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Abstract 

Graph bundles generalize the notion of covering graphs and products of graphs. The 
chromatic numbers of product bundles with respect to the Cartesian, strong and tensor product 
whose base and fiber are cycles are determined. 

1. Introduction 

If G is a graph, V(G) and E(G) denote its vertex and edge set, respectively. The 

Cartesian product G D H of graphs G and H is the graph with vertex set V(G) × V(H) 

and (a ,x) (b ,y)~E(GDH) whenever ablE(G)  and x=y ,  or a=b and xy~E(H).  The 

tensor product G x H of graphs G and H is the graph with vertex set V(G) x V(H) 

and (a , x ) (b , y )~E(GxH)  whenever ab lE(G)  and xyeE(H) .  The strong product 

G ~ H  of graphs G and H is the graph with vertex set V(G)x V(H) and 
E(G []H)= E(G x H)w  E(G~H) .  

Graph bundles [11, 12] generalize the notion of covering graphs and Cartesian 

products of graphs. The notion follows the definition of fiber bundles and vector 
bundles that became standard objects in topology [5] as space which locally look hike 

a product. Graph bundles corresponding to arbitrary graph products were introduced 

in [12, 10]. We refer to [8, 10, 12] for definitions and basic results. 
In this paper we will only consider graph bundles over cycles. They can be 

represented as described below. (Here we take this description as a definition.) Let .~ be 

a Cartesian, tensor, or a strong product operation. Let q ,  I~>3, be a cycle with 

consecutive vertices Vo,Vl . . . . .  ul_ 1 and let P~ be the path obtained from Ct by 
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removing the edge VoVz-1. Let F be an arbitrary graph and q~eAut(F) an automor-  
phism ofF.  Finally, let Ct o~F be the graph obtained from the product P~ o F by adding 
a 'copy'  of K2 oF between vertex sets {v0} x V(F) and {V~-l} x V(F) such that if 
V(Kz) = {1, 2} and (1, x) is adjacent to (2, y) in K 2 o F, then (v0, x) and (vt-1, q~(Y)) are 
connected by an edge in Cl o~ F. The graph Ct o~ F is called the o-bundle with base Ct 
and fiber F. The natural projection p: Ct o~ F ~ C~ is called the bundle projection. The 
preimage p-l(v~) is a fiber over vi. If o is the Cartesian or the strong product, then 
every fiber is isomorphic to F. In case of the tensor product it is equal to the 
independent vertex set {vi} x V(F). As a special case of a bundle we have the product, 
Ct old F = Ci o F. Another special case is when F is discrete (graph without edges). Then 
we get covering graphs over cycles. 

In the rest of the paper, let X be a bundle whose base graph is a cycle C~, l ~> 3. We 
will denote the consecutive vertices of Cl by Vo, vl . . . . .  vt- 1. Similarly, if the fiber is the 
cycle Cs, we let Uo, ul . . . . .  us-1 be the consecutive vertices on Cs. 

Automorphisms of a cycle Cs are of two types. A cyclic shift of the cycle by 
t elements will be briefly called the cyclic t-shift, O<<,t<s. It maps u~ to ui+t (index 

modulo s). As a special case we have the identity (t = 0). Other automorphisms of Cs 
are called reflections. For example, if q~ is a cyclic shift, then the Cartesian bundle 
Ct o9 Cs can be represented as a quadrilateral tessellation of the torus (as shown by an 
example in Fig. 1 with q~ a cyclic 1-shift). Similarly, C~ o9 Cs is a quadrangulation of the 
Klein bottle when ~p is reflection. 

Let o be the Cartesian, strong or tensor graph product operation. The following 
facts will be used several times. The bundle C~ o~ Cs, where ~o is a cyclic t-shift, 0 ~< t < s, 
is isomorphic to the bundle C~ o~ Cs, where ~ is the cyclic ( s -  t) -shift. It is also easy to 
see that all bundles Cl o~ Cs with q~ a reflection are mutually isomorhic ifs is odd. I f s  is 
even, we have two isomorphism classes of C~ o9 Cs, depending on whether ~p has two or 
no fixed vertices. 

