
J. Chem. InJ Comput. Sci. 1995, 35, 217-219

Bond Contributions to the Wiener Index?

Martin Juvan and Bojan Mohar*,i

Department of Mathematics, University of Ljubljana, Jadranska 19, 61 11 1 Ljubljana, Slovenia

Received October 31, 1994@

An efficient algorithm for computing bond contributions to the Wiener index of a (molecular) graph is
presented.

1. INTRODUCTION

The Wiener index W(G) of a (molecular) graph G with
vertex set V(G) = { 1, ..., n } is defined as the sum of distances
between all pairs of distinct vertices i j , 1 I i < j I n.1-3
The original motivation to consider this quantity was an
observation by Wiener’ that boiling points of paraffins
correlate very strongly with this quantity. In subsequent
studies, Wiener extended the applications of this index to
other thermodynamic properties of alkanes such as heats of
formation, heats of vaporization, molar refractions, and molar
 volume^.^-^ The same behavior of the Wiener index was
also reported in some later studies. For example, the Wiener
index has been used to explain various chemical and physical
properties of molecules* and to correlate the structure of
molecules with their biological a~t iv i ty .~ The reader is also
referred to review articles 10-18.

It was proposed recently that the study of (appropriately
defined) contributions of particular bonds (edges) to the
Wiener index might be of some chemical i n t e r e ~ t . ’ ~ - ~ ~ Bond
contributions are defined as follows. Recall that

n-1 n

where dij (i j E V(G)) is the distance from i to j in the graph
G, Le., the length of a shortest path in G joining i andj. The
matrix D = [d,]:,=, is called the distance matrix of the
graph G. The sum (1) can also be expressed as follows.
For each pair i , j E V(G), choose one of shortest paths from
i to j and denote it by P# For e E E(G) let v(e) be the number
of paths Pij that contain the edge e . Then

This was observed already by Wiener’ in case of trees. The
relation (2) can be used to get a fast algorithm for computing
the Wiener index of trees.23 The expression (2) is not natural
since in general v(e) depends on the choice of the paths.
Alternatively, let L!?$ be the set of all paths of length dv from
i to j in G. Denote by cij the number of all paths in g a n d
by cU(e) the number of paths from Hj that contain the edge
e. If we define

+ Authors’ e-mail addresses: martin.juvan@uni-lj.si and bojan.mohar@uni-

Supported in part by the Ministry of Science and Technology of
1j.si.

Slovenia, Research Project PI-0210-101-94.
@ Abstract published in Advance ACS Abstracts, February 1, 1995.

0095-2338/95/1635-0217$09.00/0

217

(3)

then again

W(G)= w‘ (4)
eeE(G)

Quantities We are called bond contributions to the Wiener
index since by (4), We is exactly the contribution of the edge
e to W(G).

L u k ~ v i t s ~ ~ devised an algorithm for computing bond
contributions. His algorithm has complexity @(diam(G)n3 + mn2) where n and m denote the number of vertices and
edges of the graph, respectively, and diam(G) is the diameter
of the graph. This algorithm is appropriate for small graphs
but, unfortunately, it is too time consuming for larger graphs.
In this paper we present an improved algorithm whose time
complexity is q m n) . With this algorithm we can easily
handle graphs with several hundreds of vertices.

The paper is organized as follows. In section 2 our
improved algorithm is described. Examples of its output are
presented in section 3. Chart 1 contains the algorithm in
the form of a Pascal program. The program can also be
obtained on request by e-mail from the authors.

2. THE ALGORITHM

If we define

then

In order to efficiently compute We for an edge e, we compute
for every vertex i and add them together. To compute v, we fix a vertex i and first compute dij and cij for every

vertex j . This is done by a breadth-first search of the given
graph starting at i.25 Initially, vertex i is put in the queue.
At each step, the next vertex, call it v, is taken from the
queue and all its neighbors are visited. Suppose that u is a
neighbor of v. If u has not been visited before, then we set
diu = di, + 1, and u is added at the end of the queue. Next,
if diu - diy = 1 (and this can happen also if u was visited
before), then some shortest paths from i to u pass through v.

