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Labeling of Benzenoid Systems which Reflects the Vertex-Distance Relations 
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It is shown that the vertices of benzenoid systems admit a labeling which reflects their distance relations. 
To every vertex of a molecular graph of a benzenoid hydrocarbon a sequence of zeros and ones (a binary 
number) can be associated, such that the number of positions in which these sequences differ is equal to the 
graph-theoretic vertex distance. It is shown by an example that such labelings can be used not only for 
nomenclature purposes but also for fast evaluation of molecular parameters based on the graph distance. 

1. INTRODUCTION 

In chemical graph theory’ there is a large number of 
molecular topological indices based on vertex distances. The 
best known among them are the classical Wiener2 and 
Balaban3 indices, but quite a few others are also encountered. 
Of them we mention the family of molecular topological 
indices introduced by Schultz, Schultz, and S c h ~ l t z , ~ - ’ ~  the 
Harary index,I3.l4 the family of hyper-Wiener 
and the recently proposed Szeged index.’* For review and 
comparative studies of vertex-distance-based molecular 
structure descriptors see the articles published by MihaliC 
and others.’3.’9x20 

A seemingly unrelated field of activity in contemporary 
chemical graph theory is the search for methods to canoni- 
cally label the atoms of chemical compounds so that the 
labeling is as much as possible structure-based (and not 
conventional) and as much as possible convenient for 
computer-aided manipulation with structural information. Of 
the numerous works in this direction we mention S .  B. Elk’s 
pioneering efforts aimed at polycyclic molecules, especially 
at benzenoid 

In this paper we offer results that are related to both the 
canonical labeling of the vertices of benzenoid systems and 
to vertex distances. In order to be able to formulate them 
we need some preparation. We also find it useful to make 
the reader familiar with the basic features of the (mathemati- 
cal) theory of Hamming graphs. 

The molecular graphs of benzenoid hydrocarbons will be 
referred to as benzenoid systems; their properties are 
discussed in due detail e1~ewhere.I .~~ In mathematical 
literature the very same objects are called “hexagonal 
systems” or “hexagonal ani mal^".'^ Notice that our defini- 
tion of a benzenoid system (the same as given in ref 24) 
excludes coronacondensed systems, benzene modules, he- 
licenes, and other related polycyclic moieties. Hence, the 
benzenoid systems considered here are either cata- or 
pericondensed. 
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A benzenoid system G is a finite connected plane graph 
with no cut vertices in which every interior region is bounded 
by a regular hexagon of side length 1. (Recall that a plane 
graph is the graph together with its drawing in the plane.) 
A straight line segment C in the plane with end points PI  
and P2 is called a cut segment if C is orthogonal to one of 
the three edge directions, each PI and P2 is the center of an 
edge, and the graph obtained from G by deleting all edges 
intersected by C has exactly two connected components. An 
elementary cut C of a cut segment C is the set of all edges 
intersected by C .  By C,, we will denote the elementary cut 
containing an edge uv. In Figure 1, a cut segment C is 
indicated, and el, e2, and e3 are the edges of the corresponding 
elementary cut. (We refer to ref 25 for more information 
on the defined terms.) 

Let 2 be a finite alphabet and let W I  and w2 be words of 
equal length over 2. Then the Hamming distance between 
W I  and w2, H ( w I , w ~ ) ,  is the number of positions in which WI 

and w2 differ. A graph G is a Hamming graph, if each vertex 
v E V(G) can be labeled by a word l(v) of fixed length, such 
that H(Z(u),l(v)) = dc(u, v )  for all u, v E V(G). Any such 
labeling is called a canonical labeling. Here, dc(u, v) denotes 
the usual shortest path distance in G between u and v. A 
path between two vertices of a graph G is also called a 
G-path. In particular, if 2 = (0, l}, we call G a binary 
Hamming graph. An example of a binary Hamming graph 
and an appropriate labeling is shown in Figure 2 .  We refer 
to refs 26 and 27 for the original interest for these graphs in 
communication theory. 

Binary Hamming graphs were first characterized by 
DjokoviC,** and several other characterizations were obtained 
later. To recall the characterization from ref 28 we need 
two more definitions. 

A subgraph H of a graph G is said to be convex if it is 
connected and if any shortest path in the graph G between 
two vertices of H lies entirely in H. For an edge uv of a 
graph G let V,,,. be the set of vertices in G which are closer 
to u than to v, i.e. 
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Figure 1. A cut segment. 

Figure 2. A binary Hamming graph. Observe that the (binary) 
words by which its vertices are labeled are of length nine-this is 
related to the existence of nine elementary cuts in coronene (for 
details see text). 

Note that in a bipartite graph G, Vu, and V,, form a partition 
of V(G). Now we can state the aforementioned result of 
Dj okovit : 28 

Theorem 1.1. A graph G is a binary Hamming graph if 
and only if G is bipartite and for every edge uv of G, Vu, 
and Vvy induce convex subgraphs of G. 

2. HEXAGONAL SYSTEMS AS BINARY HAMMING 

The following result is the principal observation of this 
paper. 

Theorem 2.1. A benzenoid system is a binary Hamming 
graph. 

The actual method by which the canonical labeling of the 
vertices of a benzenoid system is achieved is explained in 
detail later in this paper (before Lemma 2.2) and is illustrated 
in Figure 3. 

Proof. Let G be a benzenoid system. It is well-known 
that G is bipartite.24 Thus by theorem 1.1 it remains to prove 
that for every edge uv of G, Vu, and V,, induce convex 
subgraphs of G. 

