Ext}(\Pi, C)$ are well defined if $\gamma(\Pi) \neq 0$.

The same notations as above can be introduced for Π-onesided cycles by defining that such a cycle C is always Π-nonbounding and Π-noncontractible.

Let G be a Π-embedded graph and let F be a Π-facial walk with angles $\{e, f\}$ at vertex u and $\{g, h\}$ at vertex v. Add the edge $u v$ to G and extend the embedding so that $u v$ is inserted in π_{u} between e and f and in π_{v} between g and h. If the product of signatures on a segment of F from $\{e, f\}$ to $\{g, h\}$ is 1 , then we set $\lambda(u v)=1$, and otherwise $\lambda(u v)=-1$. We denote the obtained embedding of $G+u v$ again by Π. The performed operation is called a face splitting at u and v.

If $F_{0}, \ldots, F_{k-1}(k \geq 1)$ are distinct Π-facial walks and v_{0}, \ldots, v_{k-1} are distinct vertices of G such that v_{i} and v_{i+1} (index modulo k) are both in $F_{i}(i=0, \ldots$, $k-1$), then we can add to G a cycle $C=v_{0} v_{1} \ldots v_{k-1}$ by a sequence of face splittings
at vertices $v_{i}, v_{i+1}, i=0, \ldots, k-1$. The smallest integer $k \geq 1$ such that there are Π-facial walks F_{0}, \ldots, F_{k-1} and vertices v_{0}, \ldots, v_{k-1} for which the corresponding cycle C is Π-noncontractible is called the face-width (or representativity) of Π and denoted by $\mathrm{fw}(\Pi)$. With this notation, generalizations of (C) and (D) can be expressed as follows [5]:
(C') If G is a Π-embedded graph, then all Π-facial walks are cycles of G if and only if G is 2 -connected and $\mathrm{fw}(\Pi) \geq 2$.
(D') If G is a Π-embedded graph, then the Π-facial walks are induced nonseparating cycles of G if and only if G is 3 -connected and fw $(\Pi) \geq 3$. In such a case, any two II-facial cycles are either disjoint or they intersect in a vertex or an edge.

Properties (A) and (B) can also be generalized. Robertson and Vitray [5] proved that, if G is a 3 -connected graph embedded in a surface of genus g with face-width greater than $2 g+2$, then such an embedding is unique and necessarily a minimal genus embedding (either orientable, or non-orientable). This result has been slightly improved by Mohar [4] who replaced the genus of Π in the bound by the minimal genus of an embedding of G, and who also observed that in the non-3-connected case embeddings with large face-width are unique up to Whitney equivalence. It turns out that instead of minimizing the genus, it is more convenient to minimize the characteristic of the surface. Then the distinction between the orientable and non-orientable case disappears and stronger results are obtained. We say that an embedding Π of G is minimal if $\gamma(\Pi)$ is minimal among all embeddings of G. Let Π be an embedding of G which satisfies certain property. Then II is said to be unique embedding with this property if every embedding of G with the same property is equivalent to G.

The purpose of this paper is to improve above mentioned results by considerably weakening the assumptions on the face-width. We will show that embeddings Π whose face-width is larger than $c \log (\gamma(\Pi)) / \log \log (\gamma(\Pi))$ (where c is some small constant) are unique up to Whitney equivalence (Theorem 5.4). Moreover, embeddings with $\mathrm{fw}(\Pi) \geq c \log (\gamma(\Pi))$ are also characteristic minimal (Theorem 6.1). On the other hand, examples constructed by Archdeacon [1] show that our bounds are not too far from the best possible bounds on the face-width which guarantee uniqueness.

It came to our attention that some time earlier than this paper has been completed, Seymour and Thomas [6] obtained results similar to ours. In particular, they present an improvement of our Theorem 6.1 by showing that fw $(\Pi) \geq 100 \log (\gamma(\Pi)) / \log \log (\gamma(\Pi))$ already implies minimality of embeddings (for 3 -connected graphs). This result also implies a uniqueness result in flavor of out Theorem 5.4. On the other hand, Theorem 5.4 has simpler proof and it considerably improves the constants in bounds of Seymour and Thomas.

2. Some preliminary lemmas

In this section we assume that G is a Π-embedded graph and that $\gamma(\Pi)>0$. Our first lemma shows that we can restrict our attention to 3 -connected graphs if we are interested only in embeddings with $\mathrm{fw}(\Pi) \geq 3$.

Lemma 2.1. ($[5,4]$) There exists a unique 3 -connected block G_{0} of G such that $\mathrm{fw}\left(\Pi^{\prime} \mid G_{0}\right)=\mathrm{fw}\left(\Pi^{\prime}\right)$ for every embedding Π^{\prime} of G with $\mathrm{fw}\left(\Pi^{\prime}\right) \geq 3$. If Π^{\prime} and $\Pi^{\prime \prime}$ are two such embeddings which coincide on G_{0}, then they are Whitney equivalent. In particular, all other 3-connected blocks of G are planar.

An immediate consequence of Lemma 2.1 is the fact that minimal embeddings of G and G_{0} are the same [4, Proposition 3.1].

The next result is easy to see.
Lemma 2.2. If C is an induced nonseparating cycle of G, then C is either II-facial of Π-nonbounding.

Cycles C_{1} and C_{2} of G are II-crossing if either
(i) $C_{1} \cap C_{2}$ is a vertex v and the edges incident with v, e_{1}, f_{1} of C_{1} and e_{2}, f_{2} of C_{2}, respectively, appear in π_{v} in the interlaced order, say $e_{1}, e_{2}, f_{1}, f_{2}$, or
(ii) $C_{1} \cap C_{2}$ is an edge $e=u v$ and the following holds. Suppose that $e_{i} \neq e$ is the edge on C_{i} incident with u and that $f_{i} \neq e$ is the edge of C_{i} incident with v $(i=1,2)$. If the order of e_{1}, e_{2} and e in π_{u} is e_{1}, e_{2}, e then the order of f_{1}, f_{2}, e in π_{v} is $f_{1}, f_{2}, e\left(\right.$ if $\lambda(e)=1$), or f_{2}, f_{1}, e (if $\lambda(e)=-1$).

