Separating and Nonseparating Disjoint Homotopic Cycles in Graph Embeddings

Richard Brunet
Carleton University, Ottawa, Ontario, Canada K1S 5B6
Bojan Mohar
University of Ljubljana, Ljubljana, Yugoslavia
AND
R. Bruce Richter
Carleton University, Ottawa, Ontario, Canada K1S 5B6
Received February 27, 1992

Abstract

We show that if a graph G is embedded in a surface Σ with representativity ρ, then G contains at least $\lfloor(\rho-1) / 2\rfloor$ pairwise disjoint, pairwise homotopic, nonseparating (in Σ) cycles, and G contains at least $\lfloor(\rho-1) / 8\rfloor-1$ pairwise disjoint, pairwise homotopic, separating, noncontractible cycles. © 1996 Academic Press, Inc.

1. Introduction

Several recent papers deal with the representativity of an embedded graph, e.g., [RoV, RV, S2, FHRRo]. This is a nonnegative integer ρ that measures how densely a graph is embedded in a surface (and will be defined precisely later). Of particular interest are results that show that large representativity forces particular structures in the embedded graph. For example,
(1) there are $\lfloor\rho / 2\rfloor$ disjoint contractible cycles in the graph, all bounding discs containing a particular face [FHRRo];
(2) there are $\lfloor(3 \rho) / 4\rfloor$ disjoint noncontractible cycles in any embedding in the torus [S2];
(3) if $\rho>c 2^{3 g}$ and G is a triangulation of the sphere with g handles, then G has a spanning tree with maximum degree at most 4 [T2];
(4) if $\rho>c 2^{2 g}$ and G is a 3-connected (4-connected) graph embedded in the sphere with g handles, then G has a closed spanning walk that visits each vertex at most 3 (2) times [Y]; and
(5) if $\rho>c 2^{2 g}$ and G is a 5 -connected triangulation of the sphere with g handles, then G has a Hamilton cycle [Y].

One of the main goals of this article is to show that every embedded graph has at least $\lfloor(\rho-1) / 2\rfloor$ pairwise disjoint, pairwise homotopic cycles that are not separating in the surface.

A second goal is to prove that every graph embedded in a surface with genus at least 2 has at least $\lfloor(\rho-1) / 8\rfloor-1$ pairwise disjoint, pairwise homotopic cycles that are not contractible but separate the surface. Zha and Zhao have shown that if the embedding is 7-representative, then there is a noncontractible separating cycle [ZZ]; we improve this here to 6 -representative.

Our results are more general than this, in that the homotopy type of the polygons can be restricted to some specific class of curves that has additional algebraic structure. The details of this additional structure will be made clear in the presentation. Although the homotopy type cannot be completely prescribed, this does make progress on questions raised by Mohar and Robertson [MR].

A referee of an earlier version of this article has pointed out that the results about noncontractible separating cycles follow from [S1], which gives a very general characterization of when an embedded graph has disjoint cycles P_{1}, \ldots, P_{k} homotopic to specified curves $\gamma_{1}, \ldots, \gamma_{k}$ in the surface. We do not see a direct way to obtain our result about nonseparating cycles from [S1]. In any case, our point of view brings out some other points of independent interest.

For example, we focus on sets of curves in the surface that satisfy an analogue of Thomassen's three path property [T1] and show that such sets are in 1-1 correspondence with normal subgroups of the fundamental group of the surface. Many of the important characteristics associated with contractible curves apply in this more general setting.

The generality we employ to prove the results about the existence of many pairwise disjoint, pairwise homotopic nonseparating cycles is a natural evolution. Initially, we showed the existence of many pairwise disjoint, pairwise homotopic noncontractible cycles, using arguments very similar to those given in this paper. In order to obtain the same result but for nonseparating cycles, we were led to considering special sets of curves in the surface (the "complete sets of loops" to be introduced in the next section). With that generalization in hand, we realized that the arguments (with only very minor changes) generalized even further to Theorem 6.1.

One reason for going with the full generality of Theorem 6.1 is to emphasize the fundamental nature of the three path property in conducting homotopy arguments. It is only the three path property that is needed to do many of the basic arguments, and a main theme of this article is to demonstrate that.

This work is based in large measure on part of the Ph.D. thesis of the first author [B].

2. Complete Sets of Loops

In this section, we introduce the topological concepts that we require in this work. The main point is to introduce complete sets of loops, which form the core of our later discussions.

We require some standard terminology from topology. A standard reference for this material is [Mu]. A path in a topological space Σ is a continuous function $\gamma:[0,1] \rightarrow \Sigma$. Set $\mathbf{I}=[0,1]$. The image of the path γ is $\gamma(\mathbf{I})$. Its basepoint is $\gamma(0)$. It is simple if it is an injection. A loop is a path γ for which $\gamma(0)=\gamma(1)$ and the loop γ is simple if it is injective on [0, 1$)$. If $\gamma:[0,1] \rightarrow \Sigma$ is a path, then $\gamma^{-1}:[0,1] \rightarrow \Sigma$ is the inverse path defined by $\gamma^{-1}(t)=\gamma(1-t)$.

We require two forms of homotopy of loops-those which require a fixed common base point x (which is fixed for all calculations) and those which do not. A homotopy between loops γ and γ^{\prime} with common basepoint x is a continuous function $h:[0,1] \times[0,1] \rightarrow \Sigma$ such that: (1) for each $t \in[0,1], h(0, t)=\gamma(t), h(1, t)=\gamma^{\prime}(t)$; and (2) for each $s \in[0,1], h(s, 0)=$ $h(s, 1)=x$. A free homotopy between loops γ and γ^{\prime} (with possibly different basepoints) is such a continuous function h satisfying (1) above and (2^{\prime}) for each $s \in[0,1], h(s, 0)=h(s, 1)$.

We use the notation $\gamma_{0} \sim \gamma_{1}$ to say that γ_{0} and γ_{1} are homotopic and $\gamma_{0} \sim_{f} \gamma_{1}$ to say that γ_{0} and γ_{1} are freely homotopic. Obviously, $\gamma_{0} \sim \gamma_{1}$ implies $\gamma_{0} \sim_{f} \gamma_{1}$. The fundamental group $\pi(\Sigma, x)$ has as its elements the equivalence classes from \sim.

A loop γ is contractible if $\gamma \sim_{f} \gamma^{\prime}$ for some constant loop γ^{\prime}. A representative of the identity element of the fundamental group is contractible. A loop is noncontractible if it is not contractible.

If γ, γ^{\prime} are two paths such that $\gamma(1)=\gamma^{\prime}(0)$, then the composition $\gamma \circ \gamma^{\prime}$ is the function defined by

$$
\left(\gamma \circ \gamma^{\prime}\right)(t)= \begin{cases}\gamma(2 t), & 0 \leqslant t \leqslant \frac{1}{2} \\ \gamma^{\prime}(2 t-1), & \frac{1}{2} \leqslant t \leqslant 1 .\end{cases}
$$

In particular, if γ, γ^{\prime} are loops, then their composition is defined if and only if they have a common basepoint.

The following results are elementary.

Lemma 2.1. (1) For any loops γ, γ^{\prime}, and $\gamma^{\prime \prime}$ with common basepoint x,

$$
\left(\gamma \circ \gamma^{\prime}\right) \circ \gamma^{\prime \prime} \sim \gamma \circ\left(\gamma^{\prime} \circ \gamma^{\prime \prime}\right) .
$$

(2) If γ is a loop with basepoint x and α is any path such that $\alpha(0)=x$, then $\alpha^{-1} \circ \gamma \circ \alpha$ is a loop with basepoint $\alpha(1)$ that is freely homotopic to γ.
(3) It follows from (2) that, for any loops $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ with a common basepoint, $\gamma_{1} \circ \gamma_{2} \circ \cdots \circ \gamma_{k}$ is freely homotopic to $\gamma_{k} \circ \gamma_{1} \circ \gamma_{2} \circ \cdots \circ \gamma_{k-1}$.
(4) If γ and γ^{\prime} are loops with basepoint x, then γ is freely homotopic to γ^{\prime} if and only if there is a loop α with basepoint x such that γ is homotopic to $\alpha^{-1} \circ \gamma^{\prime} \circ \alpha$.

A nonempty set \mathscr{C} of loops is a complete set of loops if:
(1) \mathscr{C} is closed under free homotopy;
(2) if $\gamma \in \mathscr{C}$, then $\gamma^{-1} \in \mathscr{C}$; i.e., \mathscr{C} is closed under inverses; and
(3) the composition of any two loops of \mathscr{C} having a common basepoint is another loop of \mathscr{C}.

The concept of complete sets of loops is at the heart of our main results. We note that the set \mathscr{C}_{0} of contractible loops is a complete set of loops. Thus, complete sets of loops generalize contractibility.

The following two propositions are easy consequences of the definition. Here Γ_{Σ} is the set of all loops in Σ.

Proposition 2.2. Let \mathscr{C} be a set of loops of Σ and let $\mathscr{E}=\Gamma_{\Sigma} \backslash \mathscr{C}$. Then \mathscr{C} is complete if and only if the following conditions are satisfied:
(a) \mathscr{E} is closed under free homotopy;
(b) let $\gamma_{0}, \gamma_{1} \in \Gamma_{\Sigma}$ have common basepoints and suppose $\gamma_{0} \circ \gamma_{1} \in \mathscr{E}$. Then at least one of γ_{0} and γ_{1} is in \mathscr{E}.

Proposition 2.3. Conditions (a) and (b) in Proposition 2.2 are equivalent to Condition (a) and the following condition:
(c) Let $\gamma \in \mathscr{E}$ and let σ be a path in Σ such that $\sigma(0)=\gamma(0)$ and $\sigma(1)=$ $\gamma(t)$ for some $t \in[0,1)$. Let $\gamma^{\prime}, \gamma^{\prime \prime}$ be the loops which are the compositions $\left.\gamma\right|_{[0, t]} \circ \sigma^{-1}$ and $\left.\gamma\right|_{[t, 1]} \circ \sigma$, respectively. Then at least one of γ^{\prime} and $\gamma^{\prime \prime}$ is in \mathscr{E}.

Property (c) is the three paths property or TPP. This is motivated by Thomassen's work on the three path property in graphs (see [T1]).

A complete partition of loops of Σ (or a complete partition of Γ_{Σ}) is a partition $(\mathscr{C}, \mathscr{E})$ of the set Γ_{Σ} such that \mathscr{C} is a complete set of loops in Σ and $\mathscr{E}=\Gamma_{\Sigma} \backslash \mathscr{C}$.

The next result is an important, easy fact about the composition of loops. It generalizes the well known fact about composition of a contractible loop with a noncontractible loop.

Proposition 2.4. Let $(\mathscr{C}, \mathscr{E})$ be a complete partition of Γ_{Σ}. Let $\gamma_{0} \in \mathscr{E}$ and $\gamma_{1} \in \mathscr{C}$ have a common basepoint x_{0}. Then $\gamma_{0} \circ \gamma_{1}$ is an element of \mathscr{E}.

