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Abstract 

It is shown that every map on the torus satisfying the obvious necessary conditions has a 
straight-line representation on the flat torus R2/Z 2. The same holds for the Klein bottle, and the 
two-bordered flat surfaces - -  the cylinder and the M6bius band. 

I .  Stra ight- l ine  m a p s  

By a well-known result of Wagner [13] (usually attributed to Ffiry [4]), every simple 

plane graph admits a straight-line representation, i.e. there is a homeomorphism of the 

plane such that the edges of  the graph become straight-line segments after performing 
this homeomorphism. A companion result is the theorem of Steinitz [11] that every 

3-connected planar graph can be represented as the graph of a convex 3-polytope. 
There were attempts to generalize Steinitz's theorem to maps on surfaces of positive 
genus, e.g. [5,9]. But it seems that no one tried to extend the Wagner-F~iry's The- 

orem to non-simply connected surfaces. In this paper we fill in this gap by proving 
a corresponding result for the toms, the Klein bottle, the cylinder, and the M6bius 

band. These are the only flat surfaces with the boundary components being straight. 
The existence of straight-line representations of  maps on the toms and the Klein bottle 
might have some applications in the theory of filings of  the plane since their universal 
covers give rise to plane filings. A short discussion about this can be found in [7, 
p. 202]. 

Our proof of the existence of straight-line representations is fairly elementary. It 
can be extended to surfaces of  higher genera, applied to their models with constant 
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curvature - 1  (the hyperbolic metric), and with the geodesics playing the role of 
straight-line segments. We will not give details for these cases since it recently came to 
our attention that the existence of such geodesic representations (for surfaces without 
boundary) follows from the Circle Packing Theorem of Koebe [8], Andreev [1,2], and 
Thurston [12]. The advantage of our proof compared to the circle packing results is 
that it is elementary and that it also yields a polynomial-time algorithm to produce 
straight-line drawings of given maps. 

Let S be a compact surface. A map on S is a pair M = (G,S), where G is a 
connected graph embedded in S. To get more freedom, we do not require the embedding 
to be cellular, so a map can have non-simply connected faces. If S has non-empty 
boundary, as  ~ ~, then we require for each edge of G either to be disjoint from 0S, 
having only one or both endvertices on aS, or entirely lying on as. A map on the 
torus is also said to be a toroidal map. Two maps M = (G,S) and M I = (GI, S ~) 
are equivalent if there is a homeomorphism h : S ~ S t mapping the graph G of the 
first map isomorphically to the graph G ~ of the second map. It is well-known (cf., 
e.g., [6,10]) that two maps on an orientable surface without boundary and with all 
faces simply connected are equivalent if and only if they determine the same rotation 
system on the graph. 

A compact Riemannian surface S (possibly with boundary) is flat if every point 
p E S has a neighbourhood which is affinely diffeomorphic to an open set in the 
closed upper half-plane of the Euclidean plane. This is equivalent to the condition that 
the curvature and torsion are identically zero, including the curvature of the bound- 
ary aS. The special case of a flat surface is the flat torus, the quotient space R2/Z  2 
(R2/~ where (x,y) ~ (x~,y ') means ( x -  xt, y -  y~) E Z2). Another fiat surface is 
the flat Klein bottle. This surface is the quotient of the Euclidean plane R 2 corre- 
sponding to the relation ~ given by (x,y) ~ (x + n , ( -1)ny  + m), n,m E Z.  The 
fiat torus and the fiat Klein bottle are usually represented as the identification space 
of the unit square by identifying the top and the bottom side and then identifying 
the left and the right, with a previous turn by 180 ° in case of the Klein bottle. 
There are two additional fiat surfaces with boundary - -  the flat cylinder and the 
flat Mfbius band. They are obtained from the unit square as well, by identifying 
only one pair of sides, the left and the right. To get the cylinder they are identi- 
fied without a turn, and to get the M6bius band we perform a twist of 180 ° of one 
side before the identification. It can be shown by using the Gauss-Bonnet formula 
(cf. [3]) that every compact flat surface is homeomorphic to one of  these four sur- 
faces. 

A straight-line segment on a fiat surface S is a segment of a geodesic on S. A 
map M on S is said to be a straight-line map if  each edge of the graph of M is 
a straight-line segment. Every straight-line map M on S is simple, i.e. M has the 
following properties (see Fig. 1): 

1. Each pair of parallel edges (edges with the same endvertices) gives rise to a 
noncontractible cycle on S. 

2. No loop of M is contractible. 
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Ca) (b) (c) 

Fig. 1. Forbidden submaps of simple maps. 

3. I f  e is a loop at the vertex v then no other loop at v is homotopic to e (i.e., does 

not bound a disk together with e). 
This is easily seen by using the Gauss-Bonnet  formula (cf. [3]). It is clear that 

the map is simple if  and only if its universal cover has no loops and no parallel 

edges. 
For the flat torus and other flat surfaces we will also prove the converse: A map on 

a flat surface is equivalent to a straight-line map if and only if  it is simple (Theorems 
3.1, 4.1, 5.2). 