For further reference we state the following obvious result:
Lemma 2.3. If C_{1} and C_{2} are Π-crossing cycles, then they are both II-nonbounding. In particular, they are Π-noncontractible.

Let \mathscr{C} be a non-empty set of disjoint cycles of G and let $C \subseteq G$ be the union of all cycles from \mathscr{C}. Then \mathscr{C} is said to be I-bounding if G can be written as $G=G_{l} \cup G_{r}$ such that $G_{l} \cap G_{r}=C$ and such that every cycle from \mathscr{C} is $\left(\Pi \mid G_{l}\right)$-facial and ($\Pi \mid G_{r}$)facial. (In particular, every cycle in \mathscr{C} is Π-twosided.) The next lemma is taken from [4].

Lemma 2.4. Let \mathscr{G} be a set of disjoint cycles of G. If every subset of \mathscr{C} is Π nonbounding, then

$$
\gamma(\Pi)-\gamma(\Pi \mid(G-\mathscr{C})) \geq 2|\mathscr{C}|-k
$$

where k is the number of Π-onesided cycles in \mathscr{C}. In particular, $\gamma(\Pi) \geq 2|\mathscr{C}|-k$.
Lemma 2.5. Let \mathscr{C} be a set of cycles of G. If every cycle $C \in \mathscr{C}$ is Π-crossing with at most r and with at least one of the cycles from \mathscr{C} and is disjoint from all other cycles in \mathscr{C}, then

$$
\gamma(\Pi) \geq|\mathscr{C}| /(r+1)
$$

Proof. We will select pairs of cycles $\mathscr{C}_{i}=\left(C_{i}, C_{i}^{\prime}\right), i=1,2, \ldots, k$ with the following propertics:
(a) C_{1}, \ldots, C_{k} are pairwise disjoint.
(b) If $1 \leq i<j \leq k$ then C_{i}^{\prime} is disjoint from C_{j}.
(c) For $i=1, \ldots, k$, if C_{i} is Π-onesided, then $C_{i}^{\prime}=C_{i}$, Otherwise, C_{i}^{\prime} is Π-crossing with C_{i}.

Such pairs are obtained as follows. Suppose that we have already selected \mathscr{C}_{1}, $\ldots, \mathscr{C}_{i-1}$, where $i \geq 1$. Denote by n_{1} the number of Π-onesided cycles among C_{1}, \ldots, C_{i-1} and let n_{2} be the number of Π-twosided cycles. Then we choose for C_{i} an arbitrary cycle from \mathscr{C} that is disjoint from C_{1}, \ldots, C_{i-1} and from $C_{1}^{\prime}, \ldots, C_{i-1}^{\prime}$. By our assumptions, at least

$$
\begin{equation*}
|\mathscr{C}|-2 r n_{2}-(r+1) n_{1} \geq|\mathscr{C}|-(r+1)\left(2 n_{2}+n_{1}\right) \tag{2}
\end{equation*}
$$

cycles from \mathscr{C} are at our disposal. After selecting C_{i}, let C_{i}^{\prime} be an arbitrary cycle from \mathscr{C} satisfying (c). It is clear that the obtained pairs $\mathscr{C}_{1}, \ldots, \mathscr{C}_{i}$ satisfy (a)-(c).

Suppose now that a subset of $\left\{C_{1}, \ldots, C_{k}\right\}$ is Π-bounding. Let C_{i} be a cycle in this subset with the smallest index i. Clearly, C_{i} is Π-twosided. By (a)-(c), C_{i}^{\prime} and C_{i} are Π-crossing but C_{i}^{\prime} is disjoint from all other cycles in our separating family. A contradiction. By selecting as many pairs \mathscr{C}_{i} as possible, the inequality (2) shows that $2 n_{2}+n_{1} \geq|\mathscr{C}| /(r+1)$. Consequently, an application of Lemma 2.4 completes the proof.

We will use another result which implies large characteristic of an embedding.
Lemma 2.6. Let \mathscr{C} be a set of disjoint Π-noncontractible cycles of G. If the union of cycles in \mathscr{C} is an induced and nonseparating subgraph of G, then

$$
\gamma(\Pi)-\gamma(\Pi \mid(G-\mathscr{C})) \geq 2|\mathscr{C}|-k
$$

where k is the number of Π-onesided cycles in \mathscr{C}.
Proof. No subset of the cycles can be ח-bounding. Consequently, Lemma 2.4 applies.

We will also use the following result which can be proved easily:
Lemma 2.7. If C is a Π-contractible cycle of G, then every cycle in $C \cup \operatorname{int}(\Pi, C)$ is Π-contractible.

If $X \subseteq V(G)$, then an X-component is either an edge with both ends in X or a connected component L of $G-X$ together with all edges between L and X.

Lemma 2.8. Let G be a Π-embedded graph. Suppose that X is a separating set of vertices of G such that $|X|<\mathrm{fw}(\Pi)$ and such that for any separating sets X_{1}, $X_{2} \subseteq X$ with $X_{1} \cup X_{2}=X$ we have $\left|X_{1} \cap X_{2}\right| \geq 2$. Then $G=G_{1} \cup G_{2}$ where $G_{1} \cap G_{2}=X_{1} \subseteq X$ such that:
(i) X_{1} is an induced and nonseparating set in G_{1}, i.e., G_{1} is a single X_{1}-component in G.
(ii) By face splittings one can add to G a Π-contractible cycle C such that $V(C) \subseteq X_{1}$ and such that $G_{2}=\operatorname{int}(\Pi, C)$. In particular, G_{2} contains no Π-noncontractible cycles.