Recall that \mathscr{C}_{0} is the set of contractible loops.
Proposition 2.5. Let \mathscr{C} be any complete set of loops. Then $\mathscr{C}_{0} \subseteq \mathscr{C}$.
Proof. Let $\gamma \in \mathscr{C}$. Then $\gamma^{-1} \in \mathscr{C}$ and $\gamma \circ \gamma^{-1} \in \mathscr{C}$. But $\gamma \circ \gamma^{-1}$ is freely homotopic to the constant loop; i.e., it is contractible.

3. Complete Partitions and the Fundamental Group

In this section we prove that complete partitions of Γ_{Σ} are in a natural $1-1$ correspondence with normal subgroups of the fundamental group. Although there seems to be some understanding of this fact by topologists, the precise relationship given here is apparently new. So fix a basepoint x in Σ and let $(\mathscr{C}, \mathscr{E})$ be a complete partition. Let $\mathscr{C}_{x}=\{\gamma \in \mathscr{C} \mid \gamma(0)=x\}$.

The following observations are easy.
Observation 1. $\mathscr{C}_{x} \neq \varnothing$.
Observation 2. If $\gamma \in \mathscr{C}_{x}$ and $\gamma^{\prime} \sim \gamma$, then $\gamma^{\prime} \in \mathscr{C}_{x}$.
It follows that \mathscr{C}_{x} partitions into a set $\pi(\mathscr{C}, x)$ of homotopy classes, so that $\pi(\mathscr{C}, x)$ is a nonempty subset of the fundamental group $\pi(\Sigma, x)$.

Proposition 3.1. $\pi(\mathscr{C}, x)$ is a normal subgroup of $\pi(\Sigma, x)$.
Proof. Let $[\gamma],\left[\gamma^{\prime}\right] \in \pi(\mathscr{C}, x)$. We first prove that $\pi(\mathscr{C}, x)$ is a subgroup of $\pi(\Sigma, x)$ by showing that $[\gamma]^{-1} \circ\left[\gamma^{\prime}\right] \in \pi(\mathscr{C}, x)$. Since $\left[\gamma^{-1}\right] \circ\left[\gamma^{\prime}\right]=$ $\left[\gamma^{-1} \circ \gamma^{\prime}\right]$, we will be done if we prove that $\gamma^{-1} \circ \gamma^{\prime} \in \mathscr{C}_{x}$. Since $\gamma \in \mathscr{C}$, we have that $\gamma^{-1} \in \mathscr{C}$. Since \mathscr{C} is closed under composition, $\gamma^{-1} \circ \gamma^{\prime} \in \mathscr{C}_{x}$.

To prove that $\pi(\mathscr{C}, x)$ is normal in $\pi(\Sigma, x)$, let $[\gamma] \in \pi(\Sigma, x)$, and $\left[\gamma^{\prime}\right] \in$ $\pi(\mathscr{C}, x)$. We have to prove that $[\gamma] \circ\left[\gamma^{\prime}\right] \circ[\gamma]^{-1} \in \pi(\mathscr{C}, x)$. As in the last paragraph, it suffices to prove that $\gamma \circ \gamma^{\prime} \circ \gamma^{-1} \in \mathscr{C}_{x}$. By Lemma 2.1(3),
$\left(\gamma \circ \gamma^{\prime}\right) \circ \gamma^{-1} \sim_{f} \gamma^{-1} \circ\left(\gamma \circ \gamma^{\prime}\right)$. But $\gamma^{-1} \circ\left(\gamma \circ \gamma^{\prime}\right) \sim\left(\gamma^{-1} \circ \gamma\right) \circ \gamma^{\prime} \sim \gamma^{\prime}$, and so $\gamma \circ \gamma^{\prime} \circ \gamma^{-1} \in \mathscr{C}_{x}$.

For the opposite direction, let H be a normal subgroup of $\pi(\Sigma, x)$. Let \mathscr{C}_{H} denote the set of all loops γ for which there is a $\left[\gamma^{\prime}\right] \in H$ such that $\gamma \sim_{f} \gamma^{\prime}$.

Proposition 3.2. If H is a normal subgroup of $\pi(\Sigma, x)$, then \mathscr{C}_{H} is a complete set of loops.

Proof. Clearly, \mathscr{C}_{H} is not empty. Since \sim_{f} is transitive, \mathscr{C}_{H} is closed under free homotopy. Since $\gamma \sim_{f} \gamma^{\prime}$ implies $\gamma^{-1} \sim_{f} \gamma^{\prime-1}, \mathscr{C}_{H}$ is also closed under inverses.

Finally we show that \mathscr{C}_{H} is closed under composition. Let $\gamma_{1}, \gamma_{2} \in \mathscr{C}_{H}$ have common basepoint y. We have to prove that $\gamma_{1} \circ \gamma_{2} \in \mathscr{C}_{H}$.

For $i=1$, 2, let $\left[\gamma_{i}^{\prime}\right] \in H$ be such that $\gamma_{i} \sim_{f} \gamma_{i}^{\prime}$. Let $h_{i}: I \times I \rightarrow \Sigma$ be a free homotopy such that $h_{i}(t \times\{0\})=\gamma_{i}(t)$ and $h_{i}\left(t \times\{1\}=\gamma_{i}^{\prime}(t)\right.$, for $t \in I$. Define $\alpha_{i}: I \rightarrow \Sigma$ by $\alpha_{i}(s)=h_{i}((0, s))$. It follows that $\alpha_{i}(0)=\gamma_{i}(0)=y$ and $\alpha_{i}(1)=x$.

The loop $\delta_{i}=\alpha_{i}^{-1} \circ \gamma_{i} \circ \alpha_{i}$ is freely homotopic to γ_{i} and has basepoint x. Furthermore, $\delta_{i} \in\left[\gamma_{i}^{\prime}\right]$ (see Lemma 5.1.1).

Since H is normal and $\alpha_{1}^{-1} \circ \alpha_{2}$ is a loop with basepoint x, we have that $\left(\alpha_{1}^{-1} \circ \alpha_{2}\right)^{-1} \circ \delta_{1} \circ\left(\alpha_{1}^{-1} \circ \alpha_{2}\right)$ is in \mathscr{C}_{H}. Simplifying yields $\alpha_{2}^{-1} \circ \gamma_{1} \circ \alpha_{2}$ is in \mathscr{C}_{H}. Therefore, $\left[\alpha_{2}^{-1} \circ \gamma_{1} \circ \alpha_{2}\right] \circ\left[\alpha_{2}^{-1} \circ \gamma_{2} \circ \alpha_{2}\right] \in H$, so that $\alpha_{2}^{-1} \circ \gamma_{1} \circ \gamma_{2} \circ \alpha_{2} \in \mathscr{C}_{H}$. By Lemma 2.1(2), this last path is freely homotopic to $\gamma_{1} \circ \gamma_{2}$, so $\gamma_{1} \circ \gamma_{2} \in \mathscr{C}_{H}$.

We now show that the operations of Propositions 3.1 and 3.2 are actually inverses.

Theorem 3.3. There is a bijection between the set of complete sets of loops of Σ and the set of normal subgroups of $\pi(\Sigma, x)$ given by the relations

$$
H=\pi\left(\mathscr{C}_{H}, x\right), \quad \mathscr{C}_{\pi(\mathscr{C}, x)}=\mathscr{C} .
$$

Proof. Let H be a normal subgroup of $\pi(\Sigma, x)$:

$$
\begin{aligned}
{[\gamma] \in \pi\left(\mathscr{C}_{H}, x\right) } & \Leftrightarrow \gamma \in \mathscr{C}_{H} \text { and } \gamma(0)=x \\
& \Leftrightarrow \exists\left[\gamma^{\prime}\right] \in H \text { such that } \gamma \sim_{f} \gamma^{\prime} \text { and } \gamma(0)=x(\text { Lemma 2.1(4)) } \\
& \Leftrightarrow \exists[\alpha] \in \pi(\Sigma, x),\left[\gamma^{\prime}\right] \in H \text { such that }[\gamma]=\left[\alpha^{-1}\right] \circ\left[\gamma^{\prime}\right] \circ[\alpha] \\
& \Leftrightarrow[\gamma] \in H .
\end{aligned}
$$

The proof of the second relation is similar.

The complete set of loops \mathscr{C}_{0} consisting of the contractible loops corresponds to the trivial subgroup of $\pi(\Sigma, x)$ consisting just of the identity. The complete partition $\left(\mathscr{C}_{0}, \mathscr{E}_{0}\right)$ is the fundamental partition.

The commutator subgroup H_{s} of $\pi(\Sigma, x)$ is a normal subgroup and it can be shown [GH] that the simple loops in the corresponding complete set of loops \mathscr{C}_{s} separate Σ into two components, at least one of which is orientable. The complete partition $\left(\mathscr{C}_{s}, \mathscr{E}_{s}\right)$ of Γ_{Σ} is the separating partition.

Although it does not concern us in this work, there is another "separating partition" in the nonorientable case. Let H_{n} be the smallest subgroup of $\pi(\Sigma, x)$ containing H_{s} and $\left\{\alpha^{2} \mid \alpha\right.$ is orientation-reversing $\}$. Every simple loop γ in Σ for which $\gamma(\mathbf{I})$ separates Σ into two pieces is freely homotopic to a loop in H_{n}.

There is a particular characteristic shared by \mathscr{C}_{0} and \mathscr{C}_{s} that turns out to play an important role for us. A complete partition $(\mathscr{C}, \mathscr{E})$ is a crossing partition if, for any simple loop $\gamma \in \mathscr{C}$ and any loop γ^{\prime}, if γ^{\prime} crosses γ transversely at some point, then γ^{\prime} crosses γ at least twice. It is an easy exercise to show that both $\left(\mathscr{C}_{0}, \mathscr{E}_{0}\right)$ and $\left(\mathscr{C}_{s}, \mathscr{E}_{s}\right)$ are crossing partitions.

The following proposition will be very useful when dealing with nonorientable loops.

Proposition 3.4. Let Σ be a nonorientable surface, and let $(\mathscr{C}, \mathscr{E})$ be a crossing partition of Γ_{Σ}. Then all orientation-reversing simple loops are in \mathscr{E}.

For the proof, we make use of the following notion. A loop γ_{1} is n-freely homotopic to the loop γ_{2} if $\gamma_{1} \sim_{f} \gamma_{2}^{n}$, for some integer n. Thus, 1 -freely homotopic is the same as freely homotopic and any loop is -1 -freely homotopic to its inverse.

Proof. Let γ be an orientation-reversing simple loop. Then there is a Möbius band M whose boundary is a simple loop γ^{\prime} that is 2 -freely homotopic to γ. Let σ be a path from one point of γ^{\prime} to another point of γ^{\prime} and that intersects γ only once and this intersection is a transverse crossing. There is a simple loop $\gamma^{\prime \prime}$ whose image is contained in $\gamma^{\prime}(\mathbf{I}) \cup \sigma(\mathbf{I})$ that intersects γ in a single point, which is a transverse crossing.

