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The Quasi-Wiener and the Kirchhoff Indices Coincide
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In 1993 two novel distance-based topological indices were put forward. In the case of acyclic molecular
graphs both are equal to the Wiener index, but both differ from it if the graphs contain cycles. One index
is defined (Mohar, B.; BabidD.; Trinajstic N. J. Chem Inf. Comput Sci 1993 33, 153—154) in terms of
eigenvalues of the Laplacian matrix, whereas the other is conceived (Klein, D. J.;” Rihdic Math.

Chem 1993 12, 81-95) as the sum of resistances between all pairs of vertices, assuming that the molecule
corresponds to an electrical network, in which the resistance between adjacent vertices is unity. Eventually,
the former quantity was named quasi-Wiener index and the latter Kirchhoff index. We now demonstrate
that the quasi-Wiener and Kirchhoff indices of all graphs coincide.

1. INTRODUCTION The following interesting result seems to have been
discovered in the late 1980s by Brendan McK&y (and

The study of topological indices based on distances later rediscovered by Merfig

between the vertices of the molecular graph has been
undergoing rapid expansion in the last few years. A large n—1

number of such indices was recently introduced and exam- W=n}$% = (1)
ined in due detail. Here we are concerned with two of them, =0
namely with the quasi-Wiener indeW/*, and the Kirchhoff

index, Kf. These have been conceived and investigatedwhereW stands for the Wiener index, i.e., for the sum of
independently of each other, and, until now, no relation distances between all pairs of vertices of the grahh
between them seems to have been noticed in the published=ormula 1 holds only in the case of acyclic graphs.
chemical or mathematical literatufeWe now show thakv The chemical community was made acquainted with
and Kf are, in fact, one and the same topological index, i.e., formula 1 by means of the paperand reviewt! Some
that the equality W*= Kf holds for all molecular graphs.  chemical applications of (1) were also reportéd.

Let G be a molecular graph, possessimgertices,v, vz, In the case of graphs containing cycles, the right-hand side
.-, vn. By 0i we denote the degree=(number of first  of eq 1 is not equal to the Wiener index but is otherwise a
neighbors) of the vertey, and byA the diagonal matrix of  well-defined quantity. The name “quasi-Wiener index” was
ordern, whose diagonal elements adg 0y, ..., on. Then proposed for i as well as the symba\*. The correlation

the Laplacian matrix ol is defined as betweenW and W* was studied in the case of benzenoid
molecule$® and found to be linear, but not particularly good.
L=A-A Klein and Randit* considered recently the so-called

resistance distance between the vertices of a (molecular)
whereA is the adjacency matrix. The eigenvalueslof  graph G, which is equal to the resistance between two
denoted byly, 42, ..., An, form the so-called Laplacian graph  respective vertices of an electrical network, constructed so
SpeCtrUm. Conventiona”y, these eigenvalues are labeled SQss to Correspond t6, and having the property that the
thatd; = 12 = ... = An-1 = An. The Laplacian spectrum has  resjstance of each bond joining adjacent vertices is unity.
been extensively studied by mathematiciérts. Of the  Then, in analogy to the Wiener index, one may examine the
numerous properties known for this spectrum we mention sym of resistance distances between all pairs of vertices. In

the following: the case of acyclic graphs this sum is, evidently, equal to
(a) The Laplacian eigenvalues are non-negative numbers. the Wiener index, butin the case of graphs possessing cycles
(b) The eigenvalud, is always equal to zero. it differs fromW. In the original work of Klein and Rantfit
(c) The eigenvalué,_1 is greater than zero if and only no name was given to the sum of resistance distances, but
if the graphG is connected. in a later articlé> the very appropriate name “Kirchhoff

index” was proposetf together with the symbol Kf. (Recall
Because of (b), the Laplacian matrix is singular and,  that the resistances as well as other fundamental properties
consequently, has no inverse. Molecular graphs are necesof electrical networks are determined by the two classical
sarily connected. Properties (a) and (c) imply that for such |aws of Kirchhoff17:19
graphs the eigenvalués, A2, ..., A,-1 are positive numbers. Using the theory of electrical netwog8the authors of
ref 14 showed that
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where Tr stands for the trace-(sum of diagonal entries) of
LT and where T is the so-called MoorePenrose generalized
inversé®20 of the Laplacian matrix. .2

The aim of this paper is to demonstrate that the right-

hand sides of egs 1 and 2 always coincide.

2. ON THE GENERALIZED INVERSE OF A SINGULAR
MATRIX

As already pointed out, the Laplacian matkixs singular
and therefore has no inverse.
possible to find a matrix %, suchthal. L 1=L"1L =
| , wherel is the unit matrix.

In the case of singular matrices, instead of inverses (which
do not exist) one can sometimes use so-called generalize
inverses. Several types of generalized inverses are know

in the mathematical literatufé?° In the theory of electrical

networks the Moore Penrose generalized inverse is encoun-

tered??> Because this matter is not widely known among
chemists, we outline it in some detalil.

Let M be a real, symmetric square matrix of orderThen
the eigenvalues dfl are real numbers. L&, be the vector
space, spanned by those eigenvectord/ofvhose eigen-
values are equal to zero. L8t be the vector space, spanned
by the eigenvectors dfl whose eigenvalues are nonzero.

