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Bond Contributions to the Wiener Index? 
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An efficient algorithm for computing bond contributions to the Wiener index of a (molecular) graph is 
presented. 

1. INTRODUCTION 

The Wiener index W(G) of a (molecular) graph G with 
vertex set V(G) = { 1, ..., n }  is defined as the sum of distances 
between all pairs of distinct vertices i j ,  1 I i < j I n.1-3 
The original motivation to consider this quantity was an 
observation by Wiener’ that boiling points of paraffins 
correlate very strongly with this quantity. In subsequent 
studies, Wiener extended the applications of this index to 
other thermodynamic properties of alkanes such as heats of 
formation, heats of vaporization, molar refractions, and molar 
 volume^.^-^ The same behavior of the Wiener index was 
also reported in some later studies. For example, the Wiener 
index has been used to explain various chemical and physical 
properties of molecules* and to correlate the structure of 
molecules with their biological a~t iv i ty .~  The reader is also 
referred to review articles 10-18. 

It was proposed recently that the study of (appropriately 
defined) contributions of particular bonds (edges) to the 
Wiener index might be of some chemical i n t e r e ~ t . ’ ~ - ~ ~  Bond 
contributions are defined as follows. Recall that 

n-1 n 

where dij ( i j  E V(G)) is the distance from i to j in the graph 
G, Le., the length of a shortest path in G joining i andj. The 
matrix D = [d,]:,=, is called the distance matrix of the 
graph G. The sum (1) can also be expressed as follows. 
For each pair i ,  j E V(G), choose one of shortest paths from 
i to j and denote it by P# For e E E(G) let v(e) be the number 
of paths Pij  that contain the edge e .  Then 

This was observed already by Wiener’ in case of trees. The 
relation (2) can be used to get a fast algorithm for computing 
the Wiener index of trees.23 The expression (2) is not natural 
since in general v(e) depends on the choice of the paths. 
Alternatively, let L!?$ be the set of all paths of length dv from 
i to j in G. Denote by cij the number of all paths in g a n d  
by cU(e) the number of paths from Hj that contain the edge 
e.  If we define 
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(3) 

then again 

W(G)= w‘ (4) 
eeE(G) 

Quantities We are called bond contributions to the Wiener 
index since by (4), We is exactly the contribution of the edge 
e to W(G). 

L u k ~ v i t s ~ ~  devised an algorithm for computing bond 
contributions. His algorithm has complexity @(diam(G)n3 + mn2) where n and m denote the number of vertices and 
edges of the graph, respectively, and diam(G) is the diameter 
of the graph. This algorithm is appropriate for small graphs 
but, unfortunately, it is too time consuming for larger graphs. 
In this paper we present an improved algorithm whose time 
complexity is q m n ) .  With this algorithm we can easily 
handle graphs with several hundreds of vertices. 

The paper is organized as follows. In section 2 our 
improved algorithm is described. Examples of its output are 
presented in section 3. Chart 1 contains the algorithm in 
the form of a Pascal program. The program can also be 
obtained on request by e-mail from the authors. 

2.  THE ALGORITHM 

If we define 

then 

In order to efficiently compute We for an edge e,  we compute 
for every vertex i and add them together. To compute v, we fix a vertex i and first compute dij and cij for every 

vertex j .  This is done by a breadth-first search of the given 
graph starting at i.25 Initially, vertex i is put in the queue. 
At each step, the next vertex, call it v, is taken from the 
queue and all its neighbors are visited. Suppose that u is a 
neighbor of v. If u has not been visited before, then we set 
diu = di, + 1, and u is added at the end of the queue. Next, 
if diu - diy = 1 (and this can happen also if u was visited 
before), then some shortest paths from i to u pass through v. 
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Table 1. Naohthalene and Its Reoresentation 

JUVAN AND MOHAR 

Table 3. Bond Contributions for Dibenzfulvene 

10 
1 2 10 0 

6 2 3 0 
3 4 8 0  
4 5 0 
5 6 0 
6 7 0 
7 8 0 

9 10 0 
1 5 8  9 0 

l o c o  2 4 0 

Table 2. Bond Contributions for Naphthalene 

1-10 
1-2 
2-3 
3-8 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 
9-10 
W = 109 

6.1667 
8.5000 

12.5000 
12.6667 
12.5000 
8.5000 
6.1667 
8.5000 

12.5000 
12.5000 
8.5000 

The number of such paths is obviously equal to the number 
of ci, of shortest paths from i to v, and this number has been 
computed in previous iterations. To make sure that ciu will 
be determined we just add the number of these paths to the 
number of shortest paths from i to u obtained so far using 
previously considered edges. When the queue becomes 
empty, breadth-first search is completed. This way distances 
dv and the number of shortest paths cij is computed for all 
vertices j .  