Proof. Let B be an arbitrary X-component and let $Y \subseteq X$ be the set of vertices incident with edges from B and with edges that are not from B. Each $y \in Y$ is contained in at least two Π-facial walks whose angle at y contains an edge of B and an edge from $E(G) \backslash E(B)$. (Such angles are said to be mixed.) On the other hand, every such Π-facial walk contains at least two vertices of Y with mixed angles. Choose such a facial walk F_{1} and vertices $v_{1}, v_{2} \in Y \cap V\left(F_{1}\right)$ such that one of the segments of F_{1} from v_{1} to v_{2} is contained in B. Let F_{2} be another such Π-facial walk containing v_{2} and such that in the local rotation $\pi_{v_{2}}$ only edges of B appear between the angles of F_{1} and F_{2}. By continuing in the same way, we get a sequence of distinct Π-facial walks $F_{1}, F_{2}, \ldots, F_{t}$ and distinct vertices $v_{1}, v_{2}, \ldots, v_{t}(t \geq 2)$ such that v_{i} and v_{i+1} are in F_{i} for $i=1, \ldots, t-1$. Moreover, in F_{t} we have a vertex v_{t+1} which is also in some $F_{l}, 1 \leq l<t$. We may assume that $l=1$ and that $v_{t+1}=v_{1}$. By face splittings we can add a cycle $C=v_{1} v_{2} \ldots v_{t} v_{1}$ and since $t \leq|X|<\mathrm{fw}(\Pi), C$ is Π-contractible. Hence, $X_{1}=\left\{v_{1}, \ldots, v_{t}\right\}$ is a separating set of G. By construction, only edges of B are on the left side (say) of C at every vertex $v_{i}, 2 \leq i \leq t$. If there is an edge $e \notin E(B)$ incident to v_{1} that is on the left side of C, then $X_{2}=\left(X \backslash X_{1}\right) \cup\left\{v_{1}\right\}$ is a separating set of G. By our assumption on X, this is not possible, and thus B is the only X-component that is on the left side of C. If B contains a Π-noncontractible cycle, then by Lemma 2.7 we have $B \subseteq \operatorname{Ext}(\Pi, C)$. Then all other X-components are contained in int (Π, C), and their union does not contain Π-noncontractible cycles.

It remains to show that at least one of the X-components contains a Π noncontractible cycle. It follows from assumptions on X that $|X| \geq 2$. Hence $\mathrm{fw}(\Pi) \geq 3$ and thus $\gamma(\Pi)>0[5]$. Therefore, G contains a Π-noncontractible cycle. We leave it to the reader to show that one of such cycles is contained in a single X-component. A similar approach as above can be used.

3. Local changes

Let $\Pi=(\pi, \lambda)$ be an embedding of a graph G and suppose that $v \in V(G)$ is a vertex of degree d. If $\pi_{v}=\left(e_{1} e_{2} \ldots e_{d}\right)$, let F_{j} be the Π-facial walk containing the angle $\left\{e_{j}, e_{j+1}\right\}$ (index modulo d), $j=1, \ldots, d$.

Lemma 3.1. Let $\Pi^{\prime}=\left(\pi^{\prime}, \lambda\right)$ be an embedding of G which differs from Π only at π_{v}, such that $\pi_{v}^{\prime}=\left(e_{s+1} \ldots e_{t} e_{1} \ldots e_{s} e_{t+1} \ldots e_{d}\right)$ for some s and $t, 1 \leq s<t<d$. Then $\left|\gamma\left(\Pi^{\prime}\right)-\gamma(\Pi)\right| \leq 2$.

Proof. The face tracking procedure shows that the only ח-facial walks that are affected by changing Π to Π^{\prime} are F_{d}, F_{s}, and F_{t}. The claim is then obvious since the number of faces changes by at most 2 .

Lemma 3.2. Let $\Pi^{\prime}=\left(\pi^{\prime}, \lambda^{\prime}\right)$ be an embedding of G which differs from Π only at v such that $\pi_{v}^{\prime}=\left(e_{s} e_{s-1} \ldots e_{1} e_{s+1} \ldots e_{d}\right)$, and $\lambda^{\prime}(e)=-\lambda(e)$ if $e \in\left\{e_{1}, \ldots, e_{s}\right\}$ and $\lambda^{\prime}(e)=\lambda(e)$ otherwise. Then $\left|\gamma\left(\Pi^{\prime}\right)-\gamma(\Pi)\right| \leq 1$. If $F_{d}=F_{s}$, then $\gamma\left(\Pi^{\prime}\right)=\gamma(\Pi)$.

Proof. From the face tracking procedure we see that only the Π-facial walks F_{d} and F_{s} are changed. The claim of then obvious.

Suppose that C is a cycle of G. Define $w(\Pi, C)$ as follows. If C is Π-facial, then $w(\Pi, C)=0$. Otherwise, $w(\Pi, C)$ is the smallest number of segments of Π-facial walks whose union is C. A simple corollary to above local re-embedding lemmas is the following result.

Corollary 3.3. Suppose that Π is an embedding of a graph G and that C is a cycle of G. Then there is an embedding Π^{\prime} of G such that C is Π^{\prime}-facial and such that

$$
\gamma\left(\Pi^{\prime}\right) \leq \gamma(\Pi)+2 w(\Pi, C)
$$

Proof. By induction on $w=w(\Pi, C)$. If $w=0$, then $\Pi^{\prime}=\Pi$ will do. For the induction step we can use Lemma 3.1 or Lemma 3.2. Appropriate application of these lemmas decreases w by 1 and increases the characteristic of the embedding by at most 2 or 1 , respectively.

Lemma 3.4. Let $u, v \in V(G)$. Consider an angle $\{e, f\}$ at u and an angle $\{g, h\}$ at v. Identify u and v into a single vertex w and define an embedding $\Pi^{\prime}=\left(\pi^{\prime}, \lambda\right)$ of the obtained graph G^{\prime} so that π^{\prime} coincides with π except that $\pi_{w}^{\prime}=\left(e e^{\prime} \ldots f g g^{\prime} \ldots h\right)$ where $\pi_{u}=\left(e e^{\prime} \ldots f\right)$ and $\pi_{v}=\left(g g^{\prime} \ldots h\right)$. If the angles $\{e, f\}$ and $\{g, h\}$ are on the same Π-facial walk W, then either $\gamma\left(\Pi^{\prime}\right)=\gamma(\Pi)$ (if $W=e f \ldots g h \ldots$), or $\gamma\left(\Pi^{\prime}\right)=\gamma(\Pi)+1$ (if $W=e f \ldots h g \ldots$). Otherwise, $\gamma\left(\Pi^{\prime}\right)=\gamma(\Pi)+2$.