We have one last complete partition to mention here. If Σ is nonorientable, then the set \mathscr{C}_{p} of all orientation-preserving loops is a complete set of loops. This corresponds to an index-2 subgroup of the fundamental group. The complete partition $\left(\mathscr{C}_{p}, \mathscr{E}_{p}\right)$ is the orientation-preserving partition.

4. \mathscr{C}-Representativity of Embeddings

We shall now consider a graph G embedded in a surface Σ. A helpful reference for some of the basic concepts is [RoV]. The main point of this
section is to generalize the notion of representativity to \mathscr{C}-representativity, for any complete set of loops \mathscr{C}. We shall prove results about \mathscr{C}-representativity paralleling standard results about representativity. In particular, it is finite and it attained by a simple loop. This discussion requires a detailed understanding of loops in surfaces, which is where we begin. There are some basic facts about neighbourhoods of points in a graph embedded in a surface described in [HR]. We will use these as needed without explicit reference.

A surface is a compact connected Hausdorff space for which every point has a neighbourhood homeomorphic to \mathbb{R}^{2}. Portions of this work generalize to more general 2 -manifolds, but our interest is with surfaces.

Theorems 4.1 and 4.2 are the main nontrivial technical points central to the entire discussion. Let $\alpha:[0,1] \rightarrow \Sigma$ be a path and let I be a subinterval of $[0,1]$. Then the multiplicity of α on I is the number of ordered pairs $\left(t, t^{\prime}\right)$ such that $t, t^{\prime} \in I, t<t^{\prime}$ and $\alpha(t)=\alpha\left(t^{\prime}\right)$. The multiplicity of a loop is the multiplicity of the loop on [0,1).

Theorem 4.1. Let Σ be a surface and let Φ be a closed subset of Σ. Suppose γ is a loop in Σ disjoint from Φ. Then there is a homotope γ^{\prime} of γ that is disjoint from Φ and has finite multiplicity.

There are several proofs of this that we could give here. We have chosen this one because it is completely elementary. In particular, it does not rely on knowledge of the fundamental group of a surface-it depends only on the existence of disc neighbourhoods.

Proof. For each $t \in[0,1]$, let \bar{D}_{t} be a closed disc in Σ with interior D_{t} such that $\gamma(t) \in D_{t}$ and \bar{D}_{t} is disjoint from Φ.

Claim 1. There is a $\delta>0$ such that if $0<t^{\prime}-t<\delta$, then there is a disc D_{s} such that $\gamma\left(\left[t, t^{\prime}\right]\right) \subset D_{s}$.

If not, then for each positive integer N, there exists t_{N} and t_{N}^{\prime} such that $0<t_{N}^{\prime}-t_{N}<1 / N$ and no D_{s} contains $\gamma\left(\left[t_{N}, t_{N}^{\prime}\right]\right)$. There exists an infinite sequence N_{j} for which the sequences $t_{N_{j}}$ and $t_{N_{j}}^{\prime}$ both converge to t^{*}.

There is a disc D_{s} containing $\gamma\left(t^{*}\right)$. By continuity, there is a $\delta>0$ such that if $\left|t-t^{*}\right|<\delta$, then $\gamma(t) \in D_{s}$. Thus, for sufficiently large $j, \gamma\left(\left[t_{N_{j}}, t_{N_{j}}^{\prime}\right]\right) \subset D_{s}$, a contradiction that proves Claim 1.

Fix the positive integer N large enough so that if $0<t^{\prime}-t \leqslant 1 / N$, then there is a disc D_{s} containing $\gamma\left(\left[t, t^{\prime}\right]\right)$. For $j=1,2, \ldots, N$, let I_{j} denote the interval $[(j-1) / N, j / N]$. There is some disc $D_{s_{j}}$ containing $\gamma\left(I_{j}\right)$. Relabel the discs $D_{s_{1}}, D_{s_{2}}, \ldots, D_{s_{N}}$ as $D_{1}, D_{2}, \ldots, D_{N}$.

In N steps, we shall find the homotope of γ that has finite multiplicity. Let $\alpha:[0,1 / N] \rightarrow \Sigma$ be a simple path in D_{1} joining $\gamma(0)$ with $\gamma(1 / N)$. (If these points happen to be the same, then we can choose α to be a simple
loop.) Let γ_{1} be the loop obtained by traversing α on [$0,1 / N$] and γ on $[1 / N, 1]$. Because α and $\left.\gamma\right|_{[0,1 / N]}$ are both paths in the disc D_{1} having the same end points, they are homotopic. Therefore, γ_{1} and γ are homotopic.

Now suppose $i \geqslant 1$ and we have γ_{i} homotopic to $\gamma, \gamma_{i}(\mathbf{I})$ disjoint from Φ and γ_{i} has finite multiplicity on $[0, i / N]$. We now show how to obtain γ_{i+1}.

Identify the closed disc \bar{D}_{i+1} with the unit disc in the plane, which we use for metric reference. Since $\gamma\left(I_{i+1}\right) \subset D_{i+1}$, and $\gamma\left(I_{i+1}\right)$ is compact, there is some real number $r<1$ such that $\gamma\left(I_{i+1}\right)$ is contained in the open disc of radius r. Notice that $\gamma_{i}(i / N)$ is in this disc of radius r.

Claim 2. There are at most finitely many components of $\bar{D}_{i+1} \backslash$ $\gamma_{i}([0, i / N])$ that have a point in the disc of radius r.

For otherwise, there is a point r^{*} of $\gamma_{i}([0, i / N])$ for which every neighbourhood contains a point in each of infinitely many such components. (Pick one point r_{n} from each of infinitely many such components. Let r^{*} be a limit point of the infinite set of r_{n}.) We shall show that the finite multiplicity of γ_{i} on [$0, i / N$] does not allow this.

Let $0 \leqslant t_{1}<t_{2}<\cdots<t_{p} \leqslant i / N$ be those $t \in[0, i / N]$ such that $\gamma_{i}(t)=r^{*}$. For each $j=1,2, \ldots, p$, let $J(j, \varepsilon)=\left[t_{j}-\varepsilon, t_{j}+\varepsilon\right] \cap[0, i / N]$ and let $\mathbf{J}(\varepsilon)=$ $\bigcup_{j=1}^{p} J(j, \varepsilon)$. We claim that for some $\varepsilon>0, \gamma_{i}$ is injective on $\mathbf{J}(\varepsilon) \backslash\left\{t_{1}\right.$, $\left.t_{2}, \ldots, t_{p}\right\}$.

For if it were not, then for each m, there would exist $t_{m}^{\prime}, t_{m}^{\prime \prime} \in \mathbf{J}(1 / m)$ such that $t_{m}^{\prime} \neq t_{m}^{\prime \prime}$ and $\gamma_{i}\left(t_{m}^{\prime}\right)=\gamma_{i}\left(t_{m}^{\prime \prime}\right) \neq r^{*}$. But then the multiplicity of γ_{i} on [$0, i / N]$ is infinite.

Let $s=0$ if both $t_{1}>0$ and $t_{p}<i / N$, let $s=1$ if either $t_{1}=0$ or $t_{p}=i / N$, but not both, and let $s=2$ if $t_{1}=0$ and $t_{p}=i / N$. We shall define an embedding of the graph $K_{1,2 p-s}$ in \bar{D}_{i+1}. We map the central vertex to r^{*}, the leaves to $\gamma_{i}\left(t_{i} \pm \varepsilon\right)$ and the edges to $\gamma_{i}\left(\left(t_{i}-\varepsilon, t_{i}\right)\right)$ and $\gamma_{i}\left(\left(t_{i}, t_{i}+\varepsilon\right)\right)$. (Suitable care needs to be employed if $s>0$.)

There is a disc $\Delta \subset D_{i+1}$ and a homeomorphism $h: \Delta \rightarrow \mathbb{R}^{2}$ such that $h\left(r^{*}\right)$ is the origin and $h\left(K_{1,2 p-s} \cap \Delta\right)$ is $2 p-s$ straight rays from the origin to infinity. For a sufficiently small circular disc Δ^{\prime} in $\mathbb{R}^{2}, \Delta^{\prime}$ intersects $h\left(\gamma_{i}([0, i / N])\right)$ only in $h\left(r^{*}\right)$ and bits of the $2 p-s$ straight rays. This corresponds to a neighbourhood of r^{*} in D_{i+1} that intersects only finitely many components of $D_{i+1} \backslash \gamma_{i}([0, i / N])$, completing the proof of Claim 2.

By Claim 2, $\gamma_{i}([0, i / N])$ meets the closures of at most finitely many components of $D_{i+1} \backslash \gamma_{i}([0, i / N])$. Let these components be $R_{1}, R_{2}, \ldots, R_{k}$. For $j=1,2, \ldots, k$, let t_{j}^{*} be the largest $t \in I_{i+1}$ such that $\gamma_{i}(t)$ is in the closure of R_{j}.

There is a j_{1} such that $\gamma_{i}(i / N)=\gamma(i / N)$ is in the closure of $R_{j_{1}}$ and $t_{j_{1}}^{*}>i / N$. Suppose we have already defined the positive integers $j_{1}, j_{2}, \ldots, j_{m}$. If $t_{j_{m}}^{*}=(i+1) / N$, then stop. Otherwise, there is a j_{m+1} such that $\gamma\left(t_{j_{m}}^{*}\right)$ is in
the closure of $R_{j_{m+1}}$ and $t_{j_{m+1}}^{*}>t_{j_{m}}^{*}$. For some $m^{*} \leqslant k$, we shall have $t_{j_{m^{*}}}^{*}=(i+1) / N$. Set $t_{j_{0}}^{*}=i / N$.

For $m=1,2, \ldots, m^{*}$, there is a simple path $\alpha_{m}:\left[t_{j_{m-1}}^{*}, t_{j_{m}}^{*}\right] \rightarrow \bar{R}_{j_{m}}$, where $\bar{R}_{j_{m}}$ is the closure of $R_{j_{m}}$, such that $\alpha_{m}\left(t_{j_{m-1}}^{*}\right)=\gamma\left(t_{j_{m-1}}^{*}\right), \alpha_{m}\left(t_{j_{m}}^{*}\right)=\gamma\left(t_{j_{m}}^{*}\right)$ and α_{m} is otherwise disjoint from $\gamma_{i}([0, i / N])$. Define γ_{i+1} to be γ_{i} on $[0, i / N]$, α_{m} on $\left[t_{j_{m-1}}^{*}, t_{j_{m}}^{*}\right], m=1,2, \ldots, m^{*}$, and γ on $[(i+1) / N, 1]$. Obviously, γ_{i+1} has finite multiplicity on $[0,(i+1) / N]$, is disjoint from Φ and is homotopic to γ_{i} (and therefore to γ), as required.

