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Abstract

For an arbitrary fixed surface S, a linear time algorithm is
presented that for a given graph G either finds an embedding
of G in S or identifies a subgraph of G that is homomorp-
hic to a minimal forbidden subgraph for embeddability in
S. A side result of the proof of the algorithm is that mini-
mal forbidden subgraphs for embeddability in S cannot be
arbitrarily large. This yields a constructive proof of the re-
sult of Robertson and Seymour that for each closed surface
there are only finitely many minimal forbidden subgraphs.
The results and methods of this paper can be used to solve
more general embedding extension problems.

1 Introduction

There aze well-known linear time algorithms to determine
whether the given graph can be embedded in the plane
(Hopcroft and Tarjan [11], Booth and Lueker [4]). Exten-
sions of these algorithms return an embedding if the graph is
planar [5], or exhibit a Kuratowski subgraph homomorphic
to KE or iKs,s [16, 30, 31]. Recently, linear time algorithms
have been devised for embedding graphs in the projective
plane (Mohar [17]) and in the torus (Juvan, Marintek, and
Mohar [14]).

It is known that the problem of determining the genus
or the non-orientable genus of graphs is NP-hard [28, 29].
However, for every fixed surface S there is a polynomial time
algorithm for checking embeddability of graphs in S. If S is
orientable of genus g, Filotti et al. [8] give an algorithm with
time complexity O(n”g+P ) (a, /3 are constants). For every
fixed surface S, an 0(n3) algorithm for testing embeddabil-
it y in S can be devised using graph minors [21, 25] (with
a recent improvement to 0(n2 log n) [22, 23, 24]). An ex-
tension which also constructs an embedding is described by
Archdeacon in [1] with running time estimated to O(nlO).
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These algorithms use the lists of forbidden minors which
are known only for the plane and the projective plane while
for other surfaces only finiteness of their number has been
proved, Djidjev and Reif [7] presented another polynomial
time algorithm for embedding graphs in general surfaces
which seems to avoid the use of forbidden minors.

In the present contribution we describe a linear time al-
gorithm (that is not based on graph minors) which finds
an embedding of a given graph G into an arbitrary fixed
surface S if such an embedding exists. Otherwise, the al-
gorithm returns a minimal forbidden subgraph H Q. G for
embeddability in S. A side result of the algorithm 1s that
H is homomorphic to a graph with a bounded number of
edges (where the bound depends only on S). This yields
a constructive proof of the result of Robertson and Sey-
mour [21] that for each closed surface there are only finitely
many minimal forbidden subgraphs. A constructive proof
for nonorientable surfaces has been published by Archdea-
con and Huneke [2], while orientable surfaces resisted all
previous attempts. (Recently also Seymour [26] found a
constructive proof of that result.)

The results and methods of this paper can be used to-
wards solving a generalization of problems of embedding
graphs in surfaces — the so called embedding extension pr-ob-
lems where one has a fixed embedding of a subgraph K of
G in some surface and asks for embedding extensions to G
or (minimal) obstructions for existence of such extensions.

Concerning the time complexity of our algorithms, we
assume a random-access machine (RAM) model with unit
cost for operations on integers, whose value is O(n), n being
the size of the input (cf. Cook and Reckhow (6]). The same
model of computation is used in known linear ‘time planarity
testing algorithms [11].

2 Basic definitions

We will consider 2-cell embeddings of graphs in closed sur-
faces. They can be described in a purely combinatorial way

by specifying a rotation system n = (TV ; v c V(G)) (where
XV is a cyclic permutation of edges incident with v) and a
signature A : E(G) + { –1, 1}. The reader is referred to [9]
or [20] for more details. Having an embedding II of G, we
say that G is n-embedded. Each embedding H of G deter-
mines a set of closed walks in G, called 11-~acial walks or
simply II-faces, that correspond to traversals of face bound-
aries of the corresponding topological embedding. Suppose
that a subgraph K of G is II-embedded, An embedding fi
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of G is an extension of II if it is an embedding in the same
surface as II and the restriction of H to K is equal to II.