The second part of the main loop computes the numbers v. This is done by traversing vertices of the graph in the 
opposite order as visited by the breadth-first search. There- 
fore, at each step we are sure that vertices that are more 
distant from i than the current vertex have already been 
considered. At each vertex, denote it by v, we determine v for all edges that have v as their endpoint and whose 
other endpoint is more distant from i than v. Moreover, the 
sum of all these values v is stored in S,. Suppose that we 
are considering an edge e with endpoints v and u such that 
diu - di,, = 1. At this step we would like to compute the 
number v. Let P be a shortest path between i and some 
other vertex and suppose that P contains the edge e .  Then 
P either has u as its endpoint, or contains (exactly) one of 
the edges starting at u and having the other endpoint at 
distance diu + 1 from i. The contribution of the former to 

is ciu(e)/ciu = ciJciu. To calculate the contribution of the 
latter paths, let f be an edge of the above form. Since exactly 
ci,(e) = ciV shortest paths between i and u contain e ,  the 
contribution in wf of paths containing f equals W {  ci,,lciu. 
Summing up these contributions over all such edges f, we 
get SuciJciu, the number that can easily be computed from 
already known quantities. 

Let us now estimate the time complexity of the above 
algorithm. Clearly, the main loop is repeated n times. In 
each iteration, first, a breadth-first search of the graph is 
performed. Since during the search each edge is considered 
only twice, once for each of the endpoints, and only a 
constant number of operations is performed in each visit, 

12 

1 

2 3  6 7  

1-14 : 12.0000 
1-2 : 7.0000 
2-3 : 13.0000 
3-4 : 21.0000 
4-13 
4-5 
5-10 
5-6 
6-7 
7-8 
8-9 
9-10 
10-1 1 

17.0000 
27.0000 
17.0000 
2 1 .oooo 
13.0000 
7.0000 

12.0000 
20.0000 
2 1 .oooo 

11-13 : 21.0000 
11-12 : 13.0000 
13-14 : 20.0000 
W = 262 

Table 4. Bond Contributions for Acepleiadvlene 

15 1-10 : 14.1667 
1-2 : 18.5000 
2-11 : 24.0000 

9 A7 2-3 : 29.5000 
: 34.6667 
: 29.5000 
: 24.0000 

I I I 4-5 : 18.5000 
5-6 
6-7 
7-16 
7-8 
8-9 
9-15 
9-10 
11-12 
12-13 
13-14 
15-16 
W = 358 

: 14.1667 
: 15.5000 
: 14.0000 
: 22.5000 
: 22.5000 
: 14.0000 
: 15.5000 

15 .0000 
: 10.0000 
: 15.0000 

7.0000 

the time complexity of the search is @VI). The same 
arguments apply also when estimating the time complexity 
of the second part of the main loop. Therefore, the time 
complexity of the whole algorithm is &". 

Our algorithm also works for disconnected graphs and 
graphs with loops and multiple edges. It can also be adapted 
to work for graphs of molecules containing heteroatoms, i.e., 
graphs in which each edge is associated with a positive real 
number representing its weight. In this case the notion of a 
distance between vertices and derived quantities have to be 
redefined accordingly. 

The described algorithm is presented in the form of a 
Pascal program in Chart 1. The program is written in Turbo 
Pascal. The only nonstandard Pascal features used in the 
program are the type string, which is used in the program 
for storing the name of the input file, and the procedure 
assign, which assigns the name of the (external) input file 
to a file variable. If some other Pascal compiler is used, 
these two features have to be modified appropriately. 