Finally, γ_{N} is the loop with finite multiplicity that is disjoint from Φ and is homotopic to γ.

The following is a straightforward induction on the multiplicity, based on the TPP Proposition 2.3.

Corollary 4.1.1. Let Σ be a surface, let $(\mathscr{C}, \mathscr{E})$ be a complete partition of Γ_{Σ} such that $\mathscr{E} \neq \varnothing$, and let Φ be a closed subset of Σ for which there is a loop $\gamma \in \mathscr{E}$ with $\gamma(\mathbf{I})$ disjoint from Φ. Then \mathscr{E} contains a simple loop γ^{\prime} with $\gamma^{\prime}(\mathbf{I})$ disjoint from Φ.

The other technical result we need is the following, whose proof is due to Bob Brown. We are grateful to Helga Schirmer for her efforts in relaying the messages to get this proof.

Let γ be a loop and let $0 \leqslant t^{\prime}<t^{\prime \prime}<1$. The two paths obtained by restricting γ to $\left[t^{\prime}, t^{\prime \prime}\right]$ and $\left[t^{\prime \prime}, 1\right] \cup\left[0, t^{\prime}\right]$ are the subpaths of γ induced by t^{\prime} and $t^{\prime \prime}$. Thus, if γ_{1} and γ_{2} are the two subpaths of γ induced by t^{\prime} and $t^{\prime \prime}$, then $\gamma_{1}(\mathbf{I}) \cup \gamma_{2}(\mathbf{I})=\gamma(\mathbf{I})$ and $\gamma \sim_{f} \gamma_{1} \circ \gamma_{2}$.

For a loop γ and a path σ such that $\sigma(0)=\gamma\left(t^{\prime}\right)$ and $\sigma(1)=\gamma\left(t^{\prime \prime}\right)$, let γ_{1} and γ_{2} be the two subpaths of γ induced by t^{\prime} and $t^{\prime \prime}$. For some $\varepsilon \in\{1,-1\}$, both $\gamma_{1} \circ \sigma^{\varepsilon}$ and $\gamma_{2} \circ \sigma^{-\varepsilon}$ are loops. These two loops are the θ-decomposition of γ with respect to σ.

Theorem 4.2. Let $(\mathscr{C}, \mathscr{E})$ be a complete partition of Γ_{Σ}. Let γ_{1} be a simple loop in \mathscr{C} and let γ_{2} be a loop in \mathscr{E}. Suppose there exist distinct $t^{\prime}, t^{\prime \prime}$ such that $\gamma_{2}\left(t^{\prime}\right)$ and $\gamma_{2}\left(t^{\prime \prime}\right)$ are both in $\gamma_{1}(\mathbf{I})$. Then there exist distinct a, b such that $\gamma_{2}(a), \gamma_{2}(b) \in \gamma_{1}(\mathbf{I})$ and, for at least one of the two subpaths, say γ_{2}^{\prime}, of γ_{2} induced by a and $b, \gamma_{2}^{\prime}((a, b))$ is disjoint from γ_{1} and the two loops in the θ-decomposition of γ_{1} with respect to γ_{2}^{\prime} are both in \mathscr{E}.

Proof. There are at most countably many subintervals $I_{n}=\left[a_{n}, b_{n}\right]$ of $[0,1]$ such that $\gamma_{2}\left(I_{n}\right)$ meets $\gamma_{1}(\mathbf{I})$ in just the endpoints. Let σ_{n} be the path $\gamma_{2}: I_{n} \rightarrow \Sigma$. Let $N \subseteq \Sigma$ be either an open cylinder or an open Möbius strip with equator γ_{1}.

We claim that at most finitely many of the sets $\sigma_{n}\left(\left[a_{n}, b_{n}\right]\right)$ are not contained in N. For suppose not. Then let A be the (infinite) set of integers
n for which $\sigma_{n}\left(I_{n}\right)$ is not contained in N. For each $n \in A$, let $t_{n} \in I_{n}$ be such that $\sigma_{n}\left(t_{n}\right) \notin N$. Let t^{*} be a limit point of $T=\left\{t_{n} \mid n \in A\right\}$. If $t^{*} \in\left(a_{k}, b_{k}\right)$ for some $k \in\{1,2, \ldots\}$, then $\left(a_{k}, b_{k}\right)$ is an open set containing t^{*} and at most one of the points in T, a contradiction. Therefore, $\gamma_{2}\left(t^{*}\right) \in \gamma_{1}(\mathbf{I})$. Thus, N is an open set containing $\gamma_{2}\left(t^{*}\right)$, but N contains none of the points in $\gamma_{2}(T)$, which is impossible.

Let $\sigma_{1}, \ldots, \sigma_{k}$ be the paths that have an image point not in N. For $I=1$, $2, \ldots, k$, let $\delta_{i, 1}$ and $\delta_{i, 2}$ be the θ-decomposition of γ_{1} with respect to σ_{i}. We note that γ_{1} is freely homotopic to the composition of $\delta_{i, 1}$ and $\delta_{i, 2}$. Therefore, either both $\delta_{i, 1}$ and $\delta_{i, 2}$ are in \mathscr{E} or neither is.

In order to obtain a contradiction, we suppose that, for each $i=1,2, \ldots, k$, both $\delta_{i, 1}$ and $\delta_{i, 2}$ are in \mathscr{C}.

We suppose $\delta_{i, 1}$ traverses σ_{i}^{-1} first and then follows the subpath α_{i} of γ_{1}. Let ϕ_{1} be the loop obtained from γ_{2} by replacing the portion along I_{1} with α_{1}^{-1}.

Since γ_{2} is freely homotopic to the composition $\phi_{1} \circ \delta_{1,1}$ and $\delta_{1,1}$ is in \mathscr{C}, it follows from Proposition 2.2 that ϕ_{1} is in \mathscr{E}.

We now repeat the process. Having got $\phi_{j} \in \mathscr{E}$, we obtain ϕ_{j+1} by replacing the portion of ϕ_{j} corresponding to I_{j+1} with α_{j+1}^{-1}. Thus, ϕ_{j} is freely homotopic to the composition $\delta_{1, j+1} \circ \phi_{j+1}$. It follows that $\phi_{j+1} \in \mathscr{E}$. Do this until we have $\phi_{k} \in \mathscr{E}$.

Note that $\phi_{k}(\mathbf{I}) \subset N$. The fundamental group of N is cyclic and generated by $\left[\gamma_{1}\right]$. (We may choose $\gamma_{2}(t)$ to be the basepoint for the computations involving the fundamental group.) Therefore, ϕ_{k} is homotopic to γ_{1}^{r}, for some integer r. But then $\phi_{k} \in \mathscr{C}$, a contradiction. Therefore, some $\delta_{i, 1}$ is in \mathscr{E}, as claimed.

Let G be a graph embedded in a surface Σ and let $\gamma \in \Gamma_{\Sigma}$. Then $\operatorname{cr}(\gamma, G)$ is the number of $t \in[0,1)$ such that $\gamma(t) \in G$. Given a complete partition $(\mathscr{C}, \mathscr{E})$ of Γ_{Σ} with $\mathscr{E} \neq \varnothing$, the \mathscr{C}-representativity of G is $\rho_{\varepsilon}(G)=$ $\min \{\operatorname{cr}(\gamma, G) \mid \gamma \in \mathscr{E}\}$. If $(\mathscr{C}, \mathscr{E})$ is the fundamental partition $\left(\mathscr{C}_{0}, \mathscr{E}_{0}\right)$, then this is just the usual representativity.

We next show that \mathscr{C}-representativity is finite. Then we show that the \mathscr{C}-representativity is attained by a simple loop that goes through only vertices of G.

Corollary 4.2.1. For any complete partition $(\mathscr{C}, \mathscr{E})$ of Γ_{Σ} with $\mathscr{E} \neq \varnothing$, and any embedding of G in Σ, the \mathscr{C}-representativity of G is finite.

Proof. We show the existence a simple loop γ in \mathscr{E} for which $\operatorname{cr}(\gamma, G)$ is finite. By Corollary 4.1.1 there is a simple loop γ in \mathscr{E}. If $\operatorname{cr}(\gamma, G)$ is finite, then we are done. Otherwise, there is some closed edge e of G such that γ goes through e infinitely often.

There is a closed disc Δ in Σ that meets G only in e, with only the ends of e in the boundary of Δ. The boundary of Δ is the image of a simple loop γ_{0} that is contractible and, therefore, is in \mathscr{C}. Clearly γ must intersect $\gamma_{0}(\mathbf{I})$ at least twice, since $\gamma(\mathbf{I})$ is not contained in Δ.

By Theorem 4.2, there is a simple loop γ^{\prime} in \mathscr{E} made up of a simple subpath of γ and a simple subpath of γ_{0}. Obviously, γ^{\prime} meets e in at most two points, namely the ends of e. We repeat this for each edge of G (of which there are only finitely many) to obtain a simple loop in \mathscr{E} that meets G only finitely often.

We are now prepared for the final touch.

Theorem 4.3. Let G be a graph embedded in a surface Σ and let $(\mathscr{C}, \mathscr{E})$ be a complete partition of Γ_{Σ}. Then there is a simple loop $\gamma \in \mathscr{E}$ such that $\operatorname{cr}(\gamma, G)=\rho_{\mathscr{E}}(G)$ and $\gamma(\mathbf{I}) \cap G \subseteq V(G)$.

Proof. We begin by showing the existence of a simple loop in \mathscr{E} that attains the \mathscr{C}-representativity. If $\rho_{\mathscr{E}}(G)=0$, then the result follows from Corollary 4.1.1, with $\Phi=G$. Thus, we can assume $\rho_{\mathscr{E}}(G)>0$. Let $\gamma \in \mathscr{E}$ be such that $\operatorname{cr}(\gamma, G)=\rho_{\delta}(G)$.

Now consider the case that $\rho_{\mathscr{E}}(G)=1$. Then there is a single face F of G such that $\gamma(\mathbf{I})$ is contained in the closure of F. Let x be the single point in $\gamma(\mathbf{I}) \cap G$. We can assume $\gamma(0)=x$. There is a closed disc Δ in Σ containing x such that $\Delta \cap G$ is just x and an appropriate number of rays emanating from x. Let γ_{1} be a simple loop whose image is the boundary of Δ.

Then γ meets γ_{1} at least twice, so, by Theorem 4.2, there is a subinterval $I=[a, b]$ of $[0,1]$ such that $\gamma(I)$ has only its ends in $\gamma_{1}(\mathbf{I})$ and both the loops made up of $\gamma: I \rightarrow \Sigma$ and the subpaths of γ_{1} are in \mathscr{E}. Thus, $\gamma(I)$ is disjoint from Δ, except for its ends.

If $\gamma(a)=\gamma(b)$, then $\gamma: I \rightarrow \Sigma$ is a loop in \mathscr{E} that is disjoint from G, contradicting the assumption that $\rho_{\mathscr{E}}(G)=1$. Therefore, $\gamma(a)$ and $\gamma(b)$ are distinct points of Δ.

