
E m b e d d i n g  g r a p h s  in  t h e  t o r u s  in  l i n e a r  t i m e  * 

Martin 3uvan**, 3o~e Marin~ek**, Bojan Mohar** 

Department of Mathematics 
University of Ljubljana 

Jadranska 19, 61111 Ljubljana 
Slovenia 

Abs t rac t .  A linear time algorithm is presented that, for a given graph G, 
finds an embedding of G in the torus whenever such an embedding ex- 
ists, or exhibits a subgraph 12 of G of small branch size that cannot be 
embedded in the torus. 

1 Introduction 

Let K be a subgraph of G, and suppose that we are given a (2-cell) embedding 
of K into a surface S.  The embedding extension problem asks whether it is possi- 
ble to extend the given embedding of K to an embedding of G in S .  Every such 
embedding is called an embedding extension of K to G. An obstruction for em- 
bedding extensions is a subgraph 12 of G - E ( K )  such that the embedding of K 
cannot be extended to KUI2. The obstruction is small if KUI2 is homeomorphic 
to a graph with a small number of edges. If [2 is small, then it is easy to verify 
(for example, by checking all the possibilities for the rotation systems of K U 12) 
that no embedding extension to h" U f2 exists, and hence ~ is a good verifier 
that there are no embedding extensions of K to G as well. Though obstructions 
can be arbitrarily large, one can produce a small obstruction by changing some 
branches of K.  Such changes are often applied in our algorithms. To indicate that  
the graph K might have been changed, we call a small obstruction obtained in 
this way a n'~ce obstruction. 

It is known [15] that  the general problem of determining the genus, or the 
non-orientable genus of graphs is NP-hard. However, for every fixed surface there 
is a polynomial time algorithm which checks if a given graph can be embedded 
in the surface. Such algorithms were found first by Filotti et al. [3]. Unfortu- 
nately, even for the torus their algorithm has time complexity estimated only 
by O(nlSS). A special polynomial time algorithm for embedding cubic graphs in 
the torus has been published by Filotti [2]. Robertson and Seymour developed 
an O(n 3) algorithm using graph minors (with recent improvement by B. Reed 
to O(n21ogn))[12,  13, 14]. 

The main theorem of the present paper is: 
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T h e o r e m  1. There ~s a linear time algorithm that, for a given graph G, finds 
an embeddzng of G in the torus whenever such an embedding exists, or exhibits 
a subgraph Y2 of G of small branch size that cannot be embedded in the torus. 

Moreover, an obstruction Y2 obtained in Theorem 1 is homeomorphie to a 
minimal forbidden subgraph for embeddings in the torus, i.e., for each edge 
e C E(Y2), Y2 - e admits an embedding in the torus. Theorem 1 in particular 
implies that  every such obstruction is homeomorphic to a graph with a small 
number of edges. 

A proof of Theorem 1 is given by means of an algorithm consisting of five 
steps sketched below. Detailed proof of this result appears in [7, 8]. 

It is easy to see that  we can restrict our attention to 2-connected nonplanar 
graphs [1]. In the paper it is shown that we can further restrict the problem 
to 3-connected graphs containing a Kuratowski subgraph K0. This step uses the 
algorithm of Hopcroft and Tarjan [4] for determining 3-connected components 
of a graph and an extension of linear time planarity testing algorithms [1, 5] due 
to Williamson [16, 17] that finds a Kuratowski subgraph in G if G is nonplanar. 
Our reduction is not entirely obvious but it is much simpler than the 3-connected 
case considered in the sequel. 

Next we try to replace the subgraph K0 C_ G by a graph homeomorphic 
to K0, having the same main vertices and such that there are no local bridges 
with respect to the new subgraph. This can be achieved in linear time by using 
an algorithm from [6]. It is shown in the paper that if the algorithm does not 
yield a replacement, the 2-restricted embedding extension algorithm of [10] can 
be applied to find an embedding (or to discover an obstruction). 

We reduce the torus embeddability problem of G (having the subgraph K0 
constructed in previous steps) to a small number of embedding extension prob- 
lems. We try to extend every possible embedding of K0 into the torus to an 
embedding of G. tlaving found an embedding in any of the cases, we get an em- 
bedding of the original graph G. On the other hand, if we are unsuccessful in each 
case, we combine the obtained nice obstructions f21, . . . ,  ~2N (one for each em- 
bedding extension problem) into a small obstruction for the torus embeddability 
of G. 

Let us now fix an embedding of K0 in the torus. Note that the embedding is 2- 
ceil since K0 is a Kuratowski subgraph. Then we systematically browse through 
all possible ways to extend this embedding. We order the possible embeddings 
to be tested with a partial order, which is based on appearances of basic pieces 
of K0 actually used by an embedding. Furthermore, for every subset of appear- 
ances of non-singular basic pieces, we are able to select a small set of bridges 
attached to these appearances with the property that  every their embedding that  
extends the considered embedding of K0 use all the freedom that  is offered by 
the current possible way of extending embedding of K0. These bridges are called 
representatives. Then we embed the representatives in every possible way. Since 
the number of representatives is bounded, we reduce the problem of extending 
the (fixed) embedding of K0 to G to a small number of subproblems. If no em- 
bedding is found, we combine obstructions from every subcase into a single nice 
obstruction.  
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Tile embedding of K0 and the representatives may have no 2-singular faces. 
In this case, a variant of 2-restricted embedding extension algorithm [10] can be 
used to produce an embedding of G (or to find a nice obstruction). In the other 
case, it is shown that  the remaining K0-bridges can be split into two disjoint 
classes: those that  have to be embedded into 2-singular face, and those that  
don't .  Thus, we solve two independent problems. For bridges in the second class 
we simply use the 2-restricted embedding extension algorithm [10], while for the 
bridges from the first class we use the so called corner algorithm [7]. (Although 
the corner algorithm is not too complicated, its verification represents one of the 
major  difficulties in our work.) When combining the obtained obstructions, we 
have to consider the fact that  some of the embeddings of bridges of the second 
class might have been obstructed by the presence of the bridges in the first class 
(independently of their embedding). In this case, the combined obstruction must 
also include at most two paths from bridges in the first class. 

This concludes the sketch of the algorithm. 
As a consequence, our algorithm proves finiteness of the number of forbid- 

den subgraphs for embeddability in the torus, a special case of Robertson and 
Seymour's generalized Kuratowski theorem [11]. 

These and other auxiliary results of this paper are used as the corner stones 
in the design of linear time algorithms for checking embeddability of graphs in 
general surfaces [9]. 
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