Input data for the graph of the a-electron skeleton of 
naphthalene (or of ZIE-decalin in case of fully-saturated 
hydrocarbons) are shown in Table 1. In general, the first 
line contains the number of vertices of the graph. The 
following lines contain the description of the neighbors of 
the vertices. Each description starts with a label of a vertex 
followed by labels of neighbors and ends with 0. To shorten 
the representation only neighbors with greater labels need 
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Chart 1 
program BondContributions; 

const 
maxN = 100; {maximal number o f  vertices} 
maxM = 1000; {maximal number of  edges} 

vertices = l..maxN; 
edges = I..maxM. 
Pvertex = tvertex. 
vertex = record 

e: edges; 
u: vertices; 
next: Pvertex; 

type 

end; 

inp: text; name: string; {input fi le} 
n,m: integer; {number o f  vertices and edges} 
G: array[vertices] of Pvertcx; 
WI: real; {Wiener index} 
visited: array[vertices] of boolean; 
d,c: array[vertices,vertices] o f  integer; {distances and number o f  shortest paths} 
W: array[edges] o f  real; {bond contributions} 
Q: array[vertices] of vertices; {queue for storing vertices during BFS} 
5: array[vertices] o f  real; 
i,j,k: integer; 
x: real; 
edge: Pvertex; 
v. vertices; 

var 

begin 
writef'lnput file: '); rcadln(name); 
assign(inp,name); reset(inp); 
readln(inp,n); {number of vertices} 
for i:=l t o  n do G[i]:=nil; 
for i:=l t o  n do for j:=1 t o  n do 

begin c[ij]:=O; d[i j]:=O; end; 
{read input data and build a graph} 
read(inp,i); m:=O; 
while i < > O  do begin 

read(inpj); 
while j < > O  do begin 

if j>i then begin 
m:=m+l; 
new(edge); edgeT.next:=G[i]; G[i]:=edge; 
cdgef.u:=j; edgef.e:=m; 
new(edge); edgef.next:=Gl/]; Gl/]:=edge; 

edget.u:=i; edgef.e.=m; 
end; {if} 
read(inpj); 

end; 
read(inp,i); 

end; {while} 
for i : = l  t o  m do W[i]:=O; 
for i : = l  t o  n do begin {main loop} 

c[i,i]:=I; 
for j:=1 t o  n do visitedl/]:=false; 
Q[I]:=i; j:=O; k:=l;  visited[i]:=true; 
while j < k  d o  begin {EFS} 

j:=j+l; v:=Ql/]; edge:=G[v]; 
while edge<>nil do wi th  edgeT do begin 

if not  visited[u] then begin 
d[i.u]:=d[i,v]+l; visited[u]:=true: 
k.=k+l; Q[k]:=u; 

end; 
i f  d[i,u]>d[i,v] then c[i,u]:=c[i,u]+c[i.v]: 
edge:=next; 

end; {while edge<>nil) 
end; { E F S }  
for j:=n downto 1 do begin {second part} 

v:=QD]; edge:=G[v]; S[v]:=O: 
while edge<>nil do wi th  edgeT do begin 

if d[i.v]<d[i,u] then begin 
x:=(c[i,vl/c[i,ul)*(S[ul+l); 
W[e].=W[e]+x/?; S[v]:=S[v]+x; 

end; 
edge: = next; 

end: {while} 
end; {for j} 

end; {main loop} 

W k O ,  
for i : = l  t o  n do begin 

edge:=G(i]; 
while edge<>nil do wi th  edget do begin 

if u>i then begin writein(i:3,'-' ' : '.W[e]:8:4); WI:=WI+W[e]; end; 
edge:=next; 

end: {while} 
end; {for} 
writeln('W = ',WI:5:0); 

end. 

to be listed. The value 0 in place of a vertex label identifies 
the end of the input. 

3. EXAMPLES 
In this section some results obtained by our program are 

presented. For the graph of naphthalene (see Table 1) we 
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computed the bond contributions shown in Table 2. 
Further examples are graphs of dibenzfulvene and aceplei- 

adylene (or of perhydro-9-methylfluorene and perhydro- 
acepleiadylene, respectively, if we consider saturated mol- 
ecules). The results are shown in Tables 3 and 4. 

As expected, the results show that in all our examples the 
interior edges contribute more to the Wiener index then the 
outer ones. 
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