Let $\sigma:[0,1] \rightarrow \Delta$ be a simple path that joins $\gamma(b)$ to $\gamma(a)$ and meets G only at x if at all. Let $\sigma^{\prime}:[0,1] \rightarrow(F \backslash \Delta) \cup \gamma(\{a, b\})$ be a simple path with ends $\gamma(a)$ and $\gamma(b)$. (The set $F \backslash \Delta$ is open, $\gamma(a)$ and $\gamma(b)$ are in the closure of the component containing $\gamma(I)$, so there is a simple path in F joining them.) By the TPP, either σ^{\prime} composes with $\gamma: I \rightarrow \Sigma$ to make a loop in \mathscr{E} or σ^{\prime} composes with σ to make a simple loop in \mathscr{E}. The former is impossible, since the composition is disjoint from G. Therefore, the latter occurs and there is a simple loop in \mathscr{E} meeting G in only one point.

We now suppose $\rho_{\mathscr{E}}(G) \geqslant 2$.

Claim 1. For any face F of $G, \gamma(t)$ is in the boundary of F for at most two $t \in[0,1)$.

Otherwise, let $0 \leqslant t_{1}<t_{2}<t_{3}<1$ be three times at which γ meets the boundary ∂F of F. For $i, j \in\{1,2,3\}$, if $\gamma\left(t_{i}\right)=\gamma\left(t_{j}\right)$, then let $\alpha_{i, j}$ be a constant path, with image $\gamma\left(t_{i}\right)$. Otherwise, let $\alpha_{i j}$ be a simple path in F joining $\gamma\left(t_{i}\right)$ and $\gamma\left(t_{j}\right)$.

Let $\gamma_{1,2}$ and $\gamma_{2,3}$ be γ restricted to $\left[t_{1}, t_{2}\right]$ and $\left[t_{2}, t_{3}\right]$, respectively, and let $\gamma_{1,3}$ be γ restricted to $\left[t_{3}, 1\right] \cup\left[0, t_{1}\right]$. If $\alpha_{1,2} \circ \alpha_{2,3} \circ \alpha_{1,3} \in \mathscr{E}$, then $\rho_{\mathscr{E}}(G)=0$, since this curve is freely homotopic to one that does not meet G at all. Thus, by the TPP, at least one of the three loops $\gamma_{i, j}{ }^{\circ} \alpha_{i, j}^{-1}$, $1 \leqslant i<j \leqslant 3$, must be in \mathscr{E}. But each has fewer crossings with G than γ, a contradiction to the choice of γ. Therefore, each face F satisfies $\operatorname{cr}(\gamma, \partial F) \leqslant 2$ and Claim 1 is proved.

If some (open) face F meets $\gamma(\mathbf{I})$, then the boundary of F must satisfy $\operatorname{cr}(\gamma, \partial F) \geqslant 2$. Therefore, any face F that meets $\gamma(\mathbf{I})$ has its boundary meeting $\gamma(\mathbf{I})$ at exactly two different times. We now show that these two different times must in fact be at two different places as well.

For suppose $0 \leqslant t_{1}<t_{2}<1$ are such that $\gamma\left(t_{1}\right)=\gamma\left(t_{2}\right) \in \partial F$. Then, by the TPP, at least one of the two loops γ restricted to $\left[t_{1}, t_{2}\right]$ and its complement is in \mathscr{E} and has fewer crossings with G, a contradiction.

So let F be a face of G such that $F \cap \gamma(\mathbf{I})$ is not empty and let x and y be the distinct points in ∂F such that $\gamma\left(t_{1}\right)=x$ and $\gamma\left(t_{2}\right)=y$. Let α be a simple path in F joining x and y.

By the TPP, one of the two paths in γ with ends x and y, together with α, is in \mathscr{E}. Suppose it is the loop using the path across F. This loop is freely homotopic to one that does not meet G at all, showing $\rho_{\mathscr{\delta}}(G)=0$, a contradiction. Therefore, it is the other one. Repeat this for every face that meets $\gamma([0,1])$ and the result is a simple loop that attains the representativity.

If the simple loop found above that attains the representativity does not meet G only in vertices, then it meets G in some edge e. We will eliminate this intersection without destroying any of the other properties. Repeating this step yields a simple loop in \mathscr{E} that attains the representativity and meets G only in vertices.

Let Δ be a closed disc in Σ that meets G only in e and its endpoints, with e being contained in the interior of Δ. By Theorem 4.2, there is a simple loop in \mathscr{E} whose image is contained in $\gamma(\mathbf{I}) \cup \Delta$ and does not go into the interior of Δ. This loop can be chosen so as to meet G in no more points than γ does. Therefore, it meets G in exactly the same number of pointsthe intersection with e being traded for an intersection with an end of e. This completes the proof.

5. The Calculus of Face Chains

A simple loop γ that meets an embedded graph G only at vertices describes an alternating sequence $v_{0}, F_{1}, v_{1}, \ldots, F_{n}, v_{n}$ of vertices and faces of G such that $v_{0}=v_{n}, \gamma(\mathbf{I}) \cap G=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and

$$
\gamma(\mathbf{I}) \subset\left(\bigcup_{i=1}^{n} F_{i}\right) \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} .
$$

Such sequences are the combinatorial structures with which we shall work in the remainder of this paper.

A face chain is an alternating sequence $v_{0}, F_{1}, v_{1}, \ldots, F_{n}, v_{n}$ of vertices and faces of an embedded graph G such that, for each $i=1,2, \ldots, n, v_{i-1}$ and v_{i} are in the boundary ∂F_{i} of F_{i}. The length of the face chain is n, and the face chain is closed if $v_{0}=v_{n}$.

Given a face chain $\Lambda=v_{0}, F_{1}, v_{1}, \ldots, F_{n}, v_{n}$, a path α_{A} is obtained by taking the composition of simple paths in each F_{i} joining v_{i-1} and v_{i}, for $i=1$, $2, \ldots, n$. The face chain is a face-representation of α_{A} and the length of the face-representation is n. (There is some ambiguity here. If either F_{i} is not homeomorphic to an open disc or one or both of v_{i-1} and v_{i} is repeated in the boundary walk of F_{i}, then the choice of the simple path in F_{i} is not determined up to homotopy. Thus, to be represented by the face chain means there are choices of these simple paths which yield a path freely homotopic to γ. Mostly, these distinctions will not concern us.)

Let $(\mathscr{C}, \mathscr{E})$ be a complete partition of Γ_{Σ} for some surface Σ. The loop γ is freely \mathscr{C}-homotopic to the loop γ^{\prime} if there is a loop $\gamma^{\prime \prime} \in \mathscr{C}$ with the same basepoint as γ^{\prime} such that $\gamma \sim_{f} \gamma^{\prime} \circ \gamma^{\prime \prime}$. We write $\gamma \sim_{8} \gamma^{\prime}$ to denote that γ is freely \mathscr{C}-homotopic to γ^{\prime}.

Lemma 5.1. The relation $\sim_{\mathscr{C}}$ is an equivalence relation.
Proof. We begin with some additional facts about free homotopy.
Lemma 5.1.1. Let $h:[0,1] \times[0,1] \rightarrow \Sigma$ be a free homotopy between the loops $\alpha(t)=h(0, t)$ and $\beta(t)=h(1, t)$. Let $\sigma:[0,1] \rightarrow \Sigma$ be the path defined by $\sigma(s)=h(s, 0)=h(s, 1)$. Then α and $\sigma \circ \beta \circ \sigma^{-1}$ are homotopic (with fixed basepoint $\alpha(0))$.

Proof. We can define the homotopy \hat{h} by

$$
\hat{h}(s, t)= \begin{cases}h(3 t, 0), & 0 \leqslant t \leqslant s / 3 \\ h(s,(3 t-s) /(3-2 s)), & s / 3 \leqslant t \leqslant 1-s / 3 \\ h(-3 t+3,1), & 1-s / 3 \leqslant t \leqslant 1\end{cases}
$$

This is a homotopy between α and (a specific parametrization of) the loop $\sigma \circ \beta \circ \sigma^{-1}$.

The other result we need is easy.

Lemma 5.1.2. Let α and β be paths with the same endpoints. Let γ and δ be paths such that $\gamma(1)=\alpha(0)$ and $\delta(0)=\alpha(1)$. If α and β are homotopic (keeping the endpoints fixed), then $\gamma \circ \alpha$ is homotopic to $\gamma \circ \beta$ and $\alpha \circ \delta$ is homotopic to $\beta \circ \delta$ (keeping the endpoints fixed).

Now back to the proof of Lemma 5.1. Reflexivity is trivial. For symmetry, suppose $\alpha \sim_{\mathscr{C}} \beta$. Then there is a $\gamma \in \mathscr{C}$ such that $\alpha \sim_{f} \beta \circ \gamma$. By Lemma 5.1.1, there is a path σ such that $\alpha \sim \sigma \circ \beta \circ \gamma \circ \sigma^{-1}$. Now Lemma 5.1.2 yields that

$$
\sigma^{-1} \circ \alpha \circ \sigma \circ \gamma^{-1} \sim \sigma^{-1} \circ \sigma \circ \beta \circ \gamma \circ \sigma^{-1} \circ \sigma \circ \gamma^{-1} \sim \beta .
$$

But $\sigma^{-1} \circ \alpha \circ \sigma \circ \gamma^{-1}$ is freely homotopic to $\alpha \circ \sigma \circ \gamma^{-1} \circ \sigma^{-1}$. Since γ^{-1} is in \mathscr{C} and is freely homotopic to $\sigma \circ \gamma^{-1} \circ \sigma^{-1}$, this last loop is also in \mathscr{C} and so $\beta \sim_{\mathscr{C}} \alpha$, as required.

We conclude with transitivity. If $\alpha \sim_{\mathscr{G}} \beta$ and $\beta \sim_{\mathscr{8}} \gamma$, then, by symmetry, there exist $\delta, \varepsilon \in \mathscr{C}$ such that $\beta \sim_{f} \alpha \circ \delta$ and $\beta \sim_{f} \gamma \circ \varepsilon$. By transitivity of \sim_{f}, $\alpha \circ \delta \sim_{f} \gamma \circ \varepsilon$. Thus, $(\gamma \circ \varepsilon) \sim_{\mathscr{C}} \alpha$, so by symmetry, $\alpha \sim_{\mathscr{C}}(\gamma \circ \varepsilon)$. Thus, there is a $\delta^{\prime} \in \mathscr{C}$ such that $\alpha \sim_{f}(\gamma \circ \varepsilon) \circ \delta^{\prime}$. But $(\gamma \circ \varepsilon) \circ \delta^{\prime} \sim_{f} \gamma \circ\left(\varepsilon \circ \delta^{\prime}\right)$ and $\varepsilon \circ \delta^{\prime} \in \mathscr{C}$. Thus, $\alpha \sim_{\mathscr{G}} \gamma$, as required.