Proof. If $\{e, f\}$ or $\{g, h\}$ appear on $W=e f W_{1} g h W_{2}$, then W gives rise to two Π^{\prime}-facial walks. If $W=e f W_{1} h g W_{2}$, then $\lambda\left(W_{1}\right)=\lambda\left(W_{2}\right)=-1$ and hence W changes into the Π^{t}-facial walk $W^{t}=e h W_{1}^{-1} f g W_{2}^{-1}$. All other facial walks remain unchanged. Since $\left|V\left(G^{\prime}\right)\right|=|V(G)|-1$, the change of the characteristic is either 0 or 1 , respectively. If the angles are on distinct Π-facial walks W_{1} and W_{2}, then they give rise to a single Π^{\prime}-facial walk, and all other facial walks remain the same. The characteristic thus increases by 2 .

4. Comparing non-equivalent embeddings

In this section we will assume that G is a 3 -connected graph with nonequivalent embeddings Π and Π^{\prime} whose face-widths are $k=\mathrm{fw}(\Pi)$ and $k^{\prime}=\mathrm{fw}\left(\Pi^{\prime}\right)$, respectively. We will also assume that $k \geq 3$.

A cycle of G is (Π, Π^{\prime})-unstable if it is Π-facial and Π^{\prime}-nonfacial. Let C be a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle and let D_{1}, \ldots, D_{i} be (Π, Π^{\prime})-unstable cycles that Π^{\prime}-cross with C. Such cycles are called a $\left(\Pi, \Pi^{\prime}\right)$-daisy of size t centered at C if they are pairwise disjoint at C, i.e., $D_{i} \cap D_{j} \cap C=\emptyset$ for any $1 \leq i<j \leq t$. If D_{1}, \ldots, D_{t} form a daisy, we shall implicitly assume that they are enumerated according to the (cyclic) order of their intersection with C. Since G is 3 -connected and $k \geq 3$, (D) shows that this order is uniquely determined (up to cyclic shifts and reflections).

Lemma 4.1. Let C be a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle. Then there is a $\left(\Pi, \Pi^{\prime}\right)$-daisy centered at C that is of size $w-1$, where $w=w\left(\Pi^{\prime}, C\right)$. If C^{\prime} is a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle that II^{\prime}-crosses C, then the daisy can be chosen such that it contains C^{\prime}.

Proof. Denote by M the maximal size of a $\left(\Pi, \Pi^{\prime}\right)$-daisy centered at C. We claim that $M=w$ or $M=w-1$.

Let us first assume that there is a vertex $v \in V(C)$ such that the two edges of C incident to v are not consecutive in π_{v}^{\prime}. Then there is a Π-facial cycle D that is Π^{\prime} crossing with C and such that $D \cap C=\{v\}$. By Lemma $2.3, D$ is (Π, Π^{\prime})-unstable. Traverse C starting at v. The Π^{\prime}-facial segments on C on one or the other side of C (as seen during this traversal) are called left and right facial segments on C, respectively. Let Q be the bipartite graph whose vertices are the left and the right facial segments of C and whose edges correspond to segments sharing an edge of C. Each edge of C is in a left and in a right facial segment and there is a bijection between $E(C)$ and $E(Q)$. Suppose that $\epsilon, f \in E(C)$ and that the corresponding edges of Q do not have common endvertices. Then there are vertices u_{l}, u_{r} between e and f on C such that G has an edge incident with u_{l} that is on the left of C and an edge incident with u_{r} that is on the right of C. This implies that there is a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle that crosses C and intersects C only between e and J^{\prime}. It follows that every matching R in Q determines a set of $|R|\left(\Pi, \Pi^{\prime}\right)$-unstable cycles that Π^{\prime}-cross C and that are pairwise disjoint at C (and vice versa). Similarly, a vertex cover of Q determines a set of Π^{\prime}-facial segments of C which cover C (and vice versa). By the König-Egerváry Theorem [2] it follows that $M=w$.

Suppose now that for each $v \in V(C)$, edges of C incident to v are $\pi_{v^{\prime}}^{\prime}$ consecutive. Suppose that C contains an edge $e=u v$ such that no $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle which Π^{\prime}-crosses C contains e. We may assume that there is a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle D through v which is Π^{\prime}-crossing with C. In this case we use the same proof as above with the only difference that the edge of $D \cap C$ does not contribute to adjacency in the graph Q. (Now a cover of C with Π^{\prime}-facial segments induced by a vertex cover of Q may not contain the edge of $D \cap C$. But the segment containing e
can be changed so that all of C is covered.) Similarly if C is Π^{\prime}-twosided (when D is not needed at all). In all these cases we get a $\left(\Pi, \Pi^{\prime}\right)$-daisy of size w. By inserting C^{\prime} and removing at most two cycles which intersect C^{\prime} we get a $\left(\Pi, \Pi^{\prime}\right)$-daisy as claimed by the lemma.

It remains to consider the case when C is Π^{\prime}-onesided, of odd size with consecutive edges $e_{1}, e_{2}, \ldots, e_{2 r+1}$ and Π^{\prime}-facial segments on C equal to $e_{1} e_{2}, e_{2} e_{3}, \ldots$, $e_{2 r+1} e_{1}$. Clearly, $w=r+1$, and any of the ($\left.\Pi, \Pi^{\prime}\right)$-unstable cycles at C is contained in a $\left(\Pi, \Pi^{\prime}\right)$-daisy of size r centered at C.

Cycles in a daisy centered at C can have non-empty intersection out of C. We will need daisies consisting of disjoint cycles. Then the following lemma will be used.

Lemma 4.2. Let D_{1}, \ldots, D_{t} be a $\left(\Pi, \Pi^{\prime}\right)$-daisy centered at C. Suppose that k, $k^{\prime} \geq 4$. Then any two distinct and (cyclically) non-consecutive cycles D_{i} and D_{j} from the daisy are disjoint. Moreover, if $k, k^{\prime} \geq 5$, then D_{i} and D_{j} are at distance at least 2 in G.