Fig. 1. C6 o~O C4 on the torus. 
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An n-colorin9 of a g raph  G is a function f from V(G) to {1,2 . . . . .  n}, such that  

x y  ~ E(G) imp l i e s f (x )  ~ f ( y ) .  The smallest  number  n for which an n-color ing of G exists 

is the chromatic number z(G) of G. Let  z ( G ) = n .  Then G is called n-critical if 

x ( G - v ) < n  for every v e  V(G). 

M a n y  results are known  abou t  the ch romat i c  number  of s t rong p roduc t s  of graphs,  

see [7, 14-16]  and also [2, 3,6]. Several  general  results abou t  the ch romat i c  numbers  

of Car tes ian ,  s t rong  and  tensor  bundles  of g raphs  were ob ta ined  in [8]. In this paper  

we de te rmine  the ch roma t i c  numbers  of p roduc t  bundles  whose base and the fiber are 

cycles. 

At the beginning we establ ish a s imple result  which holds for all three considered 

products .  

Lemma 1.1. For every n, s>~3, k >~O, and ~p~AutlC~) we have 

Z( Cs + 2k ~o Cn ) ~ Z(Cs °~p Cn). 

Proof.  Let c be an m-color ing of the bundle  C~ o~ C,.  Then we get an m-color ing of 

Cs+zkO ~ C.,  s imply by repea t ing  k - s  t imes the co lor ing  of the fibers over  vs-2 and 

vs ~, respectively,  to the fibers over  v~,v~ 1, ...,Vs+Ek 1. 

2. Cartesian bundles 

In this sect ion we will de te rmine  ch romat i c  numbers  of Car tes ian  bundles  over  

cycles whose fiber is a cycle. The  results  are col lected in Table  1, where, for example ,  

' even /odd '  means  tha t  we cons ider  Car tes ian  bundles  with even cycle as base and an 

odd  cycle as fiber. '0-refl. ', ' l - ref l . '  and  '2-refl. '  denote  a reflection wi thout  fixed points ,  

with one fixed po in t  and  with two fixed points ,  respectively. 

Fi rs t  two lines of Table  1 are p roved  in P ropos i t i on  2.1. The remain ing  shifts are 

d e m o n s t r a t e d  in Theo rem 2.2 and  the 1-reflections are sett led in Theorem 2.3. At the 

end of the sect ion we also prove  that  the la t ter  graphs  are x-critical.  

Proposition 2.1. The f irs t  two lines o f  Table 1 are correct. 

Proof.  Let  the base graph  be an odd  cycle and  assume )~(Czk+ 1 ~]~o C2n) = 2. If p is the 

bundle  project ion,  then we m a y  suppose  tha t  p-~(v0) is co lored  1,2 . . . . .  1, 2. Hence 

Table 1 
Chromatic numbers of Cartesian bundles. 

Base/fiber\~0 Even shift Odd shift 0-refl. l-refl. 2-refl. 

Even/even 2 3 3 - 2 
Odd/even 3 2 2 - 3 
Even/odd 3 3 - 4 - 
Odd/odd 3 3 - 4 - 
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p -  1(vl) must  be colored 2, 1 . . . . .  2, 1, and by induction, p -  l(U2k ) is colored 1,2 . . . . .  1, 2. 

It is clear that  we have a coloring of C2k+a D~C2, if and only if ~0 is an odd shift or 

a reflection without  fixed points. Furthermore,  if we replace color 1 in p -  ~(vo) with 
color 3 and color  2 in p-l(V2k ) with 3 we get a 3-coloring when q~ is an even shift or  

a reflection with two fixed points. 

The case with an even base is proved analogously.  [] 

We will several times explicitly give colorings of particular graph bundles. Given 

a graph bundle Ck ~ C,, the vertices of the ith fiber p -  l(vl) will correspond to the ith 

row of a color  matrix and the copies of the vertex uj of the fiber C, will be in the j th  

column. Finally, we will add an addit ional ' bo t tom '  row with colors corresponding to 

p-a(Vo) shifted or  reflected according to ~o. This row will be denoted v~. Then the 
vertical and the horizontal  adjacencies can be easily seen. 

Theorem 2.2. Let q~ be a cyclic shift and let n>~l. Then for every k~>3, 

Z(Ck ~P C 2 n + l ) -  3. 

Proof. Sabidussi [13] showed that  z(G[]H)=max{x(G),z(H)}.  Hence, the result 

holds if ~o is trivial. It is therefore enough to prove it for all odd cyclic shifts. 