0 1995 American Chemical Society

218 J. Chem. InJ Comput. Sci., Vol. 35, No. 2, 1995

Table 1. Naohthalene and Its Reoresentation

JUVAN AND MOHAR

Table 3. Bond Contributions for Dibenzfulvene

10
1 2 10 0

6 2 3 0
3 4 8 0
4 5 0
5 6 0
6 7 0
7 8 0

9 10 0
1 5 8 9 0

l o c o 2 4 0

Table 2. Bond Contributions for Naphthalene

1-10
1-2
2-3
3-8
3-4
4-5
5-6
6-7
7-8
8-9
9-10
W = 109

6.1667
8.5000

12.5000
12.6667
12.5000
8.5000
6.1667
8.5000

12.5000
12.5000
8.5000

The number of such paths is obviously equal to the number
of ci, of shortest paths from i to v, and this number has been
computed in previous iterations. To make sure that ciu will
be determined we just add the number of these paths to the
number of shortest paths from i to u obtained so far using
previously considered edges. When the queue becomes
empty, breadth-first search is completed. This way distances
dv and the number of shortest paths cij is computed for all
vertices j .

The second part of the main loop computes the numbers v. This is done by traversing vertices of the graph in the
opposite order as visited by the breadth-first search. There-
fore, at each step we are sure that vertices that are more
distant from i than the current vertex have already been
considered. At each vertex, denote it by v, we determine v for all edges that have v as their endpoint and whose
other endpoint is more distant from i than v. Moreover, the
sum of all these values v is stored in S,. Suppose that we
are considering an edge e with endpoints v and u such that
diu - di,, = 1. At this step we would like to compute the
number v. Let P be a shortest path between i and some
other vertex and suppose that P contains the edge e . Then
P either has u as its endpoint, or contains (exactly) one of
the edges starting at u and having the other endpoint at
distance diu + 1 from i. The contribution of the former to

is ciu(e)/ciu = ciJciu. To calculate the contribution of the
latter paths, let f be an edge of the above form. Since exactly
ci,(e) = ciV shortest paths between i and u contain e , the
contribution in wf of paths containing f equals W { ci,,lciu.
Summing up these contributions over all such edges f, we
get SuciJciu, the number that can easily be computed from
already known quantities.

Let us now estimate the time complexity of the above
algorithm. Clearly, the main loop is repeated n times. In
each iteration, first, a breadth-first search of the graph is
performed. Since during the search each edge is considered
only twice, once for each of the endpoints, and only a
constant number of operations is performed in each visit,

12

1

2 3 6 7

1-14 : 12.0000
1-2 : 7.0000
2-3 : 13.0000
3-4 : 21.0000
4-13
4-5
5-10
5-6
6-7
7-8
8-9
9-10
10-1 1

17.0000
27.0000
17.0000
2 1 .oooo
13.0000
7.0000

12.0000
20.0000
2 1 .oooo

11-13 : 21.0000
11-12 : 13.0000
13-14 : 20.0000
W = 262

Table 4. Bond Contributions for Acepleiadvlene

15 1-10 : 14.1667
1-2 : 18.5000
2-11 : 24.0000

9 A7 2-3 : 29.5000
: 34.6667
: 29.5000
: 24.0000

I I I 4-5 : 18.5000
5-6
6-7
7-16
7-8
8-9
9-15
9-10
11-12
12-13
13-14
15-16
W = 358

: 14.1667
: 15.5000
: 14.0000
: 22.5000
: 22.5000
: 14.0000
: 15.5000

15 .0000
: 10.0000
: 15.0000

7.0000

the time complexity of the search is @VI). The same
arguments apply also when estimating the time complexity
of the second part of the main loop. Therefore, the time
complexity of the whole algorithm is &".

Our algorithm also works for disconnected graphs and
graphs with loops and multiple edges. It can also be adapted
to work for graphs of molecules containing heteroatoms, i.e.,
graphs in which each edge is associated with a positive real
number representing its weight. In this case the notion of a
distance between vertices and derived quantities have to be
redefined accordingly.

The described algorithm is presented in the form of a
Pascal program in Chart 1. The program is written in Turbo
Pascal. The only nonstandard Pascal features used in the
program are the type string, which is used in the program
for storing the name of the input file, and the procedure
assign, which assigns the name of the (external) input file
to a file variable. If some other Pascal compiler is used,
these two features have to be modified appropriately.