Prooî. Let y be a vertex of $D_{i} \cap C$ and z be a vertex of $D_{j} \cap C$. If D_{i} and D_{j} intersect, then they share a vertex $x \notin V(C)$. Add edges $x y, y z$, and $z x$ by splitting faces D_{i}, C and D_{j}, respectively. Since $k \geq 4$, the obtained triangle Δ is Π-contractible. By construction, one of the segments of C between y and z is in int (Π, Δ) and the other one is in $\operatorname{Ext}(\Pi, \Delta)$. Therefore, the Π^{\prime}-noncontractible cycles D_{i-1} and D_{i+1} are not contained in the same X-component of G, where $X=\{x, y, z\}$. By Lemma 2.8 (for the embedding Π^{\prime}) we get a contradiction with $k^{\prime} \geq 4$.

To prove the second part, note that a possible edge $x x^{\prime}$ between D_{i} and D_{j} cannot lie on C. Now we take $X=\left\{x, x^{\prime}, y, z\right\}$ and conclude as above by applying Lemma 2.8.

5. Uniqueness

In this section we will assume that G is a 3 -connected graph with nonequivalent embeddings Π and Π^{\prime} whose face-widths are $k=\mathrm{fw}(\Pi)$ and $k^{\prime}=\mathrm{fw}\left(\Pi^{\prime}\right)$, respectively.

Theorem 5.1. Suppose that $\mathrm{fw}(\mathrm{II})=k \geq 4$. Then we can find, for each ($\left.\Pi, \mathrm{II}^{\prime}\right)$ unstable cycle C, a ($\left.\Pi, \Pi^{\prime}\right)$-daisy centered at C consisting of at least $\left\lfloor\left(k^{\prime}-1\right) / 2\right\rfloor$ pairwise disjoint cycles. If $k \geq 5$ and $k^{\prime} \geq 5$, then the cycles are also pairwise nonadjacent. If C^{\prime} is a (Π, Π^{\prime})-unstable cycle that Π^{\prime}-crosses C, then the daisy can be chosen so that it contains C^{\prime}.

Proof. Note that $w\left(\Pi^{\prime}, C\right) \geq k^{\prime}$. If $k^{\prime} \leq 4$, the claim follows from Lemma 4.1. Otherwise it follows from Lemmas 4.1 and 4.2.

From now on we assume that $k \geq 4$ and $k^{\prime} \geq 4$. We shall construct a family \mathscr{b} of (II, Π^{\prime})-unstable cycles by using the following procedure. We start by taking a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle C_{0}. Let $\mathscr{C}_{0}=\left\{C_{0}\right\}$ and let \mathscr{C}_{1} be a set of $\left\lfloor\left(k^{\prime}-1\right) / 2\right\rfloor$ pairwise disjoint cycles obtained by Theorem 5.1 that form a (Π, Π^{\prime})-daisy centered at C_{0}. Having constructed $\mathscr{C}_{0}, \ldots, \mathscr{C}_{i-1}(i \geq 2)$, we define \mathscr{C}_{i} to be the union of daisies $\mathscr{D}(C)$, for each $C \in \mathscr{C}_{i-1} \backslash\left(\mathscr{C}_{0} \cup \ldots \cup \mathscr{C}_{i-2}\right)$, where $\mathscr{D}(C)$ is a $\left(\Pi, \Pi^{\prime}\right)$-daisy centered at C that contains a cycle $C^{\prime} \in \mathscr{C}_{i-2}$, and consists of at least $\left\lfloor\left(k^{\prime}-1\right) / 2\right\rfloor$ pairwise disjoint cycles obtained by Theorem 5.1. On C, between any two consecutive cycles of the $\left(\Pi, \Pi^{\prime}\right)$-daisy $\mathscr{D}(C)$, there is a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle that can be added to the daisy (but may intersect with other cycles). Also, note that the cycle C^{\prime} is well defined as a cycle whose daisy $\mathscr{D}\left(C^{\prime}\right)$ contains C. Our next lemma shows that this cycle C^{\prime} is unique if i is not too large.
Lemma 5.2. If $0<2 i<\min \left\{k, k^{\prime}\right\}$, then every cycle $C \in \mathscr{C}_{i} \backslash\left(\mathscr{C}_{0} \cup \ldots \cup \mathscr{C}_{i-1}\right)$ intersects with a unique cycle $C^{\prime} \in \mathscr{C}_{0} \cup \ldots \cup \mathscr{C}_{i-1}$. If $2 i+1<\min \left\{k, k^{\prime}\right\}$. then no two cycles from \mathscr{C}_{i} intersect.
Proof. Suppose that C intersects with two cycles, $Q \in \mathscr{C}_{q}$ and $R \in \mathscr{C}_{r}$ where $q<i$ and $r<i$. For any cycle D in our sets $\mathscr{C}_{j}(j \geq 1)$ we denote by $\varphi(D)$ a cycle in \mathscr{C}_{j-1} that includes D in its daisy. Then $\varphi(Q), \varphi(\varphi(Q)), \ldots$ and $\varphi(R), \varphi(\varphi(R)), \ldots$ determine a sequence of at most $q+r+1 \leq 2 i-1 \Pi$-facial cycles from Q to R such that any two consecutive cycles Π^{\prime}-cross. Including C, we get a sequence of at most $2 i$ II-facial cycles that (cyclically) intersect its two neighbors in the sequence. Since $2 i<k$, splitting of these Π-facial cycles gives rise to a Π-contractible curve whose interior and exterior contain (Π, Π^{\prime})-unstable cycles. On the other hand, since $2 i<h^{\prime}$, we get a contradiction by using Lemma 2.8. The details are left to the reader.