Consider the elementary cut C,,. The graph o\Cu, consists 
of two connected components, and it is straightforward to 
see that they are precisely the graphs induced by the sets 
Vu, and V,,. 
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Figure 3. A simple example. 

Finally, we want to show that Vu, induces a convex 
subgraph of G. Suppose not. Then there are vertices x, y E 
Vu, and a shortest path P between x and y which is not 
completely in Vu,. It follows that P is of the form 
Qu'v"'v''"'Q'', where u'v' and v"u" are edges of the 
elementary cut C,,, Q is a shortest path between x and u' 
in Vu,, Q' a shortest path between v' and v" in Vvu, and Q" 
a shortest path between u" and y in Vu,. However, there 
is a unique shortest path between u' and u" (which lies 
completely in Vu,) that passes along the elementary cut C,,. 
It follows that P is not a shortest path, a contradiction. 

Since a benzenoid system is a binary Hamming graph, 
one would like to obtain a corresponding labeling fast. In 
what follows we present such an algorithm which can be 
very easily carried out by hand. 

Let CI, C2, ..., Ck be the elementary cuts of a benzenoid 
system G. Let GY and G\ be the connected components of 
the graph GWi, 1 I i I k. Define a labeling 

1: V(G) - (0, l}k 

in the following way. For u E V(G) let the ith component 
of Z(u), which we denote by Zi(u), be defined by 

0, i f u  E GQ I 1, i f u  E G: 
l,(u) = 

Hence, l(u) = (Zl(u), Z2(u), ..., Zk(u)). We claim that 1 
represents a canonical labeling of G. For this purpose we 
first need the following lemma. Its proof is analogous to 
the last part of the proof of theorem 2.1, thus we will not 
repeat it here. 

Lemma 2.2. Let G be a benzenoid system, let C be an 
elementary cut of G, and let u and v be vertices of G. If P 
is a shortest u-v path in G, then IP n CI I 1. 

We now have the following: 
Theorem 2.3. For arbitrary vertices u and v of a 

benzenoid system G, 

Proof. Let P be any shortest path between u and v. 
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By lemma 2.2 each edge of P belongs to a different 
elementary cut of G. It follows that l(u) and l(v) differ in at 
least as many coordinates as the number of edges on P. In 
other words, H(l(u),l(v)) L &(u, v). 

To prove the converse, consider any elementary cut Ci of 
G which has no edge in common with P. Since GK, consists 
of two connected components, P lies entirely in one of them. 
Therefore, li(u) = li(v), and hence l(u) and l (v)  differ in at 
most as many coordinates as the number of edges on P,  Le., 
H(Ku),l(v)) 5 &(u, v). 

Combining both inequalities completes the proof. 

For a simple example of the above labeling procedure 
consider the benzenoid system in Figure 3; it has five 
elementary cuts that are indicated above, and the correspond- 
ing labeling is presented below. We have assumed that the 
graph G, ,  1 I i I 5, is the left (respectively the bottom) 
connected component of the graph ( X i .  For instance, the 
fourth coordinate is indicated bold. 

Note also that the benzenoid system from Figure 2 has 
nine elementary cuts, and thus the corresponding labeling is 
a binary number of length 9. The order of cuts in Figure 2 
is selected analogously as in Figure 3 (but, of course, any 
order would do). The first set of cuts is at -60", the second 
set is at 60°, and the third set is horizontal. Each of these 
sets define three bits. 

The results of this section can be directly extended to 
generalized benzenoid systems (as defined in ref 25) and to 
coronoid  hydrocarbon^^^ as well as to various other classes 
of polycyclic graphs of chemical interest. We would also 
like to mention that the above labeling procedure could also 
be deduced from the algorithm given in ref 30 which, in 
turn, is based on the theory of isometric embeddings of 
graphs into Cartesian products developed by Graham and 
Winkler.3 
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3. SOME APPLICATIONS 

Besides the obvious possibility of applying the Hamming 
labeling of a hexagonal system for nomenclature purposes 
we show in this section how it can be used for fast calculation 
of molecular parameters based on the graph distance. As 
an example we present the simplest case of the Wiener index 
W(G) which is equal to the sum of distances &(u, v)  taken 
over all pairs of vertices u, v of G. 

Let I :  V(G) - (0, 1}q be a Hamming labeling of length 
q of a benzenoid system G with n = IV(G)l vertices. (Indeed, 
G can be any binary Hamming graph.) For i = 1, ..., q, let 
ni be the number of vertices u of G such that the ith 
component of I(u) is equal to 1. 

Proposition 3.1. The Wiener index of G is equal to 

Proof. Let V = V(G). For u, v E V ,  let 6i(u, v)  be 0 if 
ith components of l(u) and l(v) agree, and 1 otherwise. Since 
1 is a Hamming labeling, we have 

i = 1  \LU€VEV I 
0 

i=I 

Proposition 3.1 could also be derived directly. Let CI, 
..., C, be the elementary cuts (as in the previous section), 
and for i = 1, ..., q let e and G,! be the corresponding 
components of a C i .  Then ni = lV(Gi)l. By using the 
counting method of Wiener2 (cf. also papers of Lukovits and 
Gutman3* and Mohar and P i ~ a n s k i ~ ~ ) ,  one can derive (1) 
directly. The advantage of (1) is that one can store 
information about the graph G just by representing Z(u), u E 
V(G), and then being able to compute various distance-based 
parameters without really reconstructing the graph. 
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