Let K be a subgraph of G. A K-bridge in G is a subgraph
of G which is either an edge e E E(G)\E(K) with both
endpoints in K, or it is a connected component of G – V(K)

together with all edges between this component and K. The
vertices of B fl K are the vertices of attachment of B, and B

is attached to each of these vertices. A vertex of K of degree
different from 2 is a branch vertex of K. A branch of K is
any path in K whose endpoints are branch vertices but no
internal vertex on this path is a branch vertex. B is local (on
e) if it is attached to a single branch e of K. The number
of branches of K, denoted by bsize (K), is the branch size of
K. If B is a K-bridge in G, then the size bsizeK (B) of B is

the number of branches of K U B that are contained in B. A
basic piece of K is either a branch vertex or an open branch
of K (i.e., a branch with its endpoints removed). If B is
attached to three or more basic pieces, then B is strongly
attached.

Suppose that K is 11-embedded. Let B be a K-bridge in
G and II an extension of II to K U B. Then there is a unique
II-face F that is not a H-face, and we say that B is embedded
in F. Each basic piece on F has one or more appearances
(or occurrences) on F. The embedding of B in F is simple if
B is not attached to distinct appearances of the same basic
piece. More generally, an embedding extension is simple if
all bridges have simple embedding.

The difficult part of this paper is to discover obstructions
for simple embedding extensions. The next result slightly
simplifies this problem. It implies that we may replace ev-
ery K-bridge by a small subgraph and then consider only
obstructions that can be expressed as the union of entire
bridges.

Theorem 2.1 (Mohar [19]) Let B be the set of K-bridges
in G. There is a number c depending only on bsize(K) such

that each B c B conta~ns a subgraph B, called an E-graph of

B, such that bsizeK (B) ~ c and that the following holds. If

{B,, . . . . Bk} G B (k > 1) are arbitrary nonlocal K-brzdges,

Bl,. . . , kk their E-graphs, and if II %san embedding of K,

then any simple extension of II to K U 81 U . . s U Bk can be

further extended to a simple extension of II to KuB1 U ~ ~U

Bk. Moreover, there is a linear time algorithm that replaces
all K-bridges B in G with their E-graphs B,

3 Restricted embedding extensions

If B is a K-bridge and T is the set of basic pieces of K

that B is attached to, then B is of type T. Suppose that K
is II-embedded. In general, a bridge of type T can be em-

bedded in two or more II-faces, and in some faces in several
different ways. To formalize the essentially different ways
of embedding bridges in particular faces, we introduce the
notion of embedding schemes. Let F be a II-face. For a type
T, let ml,. . . . ~k be the appearances of basic pieces from T

on F. An embedding scheme for the type T in the face F
is a subset 6 of ~1, ..., Xk containing at le~t one appear-
ance of each basic piece from T. 6 is simple if each x G T
has exactly one appearance in 6. There is a natural partial
ordering < among embedding schemes induced by the set
inclusion. An embedding of B in F is b-compatible (shortly
a 6-embedding) if B is attached only to appearances of basic

pieces from 6.

An embedding distribution A(T) for a type T is a selec-
tion of embedding schemes for T, possibly in different faces.
Suppose that T1, Tz, . . . . Ts are all types of K-bridges in
G. An embedding distribution is a family A = {A(T~), . . . .
A(T.)} where A(TZ) is an embedding dk.tribution for the
type Ti, 1 < i < s. A is simple if all embedding schemes
in A(2’1), ..., A(T.) are simple. Let B be a set of K-bridges
with an embedding extending the given embedding of K.

We say that the embedding of B is A-compatible (or a A-
embedding) if the embedding of each bridge B c B is &
compatible for some 6 c A(T), where T is the type of B.

The relation < naturally extends from embedding schemes
to embedding distributions.

Now we introduce a formal definition of an embedding
extension problem, abbreviated EEP. This is a quadruple
~ = (G, K, II, A) where G is a graph, K is a subgraph
of G, H is an embedding of K, and A is an embedding
distribution for the K-bridges in G. The EEP is simple if
A is simple. An embedding eztension (abbreviated EE) for
S is an embedding extension of II to G such that every
K-bridge is A-embedded. An obstruction for S is a set B
of K-bridges or their subgraphs such that (KU B, K, II, A)
admits no EE. The size bsizeK (B) of an obstruction B is
equal to the sum of sizes of bridges in B.