A similar proof works for the other assertion.
Let $\kappa=\min \left\{k, k^{\prime}\right\}$ and $\nu=\lfloor(\kappa-4) / 2\rfloor, \lambda=\left\lfloor\left(k^{\prime}-3\right) / 2\right\rfloor$. The above construction gives rise to a tree-like structure $\mathscr{C}_{0} \cup \ldots \mathscr{C}_{\nu+1}$ of $\left(\Pi, \Pi^{\prime}\right)$-unstable cycles. By Lemma 5.2 , they can be taken so that their number is

$$
\begin{equation*}
1+(\lambda+1)+(\lambda+1) \lambda+\ldots+(\lambda+1) \lambda^{\prime \prime}=1+(\lambda+1) \frac{\lambda^{\prime \prime+1}-1}{\lambda-1} \tag{3}
\end{equation*}
$$

and so that each of the cycles intersects with exactly $\lambda+1$ of other cycles in the family (if it is in \mathscr{C}_{i} for $i \leq \nu$) or with exactly one other cycle (if it is in $\mathscr{C}_{\nu+1}$). Now we have:
Lemma 5.3. If $k^{\prime} \geq 7$ and $k \geq 4$, then

$$
\begin{equation*}
\gamma\left(\Pi^{\prime}\right) \geq \lambda^{\prime \prime} \tag{4}
\end{equation*}
$$

Proof. By (3) and Lemma 2.5, we have

$$
\begin{equation*}
\gamma\left(\Pi^{\prime}\right) \geq\left(1+(1+\lambda) \frac{\lambda^{\nu+1}-1}{\lambda-1}\right) /(\lambda+2) \tag{5}
\end{equation*}
$$

For $\lambda \geq 2$ we have $(\lambda+1) \lambda>(\lambda-1)(\lambda+2)$. This inequality and (5) imply that

$$
\begin{equation*}
\gamma\left(\mathrm{II}^{\prime}\right) \geq \frac{1}{\lambda+2}+\lambda^{\nu}-\frac{1}{\lambda} \tag{6}
\end{equation*}
$$

Since $\gamma\left(\Pi^{\prime}\right)$ is an integer, we get (4).
The main result of this section is now evident:
Theorem 5.4. Suppose that Π is an embedding of G and that $\mathrm{fw}(\Pi) \geq k$ where $k \geq 7$ is the smallest integer such that

$$
\begin{equation*}
\left\lfloor\frac{k-3}{2}\right\rfloor^{\lfloor k / 2\rfloor-2}>\gamma(\Pi) \tag{7}
\end{equation*}
$$

If Π^{\prime} is an embedding of G whose face-width is also greater or equal to k, then Π^{\prime} is Whitney equivalent with Π. In particular, if G is 3 -connected, then Π^{\prime} is equivalent with Π.

Proof. By Lemma 2.1 we may assume that G is 3 -connected. By exchanging the roles of Π and Π^{\prime} in Lemma 5.3, we see that

$$
\gamma(\Pi) \geq\lfloor(k-3) / 2\rfloor^{k / 2\rfloor-2}
$$

This is a contradiction.
As a corollary to Theorem 5.4 we see that embeddings II with

$$
\begin{equation*}
\text { fw }(\Pi) \geq 5+\frac{2 \log (\gamma(\Pi))}{\log \log (\gamma(\Pi))-\log \log \log _{2}(\gamma(\Pi \Pi))} \tag{8}
\end{equation*}
$$

are unique embeddings with so large face-width (up to Whitney equivalence), with possible exceptions when the right hand side of (8) is smaller than 7.

It is worth mentioning that examples due to Archdeacon [1] show that our bounds are not too far from the best possible bounds on the face-width which guarantee uniqueness.

6. Minimality

It was shown by Robertson and Vitray [5] that an embedding Π with fw $(\Pi) \geq$ $\gamma(\Pi)+3$ is not only a unique such embedding but it is also genus minimal. This has been slightly improved by Mohar [4] so that the genus of Π is replaced by the minimal possible characteristic of an embedding of the graph. In this section we strengthen this result to get a logarithmic instead of the linear bound. The proof of uniqueness employed in Section 5 cannot be used in this case since we do not have another large face-width embedding to compare it with Π. This will result in a slightly weaker bound. Instead of the $O(\log (\gamma(\Pi)) / \log \log (\gamma(\Pi)))$ lower bound of Theorem 5.4, we will obtain only a bound of order $O(\log (\gamma(\Pi)))$.

The main result of this section is:

Theorem 6.1. Suppose that II is an embedding of a graph C^{\prime}. Let $\gamma^{\prime}=\gamma_{m i n}(G)$ be the smallest characteristic of an embedding of G. If $\gamma^{\prime} \geq 9$ and

$$
\begin{equation*}
\mathrm{fw}(\Pi)>\frac{6}{\log (9 / 8)} \log \left(\gamma^{\prime}-8\right)+50 \tag{9}
\end{equation*}
$$

then $\gamma(\Pi)=\gamma^{\prime}$, i.e., Π is minimal. Moreover, my cmbedding of G of chanacteristic: γ^{\prime} is Whitney equivalent to Π.

If $\gamma^{\prime}<9$, then the bound $\mathrm{fw}(\mathrm{II}) \geq 19$ already assures uniqueness and minimality. A slightly better estimate (asymptotically) will also be ohtained. If

$$
\begin{equation*}
\mathrm{fw}(\Pi)>\frac{2 \log \left(\gamma^{\prime}-c_{1}\right)}{\log (\alpha)}-c_{2} \tag{10}
\end{equation*}
$$

where c_{1} and c_{2} are suitable constants and $\alpha>1.04$ is the real root of the polynomial $x^{3}-x / 8-1$, then the embertding Γ is minmal and it is also in unigur mmimab embedding up to Whitney equivalence.

The rest of this section is devoted to the proof of Theorem 6.1. By Lemma 2.1 we may assume that G is 3 -connected. Let Π^{\prime} be a minimal embedding of G that is not equivalent to Π. Then there is a $\left(\Pi, \Pi^{\prime}\right)$-unstable cycle C_{0}. It is shown in [d, Corollary 2.2 that there are cyckes $C_{0}, C_{1}, \ldots, C_{\tau+1}$ where $\tau=\lfloor(k-3) / 2\rfloor$, with the following properties:
(a) $C_{0}, \ldots, C_{\tau+1}$ are pairwise disjoint and each of them is II-contractible and Π^{\prime}-noncontractible.
(b) For $t=0,1, \ldots, T, C_{0} \cup \ldots \cup C_{t} \subseteq$ int $\left(\Pi, C_{t+1}\right)$.
(c) For $t=0, \ldots, r, C_{t}$ is an induced and nonseparating cycle of Ext. $\left(\Pi, C_{t}\right)$.
(d) No subset of $\left\{C_{0}, \ldots, C_{\tau}\right\}$ is T^{\prime}-bounding.