2. Triangular maps and contractible edges 

A map M = (G,S)  is triangular if  d S C G  and every face is o f  size three and 
homeomorphic to an open disk. The smallest triangular simple map on the torus is 
shown in Fig. 2. Its graph consists of  a single vertex with three loops. We will show 

that every triangular simple map on the torus can be reduced to the map of  Fig. 2 by 
means of  edge contractions. 

Let M be a triangular simple map. An interior edge e of  M is contractible if  
the operation shown in Fig. 3 gives rise to another simple map on the same sur- 

face. Notice the edges ~, fl, and, respectively, 7, 6, of  the two triangles containing e, 

are pairwise identified after the contraction. An edge e on the boundary of  the sur- 
face is contractible i f  the similar operation as shown on Fig. 3, adopted to the fact 

/ 
/ 

Fig. 2. The simplest simple triangular map on the toms. 
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\ /  

Fig. 3. Edge contraction. 

that e is contained in only one triangular face, gives rise to a simple map on the same 

surface. Call an edge o f M  = (G,S)potent ial ly  contractible if  it is not a loop and it 
is either contained in OS, or one of its ends is not on t3S. In other words, a contraction 

of an edge which is not potentially contractible, would change the homeomorphism 
type of the surface. By definition of a contraction, any contractible edge is potentially 

contractible. The map arising after the contraction of  e is denoted by M / / e .  

Lemma 2.1. I f  M is a simple triangular map containing at least one potentially 

contractible edge then M contains a contractible edge. 

Proof. Let e be a potentially contractible edge of M and suppose that M / / e  is not 
simple. Since M contains no contractible digons, the only reasons for this to happen are: 

(i) we get a pair ~, fl of parallel edges bounding a disc, or 

(ii) we get a pair ~, fl of  homotopic loops. 
In each case ~ and fl bound a disk in M / / e .  This implies that ~, fl, and e bound a 

disk in M. Denote by F this disk (cf. Fig. 4 for the actual possibilities in case when 

e is an interior edge). 
Assume now that M contains no contractible edge. Among all potentially contractible 

edges e choose one (and a pair ~, fl) for which the corresponding disk F contains the 
smallest number of  faces of  M. Since the edges ~, fl become a homotopic pair of 
parallel edges or loops after the contraction of e, there must be at least one vertex of 
G in the interior of  F. This is seen as follows. M is triangular. In case when F is 
bounded by exactly three edges (Fig. 4(b) or (d)), F must contain an interior vertex, 

since F is not facial. In the remaining cases F is a 4-gon (Fig. 4(a) and (c)). Having 
a chord in F we get a contradiction with the minimality of  F since the chord can 
replace ~ or ft. Therefore, F contains an interior vertex also in this case. Let f be 
an edge adjacent to a vertex in the interior of  F. Then f is not a loop, and by the 
minimality of  F, it follows easily that f is contractible. This contradicts our initial 
assumption. [] 

Lemma 2.2. Let M be a simple triangular map on a flat surface S, and e a con- 
tractible edge o f  M. l f  M '  = M / / e  has a straight-line representation on S then the 
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(a)  (b)  
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(c) (d) 

Fig. 4. Obtaining homotopic loops. 

same is true for  M. Moreover, for  each e > 0 there is a straight-line representation 

o f  M such that the edge lengths o f  M exceed the maximal edge length o f  M '  by at 

most e. 

Proof. Let x be the vertex of M'  corresponding to e. It is easy to see that one can 
replace x by a very short straight-line segment representing e and being able to draw 

all the edges of  M adjacent to e using straight-line segments. (To show this one can 
use the fact that for each edge f of  M ~ there is a small enough 6 > 0 such that in 

the 6-neighbourhood nbd ( f , 6 )  := {p E M [ d i s t ( p , f ) ~ 6 }  of f any two points can 
be joined by a straight-line segment entirely lying in nbd( f ,3 ) . )  I f  the length of e is 
smaller than e then by the triangular inequality the new edge lengths cannot increase 
by more than e. [] 

Lemma 2.3. Every simple map is contained in a triangular simple map on the same 

surface. 

Proof. It is well-known that every (simple) map is a submap of a (simple) map on 
the same surface with all faces homeomorphic to a 2-cell and such that the boundary 
of the surface is covered by the graph of the map. Given a map M we may therefore 
assume M has these properties. 

Let M be a simple map. Consider a face F of M. Let vo, el,vl,e2 . . . . .  Vk-l,ek, Vk = 
V0 be the facial walk o f F ,  where ei (l~<i~<k) is an edge of M joining vertices vi-1 
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and vi on the boundary of F. Add in F new vertices v~ . . . . .  v~ and w, and join for 
i -- 1,2 . . . . .  k vertices vi and v~, vi and V~+l, v I and v~+ 1 (indices modulo k), and v~ 
and w. It is easy to see that this can be done so that the resulting faces replacing F 
are all triangular. The new map is still simple since we have not changed the original 
map and have not introduced loops or homotopic parallel edges, (Parallel edges may 
appear only if an edge ei is a loop. But in this case the parallel pair is homotopic to 
ei which is non-contractible.) By performing this operation in every face of M we find 

a required map. [] 

3. The torus 

Let us apply the results of the previous section to the case when the surface S is 

the toms. 