Embedding distributions are used in the following way.
For every possible embedding distribution A we try to ex-
tend the given embedding of K to a A-embedding of G.
Embedding distributions are selected one after another re-
specting the order <. We start with the empty embedding
distribution. Any bridge is an obstruction for thk subprob-
lem. In a general step, we already have obstructions for
all embedding dktributions A’ + A. Let 23 denote their
union. Then we try to extend each A-embedding of B to
a A-embedding of G. Obtaining an embeddkg, we stop
and return the embedding. Otherwise, an obstruction is ob-
tained. Finally, obstructions for different embedding of B
are combined together with B into a single obstruction for
A-compatible embedding extensions. We will refer to this
process as the procedure of embedding distribution oft ypes.

The main difficulty in the above procedure is in bound-
ing the number of A-embeddings of B. By using an op-
eration called compression (cf. Section 4), we are able to
achieve that all obstructions have bounded size and hence
also bounded number of embedding.

The procedure of embedding distribution of types can
be generalized by introducing the union of EEPs. Suppose
that we want to consider embedding extensions where we fix
embedding of some of the bridges. To formalize, we call an
EEP E’ = (G, K’, II’, A’) a subproblem of S = (G, K, II, A)
if K’ = K U B for a set B of K-bridges, II’ is a A-compatible
EE of l_I, and A’-compatibility in K’ corresponds to A-
compatibility in K.

Fori= l,..., N, let Ei = (G, Ki, II,, A~) be subprob-
lems of E = (G, K, II, A). Denote by l?~the set of K-bridges
in K,. We say that S is the union of :subproblems E~
(1 < z < N) if for every set f3 ~ U~l~$ of K-bridges in
G, the restriction of E to K U B admits an 13E exactly when
the restriction to K U 23 of at least one of E~ does. In this
case, an EE for some E; is also an EE for R, while hav-
ing obstructions Q, for E, (1 < i < N), their combination
O = U~=l (fl~ U B,) is an obstruction for 5.

A subproblem E’ = (G, K, II, A’) of H = (G, K, II, A)
is equivalent to E if for every set B of K-bridges in G and
every A-compatible EE of K to K U B, there is also a A’-
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compatible EE of K to K U B.

Let S = (G, K, H, A) bean EEP. Let B be the set of all
K-bridges in G. Suppose that B = & U... U BN. Denote by
A~ the restriction of A to I?i, i = 1, ..., IV. The EEP E, =
(KU B,, K, II, A,) is a partial problem of Z. We say that
E is the intersection of partial problems Ei, i = 1, ..., IV,
if arbitrary EEs for =1, . . . . ~jv determine an EE 110 for E.
More precisely, if there are EEs II, for 3, (i = 1, . . . . iV),
then there is an EE 110 for E such that its restriction to
KUB, coincides with II,, i = I,. ... IV. Having 111,. . ..l_Lv.
one can determine IIo in linear time.

4 Simple embedding extensions

In this section we consider simple EEPs. We additionally
assume that each bridge has been replaced by its small E-
graph (cf. Theorem 2.1), every bridge has at least one simple
embedding extending some embedding of K, there are no
local bridges, multiple branches between the same pair of
vertices of K have been replaced by a single one, and there
are at most 4 bsize(K) strongly attached bridges. We refer
to these assumptions as Property (E) of K.

Let E = (G, K, II, A) be a simple EEP where K has
Property (E). Suppose that B is a set of K-bridges and E’ =
(G, K U B, II’, A’) is a subproblem of E. Then E’ is 2-
restricted if every K-bridge B in G, B ~ B, has at most two
A’-compatible embedding extending the embedding II’.

Suppose that we have a set of vertices JVO~ V(K). Let
WI be the union of W’Oand all branch vertices of K. Denote
by S the set of connected components of K - WI. Suppose
that we replace the paths in S by new pairwise disjoint paths
in G —WI joining the same ends as the original paths. Then
the new subgraph K’ of G is homomorphic to K and the
homeomorphism K + K’ is the identity on the stars of
vertices in WI. The types of bridges with respect to K

and K’ are in the obvious correspondence and so are the
embedding of K and K’ and the embedding schemes for
their bridges. Suppose that G contains exactly the same
types of K-bridges and K’-bridges. Then the replacement
of K by K’ is called a compression with respect to WO.