The Moore-Penrose generalized inverse of a matvix
is denoted by ™. In the case of symmetric square matrices,
MTis defined®*?°so thatM M T = M*' M is an orthogonal
projector on the vector spac®.. This means that it is
required:

MMNHu=M"M)u=0 forallvectorsueS, (3)
MMTv=M"M)v=v forallvectorsveS, (4)
Conditions 3 and 4 uniquely determihé’.

3. THE GENERALIZED INVERSE OF THE LAPLACIAN
MATRIX

In what follows, the superscript T will indicate transposi-
tion. Thus, ifM = ||M;|| , thenMT = ||M;|| . Further, if
c is a column-vector

thenc™ = (cy, ¢y, ..., Cn) iS @ row-vector.
A square matrix of orden, whose diagonal elements are

by, by, ..., by, and whose off-diagonal elements are zero will
be denoted by diab(, by, ...,by). In particular,A = diag-
(01, 02, ..., On).

Consider the Laplacian matrilx of a connected graph.
Let X4, Xz, ..., Xn—1 b€ the eigenvectotéof L corresponding
to the positive eigenvaluek,, 4, ..., An-1. Let e be the
eigenvecto® of L corresponding to the (unique) zero
eigenvaluel, of L. In this cases; is an fi—1)-dimensional
vector space, spanned by, X», ..., Xn—1 . Because the
eigenvectors of. are mutually orthogonak is orthogonal
to any element ofS; . Thus, ify € S; , then the scalar
product ofe andy, denoted bye'y, is equal to zero.

In other words, it is not

n
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The Laplacian matrix is a real symmetric square matrix.
Therefore, conditions 3 and 4 are applicable to its generalized
inverseL ™, namely

(LLNe=(L"L)e=0
(L L*)y= (LTL)y=y for all vectorsy, yeS, .
It is easy to verify that
LLT=1-ed

where, as beford, stands for the unit matrix of order.
ndeed,

(l—eé)e=le—(e)e=e—e(ee) =
e—el=0

(—ed)y=ly—(ed)y=y—e(y)=
y—e0=y

Let U = (X3, X2, ..., Xn-1, €) be the unitary matrix,
diagonalizingL. Thus,

uuT=u'u=1
and
UTLU = A =diagly, Ay ..oy 10 4,)
Then
L=UAUT (5)
because of
UAU'=UU'LU)U"=UUHYL UU")=
ILlI =L

The main result on which the proof of the identity* =
Kf is based is the following formula

L'=UA"U" (6)
where
{1 1 1
AT =dia — T T, 0)
- A Ay An-1

We now proceed to verify eq 6. Combining (5) and (6)
we obtain

LLT=(UAUNUATUY=UAUTUATU =
UAITATUT
=UAA"UT=UJUT
where
J=diag(1,1,...,1,0)

It now remains to demonstrate tHat) UT is an orthogonal
projector on the spacg,, i.e., thatU J UT =1 — € e. For
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this we have to show that

(UJUNYe=0 @)

and

(UJUYYy=y forally, yeS,. (8)

Proof of Eq 7. Becausee is orthogonal to the other
eigenvectors of , we havé®

e U=¢e" (X;, Xg, ... X1, €) =

(€%, € Xy, ..., € *X,_4, €'€)

=(0,0,..,0,1)
Therefore,

1 0..001}/0 0

0O 1.0 00 0

JeEe'u) =|.. - [=].|=0

0O 0..10]|0 0

0O 0.00/11 0
and

(UJUNe=UPE"V)]=U0=0
which shows that condition 7 is obeyed.

Proof of Eq 8. Any vector belonging to the spa:
can be presented in the form

n—1
y= I;OLiXi

whereay, ay, ..., an-1 are scalar multipliers. Because of the
orthogonality of the eigenvectors &f

yx=a,i=12..n~1 and y-e=0

Therefore,
Yy U=y (Xg, Xgy ooy X1, €) = (0, Oy, .., &g, O)
Then
1 0..0 0|y
0 1..0 O |fo,
(UIUDNy=UJy' U =U]|.. | I
0 0..10 ||a, 4
0 0.0O0/\0
2%
o
Ul..
O
0
0
Ly n—1
= (X3, Xgs s X1, O ... [ = inai =y
Opg| =
0

and the validity of condition 8 is verified too.

GUTMAN AND MOHAR
By this we proved thaL' has the form 6.
4. W+ = Kf

From (6) is evident that the eigenvalueslofare

11 1
_l _1 " 1 0
1 7*2 lnfl
Therefore,
n—1
L' =%y =

The fact that the Kirchhoff and the quasi-Wiener indices
coincide follows now immediately from egs 1 and 2.

By proving the identitW* = Kf we gained a very easy
method for computing the Kirchhoff index, namely via the
eigenvalues of the Laplacian matrix, eq 1. The same identity
reveals the hitherto obscure physical meaning of the quasi-
Wiener index. However, in the time of rapid proliferation
of topological indices, the main merit of the present work
might be in reducing their number by one.