Theorem 3.1. A toroidal map is equivalent to a straight-line map on the f lat  torus i f  

and only i f  it is simple. 

Proof. Theorem 3.1 is a simple corollary of Lemmas 2.1-2.3 and the straight-line 
representation of the simple map of Fig. 2 if we prove that every simple trian- 
gular toroidal map without potentially contractible edges is equivalent to the map 
of Fig. 2. Since the torus has no boundary, a map without potentially contractible 
edges has only one vertex. By the Euler's formula we see that there are exactly 
three loops based at this vertex. Now it is an easy task to see that the only possi- 
ble local rotation of this graph giving a simple triangular map is the one given in 

Fig. 2. [] 

The above proof actually gives a polynomial-time algorithm for constructing straight- 

line representations of simple toroidal maps. 
It is a simple consequence of Lemma 2.2 that for an arbitrary e > 0, a simple toroidal 

map has a straight-line representation where each edge has length at most x/2+e.  Such 
a representation can be obtained by requiring that the length of the edge obtained by 
a vertex splitting on the kth step is at most e/2 k. 

Instead of beginning with Fig. 2, one could as well start with an equivalent map, 
for example the one in Fig. 5. In such a case we also get straight-line represen- 
tations of simple toroidal maps, unfortunately with much less handsome final out- 
look. 

4. The Klein bottle 

The Klein bottle is another surface with everywhere flat metric. Its standard model 
is obtained from the unit square in the plane by first identifying the top and the bottom 
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Fig. 5. Straightqine map equivalent to the map of Fig. 2. 
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Fig. 6. The simplest simple triangular maps on the Klein bottle. 

and then the left and the right side, but these two are identified after a flip by 180 ° 

of  one of them, so that the lower points on the left are identified with the top points 
on the right, and vice versa. 

Theorem 4.1. Every simple map on the Klein bottle admits an equivalent straight-line 
representation on the flat Klein bottle. 

Having a simple triangular map on the Klein" bottle, the results of Section 2 show 
that there is a sequence of edge contractions leading to the map with a single vertex 

and three loops (see the proof of  Theorem 3.1). The proof of Theorem 4.1 is then a 
simple consequence of the following lemma. 

Lemma 4.2. I f  M & a simple triangular map on the Klein bottle without potentially 
contractible edges then M is equivalent to one o f  the straight-line maps of  Fig. 6(a) 
or (b). 

Proof. Consider one of the loops. Up to homeomorphisms of the surface there are 
three possibilities for the homotopy class of this loop. It may be separating (non- 
contractible), 2-sided and non-separating, or 1-sided. The three types of  the loops are 
represented in Fig. 7 as ~, fl, 7, respectively. It is easy to see that in case when the 
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Fig. 7. Simple closed curves on the Klein bottle. 

loop is separating, the other two loops are 1-sided and that we have a map equivalent 
to the map in Fig. 6(a). 

Suppose now that all three loops are non-separating. Since the genus of the Klein 
bottle is 2, there are at most two (pairwise) non-homotopic 1-sided loops. So one of 

them is 2-sided. On any non-orientable triangulated surface which is 2-cell decomposed 

by loops, at least one of the loops is 1-sided. That loop must cross the first one. The 
submap consisting of these two loops is thus equivalent to the map in Fig. 7(b). It has 
one 4-gonal face. Since our map is triangular, the third loop joins opposite angles of  

the 4-gon. The two possibilities are isomorphic. We get the map of Fig. 6(b). [] 

5. The cylinder and the Mfbius band 

To get a corresponding result for the remaining flat compact surfaces - -  the cylinder 
and the M6bius band - -  we need to determine their minimal simple triangular maps. 

Lemma 5.1. The only simple triangular maps of the cylinder and the M6bius band 
having no potentially contractible edges are shown in Fig. 8(a) and (b ), respectively. 

Proof. The cylinder has two boundary components. Each of them must have a loop 
on it. Denote by vl and v2 the two vertices on the boundary. Any new loop at vi 
(i = 1,2) is either contractible, or homotopic to the loop on the boundary. Therefore, 

the remaining edges join vl and v2. For one of them there is only one possibility (up 
to equivalence). The other one must go around in order not to be homotopic to the 
first one. The resulting map is shown in Fig. 8(a). 

The M6bius band has one boundary component, so we will have only one vertex. 
There is a loop on the boundary. It follows by the Euler's formula that there is exactly 
one more loop. Any simple closed curve on the M6bius band goes t-times around, 
where t E {0, 1,2}. To get a simple triangular map the only possibility is t = 1 which 
gives the map of Fig. 8(b). [] 
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Fig. 8. The cylinder and the M6bius band. 

The consequence is our final result. 

Theorem 5.2. Every simple map o f  the cylinder or the Mrbius strip has a straight- 
line representation in the flat cylinder, or the flat Mdbius strip, respectively. 

One can use the Mrbius strip representations to get straight-line drawings of graphs 
embedded in the projective plane. 
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