We let $[\gamma]_{\mathscr{C}}$ denote the set of loops freely \mathscr{C}-homotopic to γ.
Now let G be a graph embedded in Σ. Suppose γ is a loop face-represented by a closed face chain of G. The \mathscr{C}-length $l(\gamma, \mathscr{C})$ of γ is the shortest length of any face-representation of any member of $[\gamma]_{\mathscr{C}}$.

By Proposition 2.4, if γ is in \mathscr{E}, then any γ^{\prime} for which $\gamma \sim_{\mathscr{C}} \gamma^{\prime}$ is also in \mathscr{E}. Therefore, for any $\gamma \in \mathscr{E}$ that is face-represented by a closed face chain, $\rho_{\mathscr{E}}(G) \leqslant l(\gamma, \mathscr{C})$.

Let $\Lambda=v_{0}, F_{1}, v_{1}, \ldots, F_{n}, v_{n}$ be a closed chain and let $\Lambda^{\prime}=w_{0}, F_{1}^{\prime}, w_{1}, \ldots$, F_{k}^{\prime}, w_{k} be a face chain such that w_{0} is incident with some F_{i} and w_{k} is incident with some F_{j}. For ease of exposition, assume $1 \leqslant i<j \leqslant n$. (Up to a cyclic permutation of Λ, this is always the case.) Then there are two face chains in Λ whose first and last faces are F_{i} and F_{j}. Clearly, we can combine each of these with Λ^{\prime} to get a closed face chain containing Λ^{\prime}.

The following result is the arithmetic heart of the proof that there are $\rho / 2$ pairwise disjoint, pairwise homotopic nonseparating cycles.

Theorem 5.2. Let G be embedded in a surface Σ and let $\left(\mathscr{C}_{1}, \mathscr{E}_{1}\right)$, $\left(\mathscr{C}_{2}, \mathscr{E}_{2}\right)$ be two complete partitions such that $\mathscr{E}_{2} \subseteq \mathscr{E}_{1}$. Let γ be a loop in \mathscr{E}_{2}
whose \mathscr{C}_{1}-length l is finite and let $\Lambda=v_{0}, F_{1}, \ldots, F_{l}, v_{l}$ be a closed face chain that represents some loop in $[\gamma]_{\mathscr{C}_{1}}$. Let $\Lambda^{\prime}=w_{0}, F_{1}^{\prime}, \ldots, F_{k}^{\prime}$, w_{k} be a face chain of length $k \geqslant 0$ such that w_{0} and w_{k} are each incident with some face in Λ. (If $k=0$, then we assume that w_{0} is incident with distinct faces in the face chain 1 .) If either

$$
\begin{equation*}
k \leqslant\left\lfloor\frac{\rho_{\delta_{1}}(G)+\rho_{\delta_{2}}(G)-l-1}{2}\right\rfloor-1 \tag{1}
\end{equation*}
$$

or both w_{0} and w_{1} are in $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and

$$
\begin{equation*}
k \leqslant\left\lfloor\frac{\rho_{\delta_{1}}(G)+\rho_{\delta_{2}}(G)-l-1}{2}\right\rfloor, \tag{2}
\end{equation*}
$$

then the face chain formed by Λ^{\prime} and the shorter face chain (or either if they have equal length) of Λ between w_{0} and w_{k} has length $<\rho_{\delta_{1}}(G)$ and, therefore, represents a loop that is in \mathscr{C}_{1}.

Proof. Let $\gamma^{*} \in \mathscr{E}_{2}$ be a loop face-represented by Λ.
(1) Let i and j be indices such that w_{0} and w_{k} are incident with F_{i} and F_{j}, respectively. Choose the labelling so that $1 \leqslant i<j \leqslant n$ and $\Lambda_{1}=w_{0}$, $F_{i}, v_{i}, F_{i+1}, \ldots, F_{j}, w_{k}$ is the shorter of the two face chains from Λ joining w_{0} and w_{k}. Let Λ_{2} be the other face chain (including F_{i} and F_{j}) in Λ joining w_{0} and w_{1}.

Clearly, Λ_{1} has length $j-i+1$ and Λ_{2} has length $l-(j-i)+1$. Since Λ_{1} is not longer than $\Lambda_{2}, j-i \leqslant l / 2$. Therefore, the face chain $\Lambda^{\prime} \cup \Lambda_{1}$ obtained by concatenating Λ_{1} and Λ^{\prime} has length at most $l / 2+1+k$. Using the estimate for k given in the hypothesis yields that this chain has length at most

$$
\frac{\rho_{\delta_{1}}(G)+\rho_{\delta_{2}}(G)-1}{2}
$$

which is less than $\rho_{\mathscr{E}_{2}}(G)$, since $\mathscr{E}_{2} \subseteq \mathscr{E}_{1}$ implies $\rho_{\mathscr{E}_{2}}(G) \geqslant \rho_{\mathscr{E}_{1}}(G)$. Therefore, if γ_{1} is a loop face-represented by $\Lambda^{\prime} \cup \Lambda_{1}$, then $\operatorname{cr}\left(\gamma_{1}, G\right)<\rho_{\delta_{2}}(G)$, and so γ_{1} is in \mathscr{C}_{2}.

On the other hand, $\Lambda_{2} \cup \Lambda^{\prime}$ and $\Lambda_{1} \cup \Lambda^{\prime}$ obviously use every face in Λ^{\prime} twice, F_{i} and F_{j} at most twice, and every other face of Λ once. Thus, these two face chains have total length at most $2 k+l+2$, which, by hypothesis, is at most $\rho_{\delta_{1}}(G)+\rho_{\mathscr{\delta}_{2}}(G)-1$.

Let γ_{2} be a loop face-represented by $\Lambda^{\prime} \cup \Lambda_{2}$. Since γ^{*} is freely homotopic to $\gamma_{1} \circ \gamma_{2}$ (care being taken with orientations- γ_{1} and γ_{2} should traverse Λ^{\prime} in opposite directions), the TPP implies that at least one of γ_{1} and γ_{2} is in \mathscr{E}_{2}. Since it is not γ_{1}, it must be γ_{2}. Thus, $\Lambda^{\prime} \cup \Lambda_{2}$ must have length at least $\rho_{\delta_{2}}(G)$, so the inequality at the end of the preceding
paragraph shows $\Lambda^{\prime} \cup \Lambda_{1}$ has length at most $\rho_{\mathscr{\theta}_{1}}(G)-1$. Therefore, γ_{1} is in \mathscr{C}_{1}, as required.

The proof of (2) is the same, except that now $\Lambda^{\prime} \cup \Lambda_{1}$ and $\Lambda^{\prime} \cup \Lambda_{2}$ traverse F_{i} and F_{j} a total of once each.

6. The Main Result

In this section we prove the main result, from which the existence of $\rho / 2$ pairwise disjoint, pairwise homotopic nonseparating cycles follows easily. To ease the cumbersome notation, let $(\mathscr{C}, \mathscr{E})$ be a complete partition of Γ_{Σ} and let G be a graph embedded in Σ. A set of \mathscr{C}-parallels is a set of pairwise disjoint cycles of G, for which there are simple loops having the cycles as images and which are pairwise freely \mathscr{C}-homotopic.

A loop γ^{\prime} is n-freely \mathscr{C}-homotopic to a loop γ if $\gamma^{\prime} \sim_{\mathscr{C}} \gamma^{n}$. We are really only interested in the cases 1 - and 2 -freely \mathscr{C}-homotopic. Our main result is the following.

Theorem 6.1. Let G be a 3-connected graph embedded in a surface Σ with representativity at least 3 . Let $\left(\mathscr{C}_{1}, \mathscr{E}_{1}\right)$ be a crossing partition and let $\left(\mathscr{C}_{2}, \mathscr{E}_{2}\right)$ be a complete partition such that $\mathscr{E}_{2} \subseteq \mathscr{E}_{1}$. Let $\gamma \in \mathscr{E}_{2}$ and let $l=l\left(\gamma, \mathscr{C}_{1}\right)$.
(1) If γ is orientation-preserving, then G has a set of at least $\mathrm{L}\left(\rho_{\mathscr{\delta}_{1}}(G)+\right.$ $\left.\left.\rho_{\mathscr{E}_{2}}(G)-l-1\right) / 2\right\rfloor \mathscr{C}_{1}$-parallels, all in $[\gamma]_{\mathscr{C}_{1}}$.
(2) If γ is orientation-reversing, then G has a set of at least $\mathrm{L}\left(\rho_{\mathscr{\delta}_{1}}(G)+\right.$ $\left.\left.\rho_{\mathscr{E}_{2}}(G)-l-1\right) / 4\right\rfloor \mathscr{C}_{1}$-parallels, all in $\left[\gamma^{2}\right]_{\mathscr{C}_{1}}$, i.e., all 2-freely \mathscr{C}_{1}-homotopic to γ.

Proof. Let $\Lambda=v_{0}, F_{1}, v_{1}, \ldots, F_{l}, v_{l}$ be the simple closed face chain representing a loop in $[\gamma]_{\mathscr{6}}$, which we may take without loss of generality to be γ. The point of the assumption that G is 3-connected and the representativity is at least 3 is to ensure that every vertex v of G has a wheel neighbourhood; i.e., the union of the closed faces incident with v meets the graph in a wheel, with a possibly subdivided rim. (See [RoV].)

We shall only prove (1). The proof of (2) is similar. Let $M=L\left(\rho_{\delta_{1}}(G)+\right.$ $\left.\left.\rho_{\delta_{2}}(G)-l-1\right) / 2\right\rfloor$ and suppose $M \geqslant 1$. We shall construct a set $\left\{C_{1}\right.$, $\left.C_{2}, \ldots, C_{M}\right\}$ of \mathscr{C}_{1}-parallels in $[\gamma]_{\mathscr{C}_{1}}$. The C_{i} with odd indices will be constructed on the right-hand side of γ, while the C_{i} with even indices will be on the left-hand side. The outline for the proof is:
I. Construction of C_{1}.
A. Construction of a loop σ_{1} freely homotopic to γ such that $\sigma_{1}(\mathbf{I}) \subseteq G$.
B. Construction of a simple loop γ_{1} freely \mathscr{C}_{1}-homotopic to γ such that $\gamma_{1}(\mathbf{I}) \subseteq \sigma_{1}(\mathbf{I})$. Then $C_{1}=\gamma_{1}(\mathbf{I})$.