Define $\beta(t)$ to be the largest number of pairwise disjoint (Π, Π^{\prime})-unstable cycles contained in int (II, $\left.C_{t}\right) \cup C_{t}$ whose union in G is induced and nonseparating. Our goal is to show that $\beta(i)$ grows exponentially.

Let us now fix some $t, 1 \leq t<\tau$. Denote by $G_{t}=\operatorname{Ext}\left(\Pi, C_{t}\right)$ and let M_{l}, II_{t}^{\prime} be the restrictions of Π and Π^{\prime} to G_{t}, respectively. It is worth mentioning that property (c) implies that G_{t} is 3 -connected up to possible vertices of degrec 2 in C_{t}. We also select an embedding $\Pi_{!}^{\prime \prime}$ of G_{t} such that $\gamma\left(\Pi_{t}^{\prime \prime}\right) \leq \hat{\prime}\left(\Pi_{t}^{\prime}\right)$ and such that, according to this condition, the number of ($\Pi_{t}, \Pi_{t}^{\prime \prime}$)-unstable cycles of G_{t} is as small as possible.

By Lemma 2.6 we get

$$
\begin{equation*}
\gamma\left(\Pi_{t}^{\prime \prime}\right) \leq \gamma\left(\Pi_{t}^{\prime}\right) \leq \gamma\left(\Pi^{\prime}\right)-\beta(t-1) . \tag{11}
\end{equation*}
$$

We will try to change $\Pi_{t}^{\prime \prime}$ so that C_{t} will become a facial cycle. By Lemma 3.3 , there is an embedding Π_{l}^{0} of G_{l} where C_{t} is facial and such that

$$
\begin{equation*}
\gamma\left(\Pi_{t}^{0}\right) \leq \gamma\left(\Pi_{t}^{\prime \prime}\right)+2 w\left(\Pi_{t}^{\prime \prime}, C_{t}\right) \leq \gamma\left(\Pi^{\prime}\right)+2 w\left(\Pi_{t}^{\prime \prime}, C_{t}\right)-\beta(t-1) \tag{12}
\end{equation*}
$$

In the second inequality we have used (11). Clearly, Π_{t}^{0} can be extended to an embedding of G of the same characteristic. By minimality of Π^{\prime} and (12) we get

$$
\begin{equation*}
2 w\left(\Pi_{t}^{\prime \prime}, C_{t}\right) \geq \beta(t-1) \tag{13}
\end{equation*}
$$

By Lemma 2.2, C_{t} is $\Pi_{t}^{\prime \prime}$-noncontractible and hence $\left(\Pi_{t}, \Pi_{t}^{\prime \prime}\right)$-unstable. From (13) and Lemma 4.1 we get a $\left(\Pi_{t}, \Pi_{t}^{\prime \prime}\right)$-daisy $D_{1}, D_{2}, \ldots, D_{r}$ centered at C_{t} that has $r \geq\lceil\beta(t-1) / 2\rceil-1$ cycles. We claim that only (cyclically) consecutive cycles in the daisy can intersect. Suppose that this is not the case. Let $y \in D_{i} \cap C_{t}$, $z \in D_{j} \cap C_{t}, x \in D_{i} \cap D_{j}$ be vertices as in the proof of Lemma 4.2 and suppose that i and j are not consecutive. Since $D_{i} \cup D_{j} \cup C_{t} \subseteq C_{t+1} \cup i n t\left(\Pi, C_{t+1}\right)$, splittings of faces D_{i}, D_{j}, and C_{t} determine a Π_{t}-contractible triangle R whose Π_{t}-interior $Q=\operatorname{int}\left(\Pi_{t}, R\right)$ contains one of the cycles from the daisy since i and j are not, consecutive. Choose a vertex $w \in Q-\{x, y, z\}$ of degree in G_{l} at least 3 , and join it in G_{t} by three internally disjoint paths to $\{x, y, z\}$. (This is possible since G_{t} is "almost" 3-connected.) Denote by T the union of the paths. The embedding of $\mathrm{I}_{t}^{\prime \prime}$ restricted to $\left(G_{t} \backslash Q\right) \cup T$ can be extended to an embedding of G_{t} by embedding Q in the same way as under Π_{t}. The characteristic of the obtained embedding of G_{t} is the same as the characteristic of the restricted embedding, hence at most $\gamma\left(\Pi_{l}^{\prime \prime}\right)$. Moreover, it has strictly fewer $\left(\Pi_{t}, \Pi_{t}^{\prime \prime}\right)$-unstable cycles since a $\left(\Pi_{t}, \Pi_{t}^{\prime \prime}\right)$ unstable cycle from the daisy contained in Q became facial. On the other hand, no cycle which is $\Pi_{t}^{\prime \prime}$-facial and Π_{t}-facial became nonfacial since, in $\left(G_{t} \backslash Q\right) \cup T$, only the $\Pi_{t}^{\prime \prime}$-facial cycles containing edges of Q can change. This contradicts our choice of $\mathrm{II}_{t}^{\prime \prime}$.

Next, we claim that for any two cycles $D_{i}, D_{j}(1 \leq i<j \leq r)$ from the daisy such that $4 \leq j-i \leq r-4$, the only Π_{t}-facial cycle that intersects with D_{i} and D_{j} is C_{t}. Assuming that this is not the case, let C^{\prime} be another such cycle. Denote by y, z, x, x^{\prime} vertices of $D_{i} \cap C_{t}, D_{j} \cap C_{t}, D_{i} \cap C^{\prime}$, and $D_{j} \cap C^{\prime}$, respectively. After face splittings they determine a Π_{t}-contractible 4 -cycle whose Π_{t}-interior Q contains at least three consecutive cycles from the daisy. We may assume that these cycles are $D_{i+1}, D_{i+2}, D_{i+3}$. We know that D_{i+2} is disjoint from D_{i} and D_{j}.