Theorem 4.1 (Juvan and Mohar [15]) There is a ~unc-
tton CI : N x N --+ N such that the following holds. Let
E = (G, K, II, A) be a 2-restricted subproblem of an EEP,
and let WO be a set of vertices of K. If there is no A-
compatible EE, then there is a compression K * K’ with
respect to WO such that the modified EEP E’ = (G, K’, II, A)
admits an obstruction B such that

bsize~, (B) < c1(1WOI, bsize(K)).

Moreover, there is an algorithm with time complexity
O(CI([WOI, bsize(K)) [V(G)I) that either finds an EE for ~,

or performs the compression K * K’ and returns an ob-

struction B for E’ as described above.

The compression combined with the procedure of em-
bedding distribution of types is our main tool used in order
to guarantee that the obstructions constructed by our algo-
rithms are not too large.

Suppose that we have an EEP E = (G, K, II, A) and
that 1? is an obstruction for all EEPs E’ = (G, K, II, A’)
for which A’ < A. Then we say that B is a complete set

of representatives for E since for every A-embedding of B
and each J E A (2’), there is a &embedded bridge of type T
(called a representative for ii).

The next result enables us to apply Theorem 4.1 in solv-
ing general simple EEPs.

Theorem 4.2 Let K be a subgraph of G with Property (E).

Let E = (G, K, II, A) be a simple EEP and suppose that no
edge of K appears on a II-facial walk twice in the same di-
rection. Suppose that BO is a complete set of representatives
for z and that K U BO also has Property (E). Then there
is a number C3 depending only on bsize(K U t30) such that

each subproblem SO = (G, K U Bo, 110,Ao) of E is equiv-
alent to the union of at most C3 EE subproblems each of

which is the intersection of at most bsize(K)/2 + 1 partial
problems each of which is the union of a bounded number
of 2-restricted subproblems. The decompositions of ZO to
subproblems, of these to corresponding partial problems and

these to subproblems can be done in O(cs [V(G)/) time.

Proof. (Sketch) Let B: be the set of K-bridges consisting of
f?o, all strongly attached (K U Do)-bridges, and all bridges
B: ,V, where x, y are arbitrary basic pieces of K u 130, and
bridges B; Iv are defined as follows. Let E ,U be the set of
K-bridges m G of type T = {z, ~}. If x is a branch vertex,
put czl = ~z = x. If x is an open branch, let xl and X2 be
vertices of attachment of bridges in L%,V that are as close as
possible to one and the other end of x, respectively. Define
similarly yl and yz. For i, j ~ {1, 2}, we select a bridge
B~v 6 IL ~ attached to x, that has an attachment on y ~

close to yj as possible. Then t?: ,V cent ains all bridges B~/v

(i, j c {1, 2}) and for each d c A(I”) such that Bz,y has
no &embedding, B; ,V cent ains a pair of bridges from BZ,~
whose J-embeddings overlap.

EO is the union of subproblems E’ = (G, K U B{, II’,
A’) taken over all Ao-embeddings of B&\Bo extending 110,
and every 2-restricted type of (KU f30)-bridges in SO has its
representatives for embedding schemes in A’. It suffices to
see that every such subproblem S’ satisfies the conclusions
of the theorem.

First, we prove that S’ is equivalent to the union of a
bounded number of subproblems of the form E?’ = (G, K U

B{, II”, A“) where B&’ consists of B& and some additional
bridges whose number is bounded. The proof, which also
yields a linear time procedure for determining subproblems
E“, is rather complicated. The basic idea is to add one or
two bridges for each type T of K-bridges in G such that
every A-embedding of the extended graph K restricts em-
bedding of bridges of type T (possibly taking an equivalent
subproblem) so that at most two embedding are A“ (’T)-
compatible. The cases when T does not consist of two open
branches are not difficult. However, the cases when T con-
sists of open branches (say e, f) need very careful treat-
ment. In most cases we can show that the extended set
B{ of bridges can be chosen so that it removes the double
{e, f }-singularity (if it occurs at all). If the II’’-embedded
bridges B; do not remove the double {e, f }-singularity, then
{e, f} is a corner pair for E“. Since BO is a complete set of
represent atives, there are at most bsize(lK) /!2 corner pairs.