Input data for the graph of the a-electron skeleton of
naphthalene (or of ZIE-decalin in case of fully-saturated
hydrocarbons) are shown in Table 1. In general, the first
line contains the number of vertices of the graph. The
following lines contain the description of the neighbors of
the vertices. Each description starts with a label of a vertex
followed by labels of neighbors and ends with 0. To shorten
the representation only neighbors with greater labels need

BOND CONTRIBUTIONS TO THE WIENER INDEX

Chart 1
program BondContributions;

const
maxN = 100; {maximal number o f vertices}
maxM = 1000; {maximal number of edges}

vertices = l..maxN;
edges = I..maxM.
Pvertex = tvertex.
vertex = record

e: edges;
u: vertices;
next: Pvertex;

type

end;

inp: text; name: string; {input fi le}
n,m: integer; {number o f vertices and edges}
G: array[vertices] of Pvertcx;
WI: real; {Wiener index}
visited: array[vertices] of boolean;
d,c: array[vertices,vertices] o f integer; {distances and number o f shortest paths}
W: array[edges] o f real; {bond contributions}
Q: array[vertices] of vertices; {queue for storing vertices during BFS}
5: array[vertices] o f real;
i,j,k: integer;
x: real;
edge: Pvertex;
v. vertices;

var

begin
writef'lnput file: '); rcadln(name);
assign(inp,name); reset(inp);
readln(inp,n); {number of vertices}
for i:=l t o n do G[i]:=nil;
for i:=l t o n do for j:=1 t o n do

begin c[ij]:=O; d[i j]:=O; end;
{read input data and build a graph}
read(inp,i); m:=O;
while i < > O do begin

read(inpj);
while j < > O do begin

if j>i then begin
m:=m+l;
new(edge); edgeT.next:=G[i]; G[i]:=edge;
cdgef.u:=j; edgef.e:=m;
new(edge); edgef.next:=Gl/]; Gl/]:=edge;

edget.u:=i; edgef.e.=m;
end; {if}
read(inpj);

end;
read(inp,i);

end; {while}
for i : = l t o m do W[i]:=O;
for i : = l t o n do begin {main loop}

c[i,i]:=I;
for j:=1 t o n do visitedl/]:=false;
Q[I]:=i; j:=O; k:=l; visited[i]:=true;
while j < k d o begin {EFS}

j:=j+l; v:=Ql/]; edge:=G[v];
while edge<>nil do wi th edgeT do begin

if not visited[u] then begin
d[i.u]:=d[i,v]+l; visited[u]:=true:
k.=k+l; Q[k]:=u;

end;
i f d[i,u]>d[i,v] then c[i,u]:=c[i,u]+c[i.v]:
edge:=next;

end; {while edge<>nil)
end; { E F S }
for j:=n downto 1 do begin {second part}

v:=QD]; edge:=G[v]; S[v]:=O:
while edge<>nil do wi th edgeT do begin

if d[i.v]<d[i,u] then begin
x:=(c[i,vl/c[i,ul)*(S[ul+l);
W[e].=W[e]+x/?; S[v]:=S[v]+x;

end;
edge: = next;

end: {while}
end; {for j}

end; {main loop}

W k O ,
for i : = l t o n do begin

edge:=G(i];
while edge<>nil do wi th edget do begin

if u>i then begin writein(i:3,'-' ' : '.W[e]:8:4); WI:=WI+W[e]; end;
edge:=next;

end: {while}
end; {for}
writeln('W = ',WI:5:0);

end.

to be listed. The value 0 in place of a vertex label identifies
the end of the input.

3. EXAMPLES
In this section some results obtained by our program are

presented. For the graph of naphthalene (see Table 1) we

J. Chem. In& Comput. Sci., Vol. 35, No. 2, 1995 219

computed the bond contributions shown in Table 2.
Further examples are graphs of dibenzfulvene and aceplei-

adylene (or of perhydro-9-methylfluorene and perhydro-
acepleiadylene, respectively, if we consider saturated mol-
ecules). The results are shown in Tables 3 and 4.

As expected, the results show that in all our examples the
interior edges contribute more to the Wiener index then the
outer ones.

REFERENCES AND NOTES

(1) Wiener, H. Structural Determination of Paraffin Boiling Points. J .
Am. Chem. Soc. 1947, 69, 17-20.