Let q~ be (2s+l ) -cyc l ic  shift, O<<.s<n. Let c be an assignment of  colors to 

C4 D ~ C2,+ ~ defined by the following color  matrix: 

UO Ul U2 /23 " "  U2s U2s+I  U2s+2 /22s+ 3 "'" 112n-2 U2n-I  l'12n 

Vo 1 2 l 2 ... 1 2 1 2 .-. 1 2 3 

Vl 2 3 2 3 ... 2 3 2 3 ... 2 3 1 

v2 1 2 1 2 ..- 1 2 3 1 ... 3 1 3 

v3 2 1 2 1 ... 2 3 1 2 ... 1 2 1 

vb 1 2 l 2 ... 3 l 2 1 ... 2 1 2 

Let P be the path on vertices Vo, vl, vz and v 3. Then the subgraph P[]eC2n+I is 

identical with the Cartesian product  P D C2,+1 and is clearly properly colored. 
Lemma 1.1(ii) completes the p roof  for the case when k is even. 

Let ~o be cyclic (2s+l)-shif t ,  O<~s<n. Let c be an assignment of  colors to 

C3 D ~ C2.+ ~defined by the following color  matrix: 

UO /'/1 "'" U 2 s - 2  U2s-1 U2s U 2 s + I  b/2s+ 2 "'" bl2n-1 H2n 

Vo 1 2 ... 1 2 1 2 1 ... 2 3 

vl 3 1 ... 3 1 3 1 2 ... 1 2 

v2 2 3 ... 2 3 l 2 1 -.. 2 3 

vb 1 2 ... 1 2 3 1 2 ..- 1 2 
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(If  s = 0 ,  the coloring in the co lumn of u2~ is used for the first column.) This defines 
a coloring of C3 D ~ C2,+ 1. L e m m a  1.1 (i) completes  the p roof  for odd values of k. L3 

Theorem 2.3. Let go be a reflection. Then Jbr an}, k >~ 3 and n >7 1 we have 

g(Ck lq~ C2n+ 1)=4- 

Proof.  Let us consider a 3-coloring c: V{C2. + 1 ) ~  {1,2, 3} of the fiber graph C2. +l- 
We assume that  the edges of C2.+1 are oriented from v~ to v~+l (index modulo  2 n +  1), 
i = 0 ,  1 . . . . .  2n. Define h (v3=  1 if c(vi+ 1)=c(vl)+ 1 (rood 3), and let h(vi)= - 1 otherwise. 

Let 

2n 

IV(c)= .~ h(vi). 
i = 0  

We call W(c) the windin9 number of the 3-coloring c. Since W(c) is the sum of 2n + 1 

odd numbers  ( +  1), it is odd  and thus non-zero.  
Suppose that  we have a 3-coloring of K2 ~ C2,+ 1. It induces 3-colorings, c and c'. 

of the two fibers. We claim that  W(c)= W(c'). This follows easily by the follow- 

ing observat ion.  Consider  a vertex vl with h(vi)#:h'(vl), where h and h' are the 

h-functions of c and c', respectively. Say, h(vi)~-1, h'(vi)=- I. Then c(vi)=c'(vi+ l) 

and c(vi+l)=c'(vi).  Now,  if h(vi+l)=h'(Vi+l)  . . . . .  h(vi+O=h'(vi+,), t>~O, and 
h(vi+t+ 1)v a h'(vi+t+ 1) (indices modu lo  2 n +  1), then h(vi+t+ 1) = - 1  and h'(vi+,+ 1) = 1. 

Finally, having a 3-coloring of Ck []~ C2,+ 1, and assuming that  the induced color- 
ing c on the first fiber has W(c) >~ O, all o ther  3-colorings of fibers have positive winding 

number .  But since go is reflection, the copy of K2 ~ C2. + 1 between the last and the firs1 

fiber reverses the or ienta t ion of C2.+ 1, thus turning a positive winding number  into 
the negative. This contradicts  the observed proper ty  that  W(c)--/:O. 

As it is easy to find 4-colorings of Ck ~ C2. + 1 (cf. the following theorem), the p roof  is 

complete.  

Theorem 2.4. Let go be a reflection. Then for  

u~ V(Ck D ~' C2,+1), 

z((ck s ~ c2.+ 1)\{u})= 3. 