II. Construction of C_{2}.

A. Construction of a loop σ_{2} freely homotopic to γ such that $\sigma_{2}(\mathbf{I}) \subseteq G$.
B. Construction of a simple loop γ_{2} freely \mathscr{C}_{1}-homotopic to γ such that $\gamma_{2}(\mathbf{I}) \subseteq \sigma_{2}(\mathbf{I})$. Then $C_{2}=\gamma_{2}(\mathbf{I})$.
C. C_{1} and C_{2} are disjoint.
III. Construction of C_{n}, given C_{1}, \ldots, C_{n-1}.
A. Construction of a loop σ_{n} freely homotopic to γ_{n-2} such that $\sigma_{n}(\mathbf{I}) \subseteq G$.
B. Construction of a simple loop γ_{n} freely \mathscr{C}_{1}-homotopic to γ such that $\gamma_{n}(\mathbf{I}) \subseteq \sigma_{n}(\mathbf{I})$. Then $C_{n}=\gamma_{n}(\mathbf{I})$.
C. C_{n} and C_{n-2} are disjoint.
D. C_{n} and C_{j} are disjoint, $j=1,2, \ldots, n-3, n-1$.

So now we begin with I , the construction of C_{1}.
A. The construction of σ_{1}. Consider the portions of the boundaries of $F_{1}, F_{2}, \ldots, F_{l}$ on the right-hand side of γ. Specifically, γ splits each of the closed discs F_{i} into two closed discs. As we traverse γ, one side is naturally the left-hand side and the other is the right-hand side. Each of these closed discs is bounded by the portion of γ in F_{i} and part of the boundary of F_{i}.

Since G is a wheel-neighbourhood embedding, distinct faces intersect either not at all or in a vertex or in an edge and its ends. For each $i=1,2, \ldots, l$, let $\alpha_{i}:[0,1] \rightarrow \partial F_{i}$ be a simple path from v_{i-1} to v_{i} on the right-hand side of γ. Then let σ_{1} be the composition $\alpha_{1} \circ \alpha_{2} \circ \cdots \circ \alpha_{l}$.
B. Constructing γ_{1}. It is easy to see that σ_{1} is a loop that is homotopic to γ. If it is a simple loop, then we are done: $\gamma_{1}=\sigma_{1}$. If it is not simple, then there exist t^{\prime} and $t^{\prime \prime}$ such that $0 \leqslant t^{\prime}<t^{\prime \prime}<1$ such that $\sigma\left(t^{\prime}\right)=$ $\sigma\left(t^{\prime \prime}\right)$. With no loss of generality, we can assume $\sigma\left(t^{\prime}\right)$ is a vertex of G. We can suppose v is incident with F_{i} and F_{j}, with $i \neq j$. Apply Theorem 5.2 to find that one of the closed face chains in Λ starting and ending with F_{i} and F_{j} has length $<\rho_{\mathscr{\delta}_{1}}(G)$ and, therefore, represents a loop in \mathscr{C}_{1}. But this loop is freely homotopic to one of the subloops of σ that starts and ends at v. Thus, σ contains a subloop $\beta_{1} \in \mathscr{E}_{2}$ that is freely \mathscr{C}_{1}-homotopic to σ.

There are at most finitely many ordered pairs $\left(t^{\prime}, t^{\prime \prime}\right)$ such that $0 \leqslant t^{\prime}<$ $t^{\prime \prime}<1$ and $\sigma\left(t^{\prime}\right)=\sigma\left(t^{\prime \prime}\right)$ is a vertex of G. The number of such pairs is the vertex multiplicity of σ. Obviously, β_{1} has smaller vertex multiplicity. Therefore, we can repeat this argument finitely often until we arrive at a simple loop γ_{1} that is freely \mathscr{C}_{1}-homotopic to γ.

II. The construction of C_{2}.

A. The construction of σ_{2}. Of course we assume $M \geqslant 2$. Now consider the wheel-neighbourhood N_{i} of $v_{i}, i=1,2, \ldots, l$. The subpath of the loop γ from v_{i-1} through v_{i} to v_{i+1} splits N_{i} into a closed left-hand side $N_{i, L}$ and a closed right-hand side, which meet exactly on the subpath.

The subgraph of $G-\left\{v_{i-1}, v_{i+1}\right\}$ contained in $N_{i, L}$ contains a vertex adjacent to v_{i}, as otherwise there is a single face incident with all of v_{i-1}, v_{i}, and v_{i+1}, which shows there is a closed face chain of length $l-1$ that represents a loop freely homotopic to γ. This contradicts the hypothesis that the \mathscr{C}_{1}-length of γ is l.

Let $\eta_{i}:[0,1] \rightarrow N_{i, L}$ be a simple path whose image is the boundary of $N_{i, L}$ in G from v_{i-1} to v_{i}. Let t_{i} be the least $t>0$ for which $\eta_{i}(t)$ is a vertex x_{i} of G adjacent to v_{i} and let t^{i} be the largest $t<1$ such that $\eta_{i}(t)$ is a vertex y_{i} of G.

Clearly, $y_{i-1}=x_{i}$, where the indices are read modulo l. Let $\alpha_{i}:[0,1] \rightarrow N_{i, L}$ be the subpath of η_{i} restricted to $\left[t_{i}, t^{i}\right]$, so α_{i} is a simple path from x_{i} to y_{i}. The composition σ_{2} of $\alpha_{1}, \ldots, \alpha_{l}$ is a loop freely homotopic to γ.
B. Construction of γ_{2}. Suppose σ_{2} is not a simple loop. Then there exist $0 \leqslant t_{1}<t_{2}<1$ such that $\sigma_{2}\left(t_{1}\right)=\sigma_{2}\left(t_{1}\right)$. Since each α_{i} is simple and every vertex has a wheel neighbourhood, it must be that there exist i and j and numbers t^{\prime} and $t^{\prime \prime}$, not both either 0 or 1 , such that $\alpha_{i}\left(t^{\prime}\right)=\alpha_{j}\left(t^{\prime \prime}\right)$. Clearly, we can choose t^{\prime} and $t^{\prime \prime}$ so that $\alpha_{i}\left(t^{\prime}\right)=\alpha_{j}\left(t^{\prime \prime}\right)=v \in V(G)$.

There is a face F^{\prime} of G incident with both v_{i} and v and there is a face $F^{\prime \prime}$ of G incident with both v_{j} and v. Let Λ^{\prime} be the face chain $v_{i}, F^{\prime}, v, F^{\prime \prime}, v_{j}$ and recall $\Lambda=v_{0}, F_{1}, v_{1}, \ldots, F_{l}, v_{l}$ is the face chain representing γ. Since $M \geqslant 2$, we can apply Theorem 5.2(2) to Λ and Λ^{\prime}, so there is a closed face chain in $\Lambda \cup \Lambda^{\prime}$ through Λ which is so short that it must represent a loop in \mathscr{C}_{1}. The other closed face chain represents a loop in \mathscr{E}_{2}. But each of these is freely homotopic to one of the subloops of σ_{2} from v to v. Let β_{1} be the subloop of σ_{2} that is in \mathscr{E}_{2}.

Clearly, the vertex multiplicity of β_{1} is less than that of σ_{2}. Therefore, in finitely many steps we obtain γ_{2} that has 0 vertex multiplicity and is, by Lemma 5.1, freely \mathscr{C}_{1}-homotopic to γ. It traverses the cycle C_{2}.
C. C_{2} is disjoint from C_{1}. Suppose to the contrary that they have a vertex v in common. Since $\gamma_{2}(\mathbf{I}) \subseteq \bigcup_{i=1}^{l} N_{i, L}$ and $\gamma_{1}(\mathbf{I})$ is contained in the corresponding right-hand sides, there exist i and j such that v is a vertex of both N_{i} and N_{j}. There exist faces F^{\prime} and $F^{\prime \prime}$ such that F^{\prime} is in $N_{i, L}$ and is incident with both v_{i} and v and $F^{\prime \prime}$ is in $N_{i, R}$ and is incident with both v_{j} and v.

Apply Theorem 5.2(2) to the face chain $\Lambda^{\prime \prime}=v_{i}, F^{\prime}, v, F^{\prime \prime}, v_{j}$ and the original face chain Λ. Of the two closed face chains through $\Lambda^{\prime \prime}$, one is so
short that it represents a loop in \mathscr{C}_{1}. This face chain contains another closed face chain through $\Lambda^{\prime \prime}$ that represents a simple loop. This simple loop is crossed transversely only once by γ, contradicting the assumption that $\left(\mathscr{C}_{1}, \mathscr{E}_{1}\right)$ is a crossing partition. Thus, C_{2} is disjoint from C_{1}.

III. Construction of C_{n}, given C_{1}, \ldots, C_{n-1}.

A. Construction of σ_{n}. We assume as inductive hypotheses that $M \geqslant n \geqslant 3$ and that, for $j=3,4, \ldots, n-1$, for each vertex v of C_{j}, there is a face F_{v} incident with both v and a vertex \hat{v} in C_{j-2}-if j is odd, then F_{v} is on the left-hand side of γ_{j} and the right-hand side of γ_{j-2}, while if j is even, then F_{v} is on the right-hand side of γ_{j} and the left-hand side of γ_{j-2}. For each pair of vertices v, v^{\prime} of C_{j}, let $\alpha_{j}\left(v, v^{\prime}\right)$ be the simple subpath of γ_{j} joining v and v^{\prime} (in that order, so $\gamma_{j}=\alpha_{j}\left(v, v^{\prime}\right) \circ \alpha_{j}\left(v^{\prime}, v\right)$). In F_{v} choose a simple path β_{v} from v to \hat{v}. Then we also assume that $\alpha_{j}\left(v, v^{\prime}\right)$ is \mathscr{C}_{1}-homotopic to $\beta_{v} \circ \alpha_{j-2}\left(\hat{v}, \hat{v}^{\prime}\right) \circ \beta_{v^{\prime}}^{-1}$. (This means that there are loops in \mathscr{C}_{1} that can be attached to the former path such that the resulting path is homotopic (with fixed endpoints) to the latter path.) The base of the inductive construction is $n=1$ and $n=2$, for which these additional considerations are vacuous.

We now show how to construct σ_{n} freely homotopic to γ_{n-2}. For sake of definiteness, we shall assume n is odd. The argument is slightly different in the two cases-we shall indicate where the differences occur. Let $0=t_{0}<$ $t_{1}<t_{2}<\cdots<t_{m}=1$ be those t such that $\gamma_{n-2}(t) \in V(G)$. For each $i=1$, $2, \ldots, m$, let $w_{i}=\gamma_{n-2}\left(t_{i}\right)$. We are constructing on the right-hand side of γ_{n-2}-by Proposition 3.4, γ_{n-2} is orientation preserving. (In case n is even, we would construct σ_{n} on the left-hand side of γ_{n-2}.)

For each $i=1,2, \ldots, m$, let N_{i} denote the wheel neighbourhood of w_{i} and let $N_{i, R}$ denote the closed disc in N_{i} on the right-hand side of γ_{n-2}. Thus, $N_{i, R}$ is bounded by a subpath of γ_{n-2} and a path Q_{i} in G. We must deal with the possibility that some of the $N_{i, R}$ consist of a single face.