If {e, f } is a corner pair, let l?~’f be the set of K-bridges
in G of type {e, f} that are not in l?:. Let 13z be the set
of K-bridges that are not in l?{ and that are not in I?: ‘f
for any corner pair {e, f}. Furthermore, let 13~If cent ain all
K-bridges from 232that have an attachment on e or f and
have at most one A“-embedding extending the embedding
II” of K U 23{. Similarly, let B1 contain those bridges from
f3~’f, taken over all corner pairs {e, f }, which have at most
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one A“-embeddinge xtending II”. Consider the EEPs

E;’f = (Ku B: uI?;’f U13:’f, KU B:, rI’’, A; ’f)

where {e, j} is a corner pair and A: ‘f is the restriction of

A“ to f3~’f U LEj’f. Let

% = (~U@U& uB2, Ku L4’,11’’,A2)

be the partial problem of E“ restricted to B1 U B,. The
next difficult step is to show that E“ is the intersection of
partial problems E~’f (taken over all corner pairs {e, j})
and the 2-restricted EEP Ez. This part of the proof is also
rather complicated, but it does not add any difficulties to
the algorithm.

Finally, each problem S~’f is the union of a bounded
number of 2-restricted EEPs. This is proved in a sepwate,
rather difficult work by Marintek, Juvan, and Mohar [13]
where also the corresponding linear time algorithm is pre-
sent ed. n

Corollary 4.3 Let Z = (G, K, II, A) be a simple EEP and
let WO be a subset of vertices of K. Let d be the total number
of embedding schemes in the embedding distributions A(T)
in A. Suppose that K has Property (E) and that no edge
of K appears on a II-facial walk twice in the same direc-

tton. There is a function c : N x N -+ N and an algo-
rithm with time complexity O(c(l Wo 1,d) IV(G) 1) that either
jinds a A-compatible EE or returns a subgraph K’ of G ob-

tained by a compression with respect to WO and a set of at

most c(I WO 1,d) E-graphs of K’ -bridges in G that form an
obstruction for the corresponding EEP E’ = (G, K’, II, A).

Proof. The proof is by induction on d. Case d = O is

trivial. Otherwise, let A 1, . . . . Ad be the embedding distri-
butions that are strictly simpler than A and are maximal
with this property. Inductively, we first solve the subprob-
lem =1 = (G, K, H, AI) taking care of the set Wo. An EE
makes us happy and we stop. Otherwise, we compress K
with respect to WO. Let K1 be the new subgraph of G and
I?l an obstruction of bounded size as guaranteed by the in-
duction hypothesis. Let W1 be the union of W. and the set
of vertices of attachment of bridges from B1. Now we replace
W. by WI and solve the subproblem E, = (G, K1, H, A2),
taking care of the set WI. We either stop, or we get a new
graph K, (after a compression with respect to WI) and an
obstruction f3z of bounded size. In the latter case we extend
WI into W, by adding all attachments of bridges from Bz.
Continuing, we either find an EE, which is a A-embedding
as well, or we stop after d steps with a subgraph K’ of K
that is a compression of K with respect to W.. We also get
an obstruction l?o = & U Bz U . . .. Now, B. is a complete
set of representatives for E. Since E is the union of sub-
problems, taken over all A-embeddings of BO, and since f30
has bounded size, we can consecutively apply Theorem 4.2
combined with Theorem 4.1, and for each of these subprob-
lems perform a compression with respect to attachments of
E-graphs in all previously obtained obstructions. An upper
bound on C(IWO 1,d) is easily established. n

5 Embedding graphs in an arbitrary surface

In this section we prove the final result of this paper that
embeddability of graphs in any fixed surface S can be de-
cided in linear time. Our algorithm also constructs an em-
bedding (if it exists), or identifies a minimal subgraph of G
that cannot be embedded in S. Such a subgraph is called
a mmimal forbidden subgraph for embeddability in S. We
define the Euler genus of S as 2 – x(S) where X(S) is the
Euler characteristic of S.