In other words, Ck []~ C2,,+ 1 are 4-crit ical graphs. 

any k>~3, n>~l and any vertex 

Proof.  We will show the theorem for the case when k is even, since the odd case can be 
t reated similarly. By an obvious  modif icat ion of L e m m a  1.1 (ii) it is enough to prove  
our  claim for k = 4 .  We may,  wi thout  loss of generality, also assume that  u~p  X(vo). 
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Let ~o(u,)=u, and let u = u , - t ,  t~>0. Suppose that t is odd and consider the following 

color matrix, where the b u l l e t ,  stands instead of  the vertex u. 

v0 ..- 3 2 3 2 • ... 1 2 1 2 1 ... 2 3 2 3 2 ... 

vl ... 1 3 1 3 1 ... 2 1 2 1 2 ... 3 1 3 1 3 ... 

v2 ... 3 1 3 1 3 ... 1 2 1 2 1 ... 2 3 1 3 1 ... 

v3 ... 1 2 1 2 1 ... 2 1 2 1 2 ... 3 1 2 1 2 ... 

V'o ... 2 3 2 3 2 ... 1 2 1 2 1 ... • 2 3 2 3 ... 

) k _ _  ) k _ _ 2  ~ J 
Y "v" "f Y 

n - t + l  t - I  t - 1  n - t + l  

It is s traightforward to see that  (C4 ~'~ C2,+t ) \{u}  is properly colored. The case 

when t is even can be treated similarly and is left to the reader. [] 

3. Strong bundles 

Observe first that  the subbundle over any edge is isomorphic  to the strong product  

K2 [] Cz ,+ I .  As for n,~2, x(K2 [] C1 ,+1)=5 ,  it follows that g(Cl  []~ C2.+D~>5. F r o m  
[8] we recall the following theorem. 

Theorem 3.1. (i) F o r  any  s t ron9  bund le  X = B  []~ F,  x ( X ) < ~ x ( B ) x ( F ) .  

(ii) F o r  a n y  k>~2 and a n y  9raph  F,  z ( C 2 k + I  [ ] O F ) < ~ 2 g ( F ) + V x ( F ) / k q .  

In the rest of  the section we will prove the results in Table 2, where all the cycles are 

of  length at least 4. 
More  precisely, the first and the third line of  Table 2 are covered by Proposi t ions  

3.2 and 3.3, respectively. The second line is proved in Theorem 3.4 and the last line in 

Theorem 3.9. Both theorems also specify when the chromat ic  number  is 4 or 5 and 

5 or 6, respectively. 

Proposition 3.2. F o r  any  k >~ 2 and  a n y  n >~ 2, ~ ( C 2 k  [~o C 2 n )  = 4. 

Proofi The lower bound  is trivial while the upper bound  follows from 

Theorem 3.1(i). [] 

Table  2 

C h r o m a t i c  numbe r s  of s t rong bundles  

Base/fiber\~p Even  shift O d d  shift 0-refl. 1-reft. 2-refl. 

Even /even  4 4 4 - 4 

O d d / e v e n  4 or  5 5 5 - 5 

E v e n / o d d  5 5 - 5 - 

O d d / o d d  5 5 - 5 or  6 - 
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Propos i t ion  3.3. For any k >~ 2 and any n >~ 2, x ( C 2k N ~P C 2n + I ) : 5. 

Proof.  It is well known that z ( K 2  [] C2, + 1) = 5. Therefore, by Lemma 1.1 (ii), it suffices 

to consider the case k = 2. Suppose first that  n >~ 3. Define (2n + 1)-tuples x and y as 

x = ( 1 , 2 , 1 , 2  . . . . .  1,2,3) and y = ( 4 , 5 , 3 , 4 , 5 , 4 , 5  . . . . .  4,5). 

I f p  is the bundle projection, then color p-~(Vo) and p ~(v2) by using x and p ~(r~) 

by y. 
As n~>3, there exists a vertex w in p ~(v3), which is adjacent to neither of the 

vertices colored 3 in p -  l(vo) and p ~(v2). Color  w with 3 and the remaining vertices in 

p- l (v3)  with 4 and 5, to obtain a 5-coloring of Czk N'PC2,+I, n>~3. 