ACKNOWLEDGMENT

One author (1.G.) gratefully acknowledges the financial
support by the Mathematical Institute, Belgrade.

REFERENCES AND NOTES

(1) While refereeing this paper Douglas J. Klein (Texas A&M University,
Galveston) pointed out that he has noted the idemity= Kf to a
few people over the last two years and that this identity is so noted in
a paper by Zhu et al. “Extensions of the Wiener Number” which, after
this paper had been submitted and accepted for publication, appeared
in J. Chem. Inf. Comput. Scl996 36, 420-428.

(2) Grone, R.; Merris, R.; Sunder, V. S. The Laplacian Spectrum of a
Graph. SIAM J Matrix Anal. Appl. 1990 11, 218-238.

(3) Mohar, B. The Laplacian Spectrum of Graphs. Gnaph Theory,
Combinatorics, and Applicationslavi, Y., Chartrand, G., Ollermann,

O. R., Schwenk, A. J., Eds.; Wiley: New York, 1991; pp 8Bb8.

(4) Mohar, B.; Poljak, S. Eigenvalues in Combinatorial Optimization. In
Combinatorial and Graph-Theoretical Problems in Linear Algebra
Brualdi, R. A., Friedland, S., Klee, V., Eds.; Springer-Verlag: Berlin,
1993; pp 107151

(5) Merris, R. Laplacian Matrices of Graphs: A Survelinear Algebra
Appl. 1994 197—-198, 143-176.

(6) Merris, R. The Distance Spectrum of a Trek.Graph Theory199Q
14, 365-369.

(7) Inref 3, B. McKay's private communication is given as the source of
formula 1.

(8) Mohar, B. Eigenvalues, Diameter, and Mean Distance in Graphs.
Graphs Combin199], 7, 53—64.

(9) Merris, R. An Edge Version of the Matrix-Tree Theorem and the
Wiener Index. Lin. Multilin. Algebra1989 25, 291—-296.

(10) Mohar, B.; BabicD.; Trinajstic N. A Novel Definition of the Wiener
Index for Trees.J. Chem Inf. Comput Sci 1993 33, 153-154.

(11) Gutman, I.; Yeh, Y. N.; Lee, S. L.; Luo, Y. L. Some Recent Results
in the Theory of the Wiener Numberndian J Chem 1993 32A
651-661.

(12) Gutman, |.; Lee, S. L.; Chu, C. H.; Luo, Y. L. Chemical Applications
of the Laplacian Spectrum of Molecular Graphs: Studies of the Wiener
Number. Indian J Chem 1994 33A 603-608.

(13) Markovig S.; Gutman, |.; Barevic, Z. Correlation between Wiener
and Quasi-Wiener Indices in Benzenoid HydrocarbahsSerb Chem
Soc 1995 60, 633-636.

(14) Klein, D. J.; RandicM. Resistance Distancel. Math. Chem 1993
12, 81-95.

(15) Bonchev, D.; Balaban, A. T.; Liu, X.; Klein, D. J. Molecular Cyclicity
and Centricity of Polycyclic Graphs. |. Cyclicity Based on Resistance
Distances or Reciprocal Distancelfiternat J. Quantum Chenl994
50, 1—20.

(16) Inref 15 the Kirchhoff index is defined awicethe sum of resistance
distances between all pairs of vertices of a graph, being thus
inconsistent with the usual definition of the Wiener index. In order



QuAsI-WIENER AND KIRCHOFF INDICES COINCIDE J. Chem. Inf. Comput. Sci., Vol. 36, No. 5, 19985

to maintain a full analogy withV, in this work we define the Kirchhoff should not be confused with the Hermitean conjugate, a notation often

index Kf as just the sum of resistance distances between all pairs of used in theoretical chemistry and theoretical physics.

vertices. Then, in particulakV = Kf holds for trees. (22) The : : : St o

. ; . generalized inverse considered in this paper was first invented

a7 fggg‘é’nfﬁesgsq’R'\éléd?r‘lgefgﬁraphs and Electrical Networks by R. H. Moore in 1935 but was eventually more or less forgotten.
(18) Edminister, J. AElectric Circuits McGraw-Hill: New York, 1965. VAvgsegu'V;f:ttl nggsgrévzf l\llln(;g)rgysc\?v((j)rllg(y Ebrpzfdn(;(i)tisoenlaq dlgtsa!isl’svsvgg
(19) Ben-lIsrael, A.; Greville, T. N. EGeneralized Inerses-Theory and 9—?1) f fy20 )

Applications Wiley: New York, 1974. PP orrer 20.
(20) Campbell, S. L.; Meyer, C. DGeneralized lnerses of Linear (23) The eigenvectors, X, ..., Xn—1, ande are considered as column-

TransformationsPitman: London, 1979.

(21) Note that in ref 14 the generalized inverse of the Laplacian matrix is
denoted byQ/(A—A). The present formula 2 is theorem F of ref 14.
The symbolLT for the generalized inverse is taken from ref 19; it Cl1960007T

vectors. They are assumed to be normalized,jex, = x3+X, = ...
= Xp-1"%Xn-1 = €le = 1.