Let us first assume that D_{i+2} is $\Pi_{t}^{\prime \prime}$-twosided. Let $G_{t}^{\prime}=\left(G_{t}-\left(Q-\left\{x, x^{\prime}, y, z\right\}\right)\right) \cup$ $D_{i} \cup D_{j}$. By Lemma 2.4, the embedding of G_{t}^{\prime} induced by $\Pi_{t}^{\prime \prime}$ has characteristic $\gamma\left(\Pi_{t}^{\prime \prime} \mid G_{t}^{\prime}\right) \leq \gamma\left(\Pi_{t}^{\prime \prime}\right)-2$. In G_{t}^{\prime}, x and y are connected by a path in D_{i} whose all interior vertices are of degree 2. Therefore, x and y are on a common $\left(\Pi_{t}^{\prime \prime} \mid G_{i}^{\prime}\right)$ facial walk. The same holds for x^{\prime} and z. By applying Lemma 3.4 four times, we can get from $\Pi_{t}^{\prime \prime} \mid G_{t}^{\prime}$ an embedding of G_{t} of characteristic at most $\gamma\left(\Pi_{t}^{\prime \prime}\right)$ such that Q is embedded in the same way as under Π_{t}. This contradicts our choice of $\Pi_{t}^{\prime \prime}$ since this embedding has fewer unstable cycles than $\Pi_{t}^{\prime \prime}$.

If D_{i+2} is $\Pi_{t}^{\prime \prime}$-onesided, then we define G_{t}^{\prime} to be the subgraph of G_{t} as defined above, together with a vertex $w \in V(Q) \backslash\left\{x, x^{\prime}, y, z\right\}$ and together with three paths in Q from w to $\left\{x, x^{\prime}, y, z\right\}$ that have pairwise only w in common. The paths can
be chosen so that the obtained subgraph G_{l}^{\prime} contains at most a segment from the $\Pi_{t}^{\prime \prime}$-onesided cycle D_{i+2}. Then we cither have $\gamma\left(\Pi_{t}^{\prime \prime} \mid G_{t}^{\prime}\right) \leq \gamma\left(\Pi_{t}^{\prime \prime}\right)-1$ or the same inequality can be achieved by a simple re-embedding similar to the operation in Lemma 3.2. By applying Lemma 3.2 (if necessary), we can get an embedding of G_{t}^{\prime} such that w is on common facial walks with any of x, y, z, x^{\prime} (in the correct order), and the characteristic is increased at most by 1 . Using Lemma 3.4, we call extend this embedding to an embedding of G_{i} of the same characteristic such that Q is embedded in the same way as under Π_{l}. This contradicts our choice of $\Pi_{l}^{\prime \prime}$.

A corollary to the above claims is that the union of induced nonseparating cycles $D_{1}, D_{5}, D_{3}, D_{13}, \ldots$ from the daisy is an induced and nonseparating subgraph of G. The number of cycles is at least.

$$
\begin{equation*}
\left\lfloor\frac{r}{4}\right\rfloor \geq\left\lfloor\frac{1}{4}\left\lceil(\beta(t-1) / 2\rceil-\frac{1}{4}\right\rfloor \geq \frac{\beta(t-1)}{8}-1\right. \tag{14}
\end{equation*}
$$

Since the daisy D_{1}, \ldots, D_{r} is contained in $C_{t+1} \cup \operatorname{int}\left(\Pi, C_{t+1}\right)$, we get.

$$
\begin{equation*}
\beta(t+1) \geq\left\lfloor\frac{r}{4}\right\rfloor+\beta(t-2) \geq \frac{\beta(t-1)}{8}+3(t-2)-1 \tag{15}
\end{equation*}
$$

Of course, $\beta(0)=1, \beta(t)$ is nondecreasing, and by the same method as above we trivially get $\beta(t+3) \geq \beta(t)+1$ for every $l \geq 0$. This implies that $\beta(23) \geq 8$ and $\beta(24) \geq 9$. Using this fact and (15), we see that for $t \geq 24$:

$$
\begin{equation*}
\beta(t) \geq\left(\frac{9}{8}\right)^{(t-23) / 3}+8>1.04^{i-23}+8 \tag{16}
\end{equation*}
$$

This estimate can be used up to $t=\tau$. From the definition of $\beta(\tau)$ and Lemma 2.6 we see that $\beta(\tau)$ is a lower bound for $\gamma\left(\Pi^{\prime}\right)$. A routine calculation shows that this implies (9).

The recursion (15) with constant coefficients can be solved exactly by standard methods. It follows that

$$
\begin{equation*}
\beta(t) \geq c \alpha^{i}+O(1) \tag{17}
\end{equation*}
$$

where $\alpha>1.04$ is the real root of the polynomial $x^{3}-x / 8-1$ and c is a constant. This implies (10).

This completes the proof of Theorem 6.1.

References

[1] D. Archofacon: Densely embedded graphs, J. Combin. Theory, Ser. B 54 (1092), 13-36.
[2] J. A. Bondy, and U. S. R. Murty: Graph Theory with Applications, North-Holland, New York, 1981.
[3] J. L. Gross, and T. W. Tucker: Topological Graph Theory, Wiley-Interscience, New York, 1987.
[4] B. Mohar: Combinatorial local planarity and the width of graph embeddings, Canad. J. Math., 44 (1992), 1272-1288.
[5] N. Robertson, and R. P. Vitray: Representativity of surface embeddings, in: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds.), Springer-Verlag, Berlin, 1990, 293-328.
[6] P. D. Seymour, and R. Thomas: Uniqueness of highly representative surface embeddings, preprint, 1993/94.
[7] C. Thomassen: Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory, Ser. B, 48 (1990), 155-177.
[8] W. T. Tutte: How to draw a graph, Proc. London Math. Soc., 13 (1963), 743-768.
[9] H. Whitney: 2-isomorphic graphs, Amer. Math. J., 55 (1933), 245-254.

Bojan Mohar

Department of Mathematics
University of Ljubljana
Jadranska 19, 61111 Ljubljana, Slovenia
bojan.mohar@uni-lj.si

[^0]: Mathematical Subject Classification (1991): 05 C 10

 * Supported in part by the Ministry of Science and Technology of Slovenia, Research Project P1-0210-101-94.