Let n = 2. Then the following color matrices 

Vo 1 2 3 4 5 1 2 3 4 5 1 2 1 3 2 

vl 4 5 1 2 3 3 4 5 1 2 3 5 4 5 4 

v2 1 2 3 4 5 5 1 2 3 4 2 1 3 2 1 

v3 3 4 5 1 2 2 3 4 5 1 4 5 4 5 3 

vb 5 1 2 3 4 4 5 1 2 3 2 3 1 2 1 

give 5-colorings for ~p being the cyclic 1-shift, the cyclic 2-shift, and the reflection, 

respectively. For  the reflection we have assumed that ~p(u2)= u2. The first color matrix 

(with the changed row of v~) also gives a 5-coloring in case when ~p is the identity. F] 

Next we consider strong bundles over odd cycles. The first case is when the fiber is 

an even cycle. 

Theorem 3.4. For k >~ 2 and n >~ 2, 

J((C2k + 1 []*n C2n) = (4' 
t 5, 

is a cyclic 2 s - sh ( f t ,  l<~s<~n, and 

n/gcd(n,s) is even, 

otherwise. 

Theorem 3.4 will be proved by a series of four lemmas. 

L e m m a  3.5. Let ~((C2k+l [ ] ' P C 2 . ) = 4  and let c be a 4-coloring. Denote by p the 

corresponding bundle projection. Then there exists an index i, O<~i~2k, such that 

p - l (v i )  has at least 3 distinct colors. 

Proof. Assume, on the contrary,  that  Ic(p-l(vO)l  =2 ,  i=O, 1 . . . . .  2k. We may suppose 
that p 1(Vo) is colored 1,2 . . . . .  1,2. It follows that  p-l(V2k) must be colored either 

1,2 . . . . .  1,2 or 2, 1 . . . . .  2, 1, a contradict ion for any ~p. 

L e m m a  3.6. Let q~ be a cyclic shift of  odd length. Then for  any k >~ 2 and any n >~ 2, 

J(((~2k + 1 []~p C2n)= 5. 
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Proof. The upper bound follows from Theorem 3.1(ii). 
To prove the lower bound, assume that z(C2k+I []~C2n) = 4  and let c be a 

4-coloring. Let Wo, wl . . . . .  w2,- 1 be consecutive vertices of the fiber p -  l(Vo). Accord- 
ing to Lemma 3.5, we may assume that ] c (p -  1 (Vo))[ ~> 3. Hence, there are 3 consecutive 
vertices in p -  1 (Vo) with pairwise different colors. Assume, without loss of generality, 

C(Wo) = 1, c (w l )=  2 and c(w2)= 3. Then the vertical layers corresponding to Uo, ul and 
u2 must be colored 1, 3, 1, 3 . . . . .  3, 1; 2, 4, 2, 4 . . . . .  4, 2 and 3, l . . . . .  1, 3, respectively. It 
follows by induction that in the vertical layer corresponding to us+ 1 there are only 

colors l and 3. Here s is the length of the cyclic shift ~o. Consider the vertex w in the 
fiber p-l(v2k) which corresponds to Us+l. Then c(w)~ { 1, 3}. However, w is adjacent to 
Wo and w2, a contradiction. [] 

Lemma 3.7 Let  q~ be reflection. Then )~(C2k+1 I x~(° C2n)=5, for every k ,n  >~2. 

Proof. The upper bound follows from Theorem 3.1 (ii). 
As the fiber is an even cycle, there are two non-isomorphic bundles with q~ a reflec- 

tion. If ~p has no fixed points on C2,, then it interchanges two of the adjacent vertices 
of C2n. The corresponding layers induce a subgraph isomorphic to K 2 [] C2k + 1 whose 
chromatic number is equal to 5. Hence the lower bound. Suppose ~p has fixed points. 
Then using Lemma 3.5 and arguments from the proof of Lemma 3.6 we see that the 
bundle cannot be 4-colored. [] 

The next lemma will complete the proof of Theorem 3.4. 

Lemma 3.8. Let q9 be a 2s-shift, 1 <~ s <~ n. Then for  any k >~ 2 and any n >~ 2, 

4, n/gcd(n,s) is even, 
~(C2k+I  [~°C2n)-~" 5, otherwise. 