(2) Hosoya, H. Topological Index. A Newly Proposed Quantity Char-
acterizing the Topological Nature of Structural Isomers of Saturated
Hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332-2339.

(3) TrinajstiC, N. Chemical Graph Theory, 2nd revised ed.; CRC Press:
Boca Raton, FL, 1992; Chapter 4.

(4) Wiener, H. Correlation of Heats of Isomerization and Differences in
Heats of Vaporization of Isomers among the Paraffin Hydrocarbons.
J . Am. Chem. SOC. 1947, 69, 2636-2638.

(5) Wiener, H. Influence of Interatomic Forces on Paraffin Properties. J .
Chem. Phys. 1947, 15, 766.

(6) Wiener, H. Vapour Pressure Temperature Relations Among the
Branched Paraffin Hydrocarbons. J . Chem. Phys. 1948, 15, 425-
430.

(7) Wiener, H. Relationship of Physical Properties of Isomeric Alkanes
to Molecular Structure, Surface Tension, Specific Dispersion and
Critical Solution Temperature in Aniline. J . Phys. Colloidal Chem.
1948, 52, 1082-1089.

(8) Mathematics and Computational Concepts in Chemistry; TrinajstiC,
N., Ed.; Ellis Horwood: Chichester, U.K., 1986.

(9) Kier, L. B.; Hall, L. H. Molecular Connectivity in Chemistry and Drug
Research; Academic Press: New York, 1976.

(10) Rouvray, D. H. In Chemical Applications of Graph Theory; Balaban,
A. T., Ed.; Academic Press: London, 1976; p 175.

(1 1) Rouvray, D. H. Predicting Chemistry from Topology. Sei. Am. 1986,

(12) Rouvray, D. H. In Mathematics and Computational Concepts in
Chemistry; TrinajstiC, N., Ed.; Ellis Honvood: Chichester, U.K., 1986;
p 295.

(13) MihaliC, Z.; Veljan, D.; AmiC, D.; NikoliC, S.; PlavSiC, D.; TrinajstiC,
N. The Distance Matrix in Chemistry. J . Math. Chem. 1992,11,223-
258.

(14) Gutman, I.; Yeh, Y. N.; Lee, S. L.; Luo, Y. L. Some Recent Results
in the Theory of the Wiener Number. Indian J . Chem. 1993, 32A,

(15) BoSnjak, N.; Adler, N.; PeriC, M.; TrinajstiC, N. In Modelling of
Structure and Properties of Molecules; MaksiC, Z. B., Ed.; Ellis
Honvood: Chichester, U.K., 1987; p 103.

(16) Katritsky, A. R.; Gordeeva, G. V. Traditional Topological Indices vs
Electronic, Geometrical, and Combined Molecular Descriptors in
QSAWQSPR Research. J . Chem. In5 Comput. Sci. 1993, 33, 835-
857.

(17) Balaban, A. T.; Motoc, J.; Bonchev, D.; Mekenyan, 0. Topological
Indices for Structure-Activity Correlations. Top. Curr. Chem. 1983,
114, 21-55.

(18) Balaban, A. T.; Niculescu-Duvaz, I.; Simon, Z. Acta Pharm. Jugosl.
1987, 37, 7-36.

(19) Lukovits, I. Wiener Indices and Partition Coefficients of Unsaturated
Hydrocarbons. Quant. Stmct.-Act. Relat. 1990, 9, 227-23 1.

(20) Lukovits, I. Correlation Between Components of the Wiener Index
and Partition Coefficients of Hydrocarbons. Int. J . Quantum Chem.,
Quantum Biol. Symp. 1992, 19, 217-223.

(21) Pisanski, T.; ierovnik, J. Weights on Edges of Chemical Graphs
Determined by Paths. J . Chem. Inf. Comput. Sei. 1994, 34, 395-
397.

(22) Lukovits, I.; Gutman, I. Edge-Decomposition of the Wiener Number.
MATCH, in press.

(23) Mohar, B.; Pisanski, T. How to Compute the Wiener Index of a Graph.
J . Math. Chem. 1988, 2, 267-277.

(24) Lukovits, I. An Algorithm for Computation of Bond Contributions of
the Wiener Index. preprint.

(25) Sedgewick, R. Algorithms; Addison-Wesley: Reading, MA, 1988.

CI9401231

24, 40-47.

65 1-661.