The ends a_{i} and b_{i} of Q_{i} are obviously among $w_{1}, w_{2}, \ldots, w_{m}$, labelled so that in γ_{n-2}, the order of traversal is a_{i}, w_{i}, b_{i}. Since G is 3 -connected and 3-representative, no single face is incident with all of the w_{i}, and, therefore, some (at least two) of these vertices, say $w_{i_{1}}, w_{i_{2}}, \ldots, w_{i_{r}}$, are such that $w_{i_{s}}$ is incident with an edge in $N_{i_{s}, R}$ that is not in $\gamma_{n-2}(\mathbf{I})$. We choose the labelling so that $0<i_{1}<i_{2}<\cdots i_{r} \leqslant m$.

Now we are ready to construct σ_{n}. For $s=1,2, \ldots, m$, let μ_{s} be a simple path traversing $Q_{i_{s}}$ from $a_{i_{s}}$ to $b_{i_{s}}$. Let x_{s} be the first vertex adjacent to $w_{i_{s}}$ after $a_{i_{s}}$ that μ_{s} encounters and let y_{s} denote the last vertex encountered by μ_{s} before $b_{i_{s}}$. Now let η_{s} denote the subpath of μ_{s} from x_{s} to y_{s}.

A little thought shows that $y_{s-1}=x_{s}$, for $s=1,2, \ldots, r$, with the indices read modulo r. We set σ_{n} to be the composition of $\eta_{1}, \eta_{2}, \ldots, \eta_{r}$. By the construction, it is obvious that σ_{n} is freely homotopic to γ_{n-2}.
B. The construction of γ_{n}. Before we just go ahead and turn σ_{n} into a simple loop, we must be sure to deal with one special situation first, which will guarantee that the simple loop is disjoint from C_{n-2}. Suppose that some vertex w_{j} of C_{n-2} is traversed by σ_{n}. Then there is a vertex $w_{i_{s}}$ and a face F that is incident with both w_{j} and $w_{i_{s}}$. Let β be a simple path in F joining w_{j} and $w_{i_{s}}$.

We first rule out the possibility that F is on the left-hand side of γ_{n-2} at w_{j}. For we can, as before, find a face chain from each of w_{j} and $w_{i_{s}}$ back to C_{1}, and obtain a loop that is in \mathscr{C}_{1}. This loop "lifts" back to a loop κ including β and a portion of γ_{n-2} that is in \mathscr{C}_{1}. But then κ is simple and crosses γ_{n-2} transversely only once, contradicting the assumption that $\left(\mathscr{C}_{1}, \mathscr{E}_{1}\right)$ is a crossing partition.

Therefore, F is on the right-hand side of γ at w_{j} and it follows that $j=i_{s^{\prime}}$ for some s^{\prime}. We can assume that $1 \leqslant s<s^{\prime} \leqslant r$ and we can deduce that s and s^{\prime} are not consecutive in the cyclic ordering ($1,2, \ldots, r$). Choose such an s^{\prime} so that $s^{\prime}-s$ is minimized.

In particular, $w_{i_{s^{\prime} 1}}$ does not occur in the boundary of the face F. This means that, in the wheel neighbourhood of $w_{i_{s}}$, the face F is not that face incident with $w_{i_{s^{\prime}-1}}$, so that $w_{i_{s}}$ is traversed by $\eta_{s^{\prime}}$.

There are face chains Λ_{s} and $\Lambda_{s^{\prime}}$ from each of $w_{i_{s}}$ and $w_{i_{s}}$ to Λ, using faces on the left-hand side of γ_{n-2}. Let Λ^{\prime} be the face chain made up from F, Λ_{s}, and $\Lambda_{s^{\prime}}$. By Theorem 5.2(1), this is so short that, together with part of Λ, it face represents a loop in \mathscr{C}_{1}. Moreover, it lifts to show that either the subpath of σ_{n} from $w_{i_{s}}$ to $w_{i_{s}}$ or the subpath of σ_{n} from $w_{i_{s}}$ to $w_{i_{s}}$, together with a path across F, makes a loop in \mathscr{C}_{1}.

If a and b are the neighbours of $w_{i_{s}}$ in ∂F, then these are repeated vertices in σ_{n}. For one or the other of these, there is a subloop of σ_{n} with the neighbour as basepoint that is both in \mathscr{C}_{1} and contains the traversals of both $w_{i_{s}}$ and $w_{i_{s}}$. This is a "special" subloop.

Now suppose there is some vertex v of G that is visited more than once by σ_{n}. We note it is not visited more than r times. Let us suppose $\sigma_{n}\left(t_{1}\right)=$ $\sigma_{n}\left(t_{2}\right)=v$ for some $0 \leqslant t_{1}<t_{2}<1$. Then σ_{n} restricted to each of $\left[t_{1}, t_{2}\right]$ and $\left[0, t_{1}\right] \cup\left[t_{2}, 1\right]$ is a loop whose composition is in \mathscr{E}_{2}.

Claim 1. One of these two loops is in \mathscr{C}_{1}.

This claim is the heart of the whole matter. Suppose v occurs in $\eta_{p}(\mathbf{I})$ and $\eta_{q}(\mathbf{I})$, with $1 \leqslant p<q \leqslant r$. Then v is incident with a face F_{1} that is also incident with $w_{i_{p}}$ and with a face F_{1}^{\prime} that is also incident with $w_{i_{q}}$. Now we can apply the inductive assumption to find faces $F_{2}, F_{3}, \ldots, F_{(n-1) / 2}$ and $F_{2}^{\prime}, F_{3}^{\prime}, \ldots, F_{(n-1) / 2}^{\prime}$ so that the face chain $v, F_{1}, w_{i_{p}}, F_{2}, \hat{w}_{i_{p}}, F_{3}, \ldots, F_{(n-1) / 2}$, v^{*} joins v to a vertex v^{*} in C_{1} and the face chain $v, F_{1}^{\prime}, w_{i_{q}}, F_{2}^{\prime}, \hat{w}_{i_{q}}, F_{3}^{\prime}, \ldots$, $F_{(n-1) / 2}^{\prime}, v^{+}$joins v to a vertex v^{+}in C_{1}.

Thus, the face chain Λ_{v} from v^{*} to v^{+}obtained by concatenating these face chains has length $n-1$. Since $n \leqslant M$, Theorem 5.2(1) applies. (If n is even, a similar argument, which we omit, is required to show that Theorem 5.2(1) applies.) Therefore, there is a face chain Λ_{v}^{*} containing Λ_{v} and a portion of the original face chain Λ that represents a loop κ_{1} in \mathscr{C}_{1}. Now we can use the inductive assumption to find a loop κ_{2} that is freely \mathscr{C}_{1}-homotopic to κ_{1} (and so it is in \mathscr{C}_{1}, but it only uses the portions of Λ_{v} down to C_{3} and then cuts across γ_{3}).

Repeating this $(n-1) / 2$ times, we get a loop $\kappa_{(n-1) / 2}$ that consists of a simple path in F_{1}, a simple path in F_{1}^{\prime}, and a portion of $\gamma_{n-2} ; \kappa_{(n-1) / 2}$ is in \mathscr{C}_{1}. But by construction of σ_{n}, the loop $\kappa_{(n-1) / 2}$ is homotopic to one of the subloops of σ_{n}. Therefore, one of the two loops in the statement of the claim is in \mathscr{C}_{1} and Claim 1 is proved.

Because each vertex of G is visited at most finitely often by σ_{n}, in finitely many steps we can remove loops in \mathscr{C}_{1} from σ_{n} and obtain a simple loop γ_{n} that is in \mathscr{E}_{2}, being sure to start by removing the "special" subloops.

The proof will be complete when we show that the inductive properties still hold. First, it is obvious that every vertex in $C_{n}=\gamma_{n}(\mathbf{I})$ is incident with a face that is on the left-hand side of γ_{n} that is also incident with some one of the $w_{i_{s}}$ on the right-hand side of γ_{n-2}. Therefore, we need only prove that if v and v^{\prime} are any two vertices of C_{n}, then each of the portions of γ_{n} between them is \mathscr{C}_{1}-homotopic to the corresponding portion of γ_{n-2}.

But this is also obvious from the construction; there are only finitely many \mathscr{C}_{1} loops in σ_{n} that have been avoided in obtaining γ_{n}. In the portion of the traversal of γ_{n} under consideration, replace these \mathscr{C}_{1} loops to obtain a subpath of σ_{n} from v to v^{\prime} that is homotopic to the path in γ_{n-2}. Therefore, the path in γ_{n} is \mathscr{C}_{1}-homotopic to this path, as required.
C. C_{n} is disjoint from C_{n-2}. This was guaranteed by the removal of the "special" subloops of σ_{n}.
D. C_{n} is disjoint from $C_{j}, j=1,2, \ldots, n-3, n-1$. Let j be largest such that C_{n} and C_{j} have a common vertex v. If j and n have different parity (i.e., if j is even), then there is a face chain from v through $C_{n-2}, C_{n-4}, \ldots, C_{1}$ and through C_{j-2}, C_{j-4}, \ldots to a vertex incident with a face of Λ. The last faces of these chains are on different sides of γ. These face chains combine to a single face chain Λ^{\prime} to which Theorem 5.2(1) applies. Thus, there is a closed face chain containing part of Λ that is so short it represent a loop in \mathscr{C}_{1}. In fact, we can find within this first face chain a face chain that contains a part of Λ and the last faces mentioned previously, but which represents a simple loop. This face chain is so short that the simple loop in \mathscr{C}_{1}.

But this simple loop crosses γ transversely exactly one, a contradiction to the assumption that $\left(\mathscr{C}_{1}, \mathscr{E}_{1}\right)$ is a crossing partition.

If, on the other hand, j is odd, then there are face chains from v through C_{n-2}, \ldots, C_{1} and through C_{j-2}, \ldots, C_{1}. These combine with a face chain within Λ to produce a face chain so short that it represents a loop in \mathscr{C}_{1}. Again, we can find within this a face chain that contains the first two faces of the ones down from v and it represents a simple loop in \mathscr{C}_{1}. This loop crosses γ_{n-2} transversely exactly once, again contradicting the fact that $\left(\mathscr{C}_{1}, \mathscr{E}_{1}\right)$ is a crossing partition.

7. Consequences of the Main Theorem

There are obviously many possible consequence of Theorem 6.1, as we have many possible choices for $\mathscr{C}_{1}, \mathscr{C}_{2}$, and γ. One somewhat surprising result is the following.

Corollary 7.1. Let G be a graph embedded in an orientable surface Σ and let $(\mathscr{C}, \mathscr{E})$ be any complete partition. Then G contains a set of $\lfloor(\rho(G)-1) / 2\rfloor$ pairwise disjoint, pairwise freely homotopic cycles, each traversed by a simple loop in \mathscr{E}.

We just remark that to prove Corollary 7.1, we must have $\rho(G) \geqslant 3$ for the conclusion to have any content, in which case we can assume G is 3 -connected (see [RoV]). Thus, Theorem 6.1 applies and we can choose γ to be in \mathscr{E} so that it attains the \