Proof .  Assume ~((C2k + 1 Nq~ C2n) --4. Let c and Wo, Wl , . . . ,  W2n-1 be as in the proof of 
Lemma 3.6, and let C(Wo)=l, C(Wl)=2 and C(W2)--3. It follows that C(WEs)=3, 
c(w2s+0=4  and c(w2s+2)=l,  as well as c(w4s)=l, c(w4s+l)=2 and e(W4s+2)=3. 
Throughout  all of the proof  indices are modulo 2n. In general, for an odd k/> l, 

C(W2sk)-~3, C(W2sk+I)=4 and C(W2sk+2)=I while for an even k>~0, C(W2sk)=I, 
C(W2sk+l)=2 and C(W2sk+2)=3. Let k ' > 0  be the smallest number such that 
2sk ' - -O(mod2n) .  It is not hard to see (cf., e.g., El, Theorem 13.4]) that 

k' Icm(2n,2s) lcm(n,s) n 

2s s gcd (n, s) 

If k' is odd, then C(W2sk,)=C(Wo)=3, a contradiction. 
Assume k' is even. It follows that n must be even. Let s = 2Pr, where r is odd and 

p/> 0. As k' is even, 

2s=2P+ar and 2n=U'+2t  
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for some t~>0. For  p>~0 we now define the color  matrix A of dimension (2k+  1) x 2 p+2 

in the following way: 

1 2 3 4 . .-  1 2 3 4 3 4 l 2 .-. 3 4 1 2 

3 4 1 2 ... 3 4 1 2 1 2 3 4 ... 1 2 3 4 

1 2 3 4 .-.  1 2 3 4 3 4 1 2 ..- 3 4 1 2 

3 4 1 2 ... 3 4 1 2 1 2 3 4 ... 1 2 3 4 

1 2 3 4 . . .  1 2 3 4 3 4 1 2 . . .  3 4 1 2 

v" y 
2 p* I 2p+ 1 

(For p = 0 take the first two columns in each half). Let c be an assignment of colors to 

Czk+~ ~ C 2 p ÷ 2 , ,  defined by the horizontal  sequence of t color matrices A. As we 
consider a (2P+lr)-shift and r is odd, c is a 4-coloring. 

The final case to consider when the base and the fiber are odd. 

Theorem 3.9. For k >>- 2 and n >1- 2, 

z(C2k+I [~q~ C2n+ 1)={ 

6, n = 2  and q~ is a reflection; 

6, n = 3 ,  k = 2 ,  and q~ is a reflection 

5, otherwise. 

The theorem will be proved by the next three lemmas. 

Lemma 3.10. Let q~ be a reflection. Then 

(i) Jor k>~2, X(CEk+I []~C5)--6,  
(ii) z(C5 [ ]~Cv)=6 ,  

(iii) ,for n>~4, z(C5 ~ C 2 , + 1 ) = 5 ,  

(iv) .for k,n>~3, x(C2k+I ~ * C 2 , + 1 ) = 5 .  

Proof.  (i) Assume that ~(C2k+1 [~¢PC5)=5 and let c be a 5-coloring. Let p be the 
bundle projection. We distinguish three cases. 

Case h There is a fiber which uses only 3 colors. We may assume that 

c(p- l (Vo))- -{1,2 ,3}  and that the color 3 occurs exactly once. It follows that 
c ( p - l ( v l ) )  has neither color 1 nor  color 2 and that 3 occurs exactly once. Hence 

c ( p - l ( v l ) ) = { 3 , 4 , 5 } ,  where the color 3 occurs exactly once. By induction, 

c ( p -  l(V2k))= { 1, 2, 3}, a contradiction.  

Case 2: There is a fiber which uses 4 colors. We may assume that 

c ( p -  1 (Vo)) = { 1, 2, 3, 4} and that the color 4 occurs twice. Then c ( p -  l(v~)) = { 1, 2, 3, 51 , 
where 5 occurs twice. By induction, c(p a (V2k)) = { 1,2, 3, 4}, a contradiction.  

Case 3: Each fiber uses 5 colors. We may assume that  c (p -  1 (Vo))= { 1,2, 3, 4, 51. It is 
easy to see that there are only two ways to color p -  1 (vl): the cyclic shift of colors by 2, 
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or by 3. Therefore, p -  1 (Vzk) must be colored by a cyclic shift of colors from p -  ~ (Vo). 
Since ~0 is a reflection, this is not the coloring of the bundle. 