Theorem 5.1 Let S be a fixed closed surface. There M a

constant c and a hnear time algorithm that for an arbitrary
given graph G either:

(a) finds an embedding of G in S, or

(b) identifies a minimal forbidden subgraph K g G for
embeddabihty in S whose branch size is bounded by c.

A corollary of Theorem 5.1 is the result of Robertson and
Seymour [21] that the set of minimal forbidden minors (or
subgraphs) is finite for each surface. It is worth mentioning
that our proof is constructive while the proof in [21] is only
exist ent ial.

Corollary 5.2 (Robert son and Seymour [21] ) For ev-
ery surface S there M a finite list of graphs such that an ar-
bitrary graph G can be embedded in S if and only if G does
not contain a subgraph homomorphic to one of the graphs
in the list.

The rest of the paper is the sketch of the proof of Theo-
rem 5.1. Let us point out that in case (b) it suffices to find
a subgraph K of bounded branch size (in terms of the Euler
genus g of S) since such a subgraph is easily changed to a
minimal one in constant time.

The orientable genus of G is equal to the sum of the gen-
era of its blocks [3]. A simikw result holds for the nonori-
entable genus [27]. Since the blocks can be determined in
linear time, this enables us to reduce the problem to 2-
connected graphs.

A reduction to 3-connected graphs is not possible, How-
ever, we can achieve that G is “almost 3-connected” (called
3-connected modulo K in [12]). This step needs more work.
It also uses the 3-connectivity algorithm of Hopcroft and
Tarjan [10]. After this step we end up with a 2-connected
graph K which can be chosen so that there are no Iocal
K-bridges [12], or we stop by obtaining (b).

The algorithm continues by induction on the (Euler)
genus g of S. Recursively, we have either found an em-
bedding in a surface of (Euler) genus smaller than g (in
which case we stop), or we got a 2-connected subgraph K

of G that cannot be embedded in any surface with (Euler)
genus smaller than g. By the induction hypothesis bsize(K)
is bounded. Therefore, K has only a bounded number of
embedding in S and each of them is 2-cell. Existence of
an embedding of G in S is thus equivalent to the existence
of an EE with respect to a bounded number of EEPs corre-
sponding to particular embeddings of K in S. By solving all
these problems (and successively performing compressions,
if necessary, and taking care that vertices c)f attachment of
bridges in previously obtained obstructions are not changed
during later compressions), we either get an embedding of
G in S, or the union of obstructions for the EEPs gives a
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subgraph K of bounded branch size that cannot be embed-
ded in S. If we need ~ in further processing, we just make
sure that there are no local ~-bridges [12].

It remains to see how we solve an EEP E = (G, K, H, A)
where A contains all embedding schemes that are possible
under the given embedding II of K in the surface S. We
will construct a sequence of graphs KO, K1, . . . such that
KO = K and K~+l is obtained (after a compression) from K,
by adding an obstruction for simple embedding extensions.
Let us describe the construction of K,+l (i = 0,1,2,. . .) in
more details. First of all, we replace each K;-bridge in G
by its E-graph (Theorem 2.1). By using Corolkmy 4.3, we
get in linear time the set B, of Ki-bridges in a compressed
obstruction for simple embedding extensions of Ki to G,
taken over all EEs of II to K,. Of course, having found
an EE, we stop and by Theorem 2.1 we also get an EE
of K. to G. Assuming that no EE has been found, and
assuming inductively that the branch size of Ki is bounded,
also bsize~~ (f3~) is bounded (Corollary 4.3). We now define
K,+l = K, U B, and observe that there are no K~+l-bridges
that are local on a branch of K,+l contained in Ki. On the
other hand, bridges that are local on branches from Bi can
be eliminated by the algorithm from [12]. After doing that,
we stop if K~+l = G or if Ki+l has no embedding in S.

Note that for each i, f3~ # f! (or we stop with an em-
bedding). Therefore, the above process terminates after a
finite number of steps. It remains to see that the number
of steps cannot be too large. This is done by proving that
Ko-bridges in K, become more and more complicated as i
grows, and that their embedding extending any embedding
of K. in S become less and less “simple”. The details are
left to the full paper.
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