Finally, the following matrix of colors determines a 6-coloring of C5 []* C5, when 
tp is a reflection. We assume that q~(u2)= u2. 

Vo 3 5 2 5 6 

vl 1 6 3 1 4 

v2 5 2 4 2 6 

v3 3 6 5 3 1 

v4 2 4 1 6 4 

v~ 6 5 2 5 3 

Lemma 1.1(i) completes the proof  of (i). 

(ii) Let ~o(u3)=u3. Assume that there is a 5-coloring of C5 ~ C 7  which uses 
5 colors in the u3-1ayer. Then in the u2-1ayer, only one color can occur twice. But if it 
does, we cannot color the u4-1ayer. It follows that in the u2-1ayer and in the u4-1ayer all 
5 colors are present. Furthermore,  both colorings must be equal. Analogously, the 
layers Uo and u2. have the same coloring, a contradiction. 

The other cases can be checked similarly, but many  of them have a lot of subcases, 
hence we will not do it here. All cases have been checked by hand and computer. 

(iii) Since there is only one non-isomorphic strong bundle when q~ is a reflection, we 
may assume again ~0(u,)= u,. Then the color matrix 

Vo 2 1 2 1 2 5 2 3 5 

vl 3 5 3 5 3 4 1 4 1 

v2 4 1 4 1 2 5 3 5 2 

v3 5 2 3 5 3 1 2 4 1 

v4 4 1 4 1 4 5 3 5 3 

vb 5 3 2 5 2 1 2 1 2 

realizes a 5-coloring of C5 []~ C9. To get the color matrix for the general case we just 
extend the above matrix by adding the last color column on the left, and the first color 
column on the right, and so on. This proves (iii). 

(iv) Let ~o(u.)= u.. Then the color matrix 

Vo 1 3 1 5 4 5 3 

vl 2 5 4 3 2 1 4 

v2 3 1 2 1 4 3 5 

v3 2 4 5 3 5 1 4 

v4 1 3 2 1 4 2 5 

v5 2 5 4 5 3 1 3 

v6 4 1 3 2 4 2 5 

v~ 3 5 4 5 1 3 1 
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gives a 5-coloring of C7 N ° C7. To get the color matrix for the general case we just 

extend the above matrix by adding the last color  column on the left, and the first color 

column on the right, and so on to get 2n + 1 rows. Finally, we replicate k -  3 times the 

two rows corresponding to vs and v6 in order  to get the color matrix for 

C2k+ 1 ~]~' Czn+ 1 • [] 

Lemma 3.11. Let ~o be a cyclic shift. Then )~(Czk+ 1 N'P Cs) = 5,[br every k >~ 2. 

Proof. By Lemma 1.1(i), it suffices to consider the case when k = 2 .  It is enough to 

exhibit 5-colorings when q~ is a cyclic s-shift, 0~<s~<2. In the table below we give two 

colorings. The first is a coloring for s = 0 and s = 1 (with appropr ia te  change of the last 

row). The second is for s = 2. 

NO 1 2 3 4 5 1 2 3 4 5 

Vl 4 5 1 2 3 4 5 1 2 3 

V 2 2 3 4 5 1 1 2 3 4 5 

VS 5 1 2 3 4 4 5 1 2 3 

V4 3 4 5 1 2 1 2 3 4 5 

V~ 1 2 3 4 5 4 5 1 2 3 

L e m m a  3.12. Let (p be a cyclic shift. Then ~(C2k+l N~' C2n+ l } :  5, for every k >~ 2 and 
every n >~ 3. 

Proof.  By Lemma 1.1(i) we may restrict to the case k = 2 .  To get a 5-coloring for 

Cs N ° C2,+ 1, where ~p is identity or  the cyclic 1-shift, use the left matrix from Lemma 
3.11 and repeat the last two columns ( n - 2 )  times. We may now assume that Cp is 
a cyclic (2s+ 1)-shift, s--- 1,2 . . . . .  n -  1. 

Let A and B be the following color matrices, respectively: 

1 2 3 4 5 4 5 

4 5 1 2 3 1 3 

1 2 3 4 5 2 5 

4 5 1 2 3 4 3 

1 2 3 4 5 1 2 

Let c be an assignment of  colors to C5 D ° C2n+l, defined by the horizontal  sequence 
of color  matrices A, B, B . . . . .  B. Hence, the first 5 layers are colored with A and the 

remaining 2 n -  4 layers with copies of B. Note  first that  c is a coloring when q~ is the 
cyclic 3-shift. 

Assume now that ~o is a cyclic (2s + 1)-shift, 2 ~< s ~< n - 1. We are going to change c in 

such a way that it will become a coloring. In p--l(Vo), the colors 1 and 2 occur only 
once, and in p-1(v4) the colors 4 and 5 occur only once. Hence, it is sufficient to 
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change the coloring of the vertical layers corresponding to the vertices U2s+l , 

U2s+2 and U2n_2s+3 , U2n_2s+4 of the fiber. There are two cases to consider. 
Case 1: 2s+  1 : ~ 2 n - 2 s + 3 .  In this case we replace the coloring of the layers of 

vertices u2~ + 1 and u2s + 2 and the coloring of the layers 2n - 2s + 3 and 2n - 2s + 4 with 
the following matrices, respectively: 

4 5 1 2 

1 3 4 3 

2 5 2 5 

1 3 4 3 

4 5 1 2 

Case 2: 2s + 1 = 2 n -  2s + 3. In this case we replace the coloring of the layers of uzs + 1 
and uzs+z with the following matrix: 

1 2 

4 3 

2 5 

1 3 

4 5 [] 

Note that we did not consider the case in which the fiber or the base is the 3-cycle 
C3. If the fiber is C3, then C. []~ C3 is isomorphic to C. [] C3. More generally, if the 
fiber is Kk, k >~ 3, then C, []~° Kk is isomorphic to C, [] Kk. Hence, g(C2m ~ Kk)=2k 

(trivial) and if n = 2m + 1, then z(C2m + 1 []* Kk) = 2k + F k/m] (see [14, Theorem 6]). In 
particular, 

9, m = l  

x(C2m+I[ ]oC3)= 8, m = 2 ,  

7, m~>3. 

We cannot argue similarly if the base is C3. Anyhow, the case C3 ~ C, is a special 
case of Kk N ° C,, k~> 3. We believe that it would be also interesting to investigate 
chromatic numbers of Kk []~0 C.. 

4. Tensor bundles 

From [8] we recall the following proposition. 

Proposit ion 4.1. For any tensor bundle X = B ×~ F, z(X)~< z(B). 

Then we have the following theorem. 
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Theorem 4.2. For any m >~ 3 and any n >~ 3, 

zlc,. x'~ C,,)= 

3, m odd, n odd, or 

m odd, n even, ~o odd shift, or 

m odd, n even, q~ reflection without  fixed points; 

2, otherwise. 

Proof.  Let m = 2 k .  Then by Proposi t ion 4.1, z ( C 2 k x " C n ) < ~ 2  and therefore 

z(C2k x 'p C,) = 2. 
Let m = 2 k +  1. Again by Propos i t ion  4.1, z(C2k+ 1 X"° C,)~< 3. Assume the bundle is 

bipartite. Suppose first that  n is odd. Then p- l (v0)  and p 1(vl) induce the cycle of 

length 2n. Hence, all the vertices in p -  1 (Vo) must  posses the same color. It follows that 

the vertices in p l(V2k) must be colored with the same color, a contradiction. 
Assume that n is even. Then p-l(Vo) and p t(th) induce two disjoint cycles of 

length n. If we assign to all the vertices in p--l(vo) the same color, we have a contradic- 

tion as above. Therefore, all the fiber layers must possess: the same color pattern, 
say 1,2 . . . . .  1.2. We separately consider all possibilities for ~. 

If ~p is a shift it is s traightforward that we have a coloring of CZk + t X"° C, if and only 

if ~p is an even shift. 

Let ~ be a reflection without  fixed points. Then there are two consecutive vertices of 

the cycle p t (Vo) that are exchanged by ~p. But then these two vertices are adjacent to 

the corresponding vertices in p - l ( V z k ) ,  a contradiction.  

Let cp be a reflection with two fixed points. Consider  arbitrary vertex u in p-  ttt:ot. 
Then q~ maps u to a vertex in p I(V2R ) which is on an even distance from u in C,. 

Therefore, u is adjacent to two vertices in p I(V2k) both on an odd distance from it. It 
follows that we have a 2-coloring. El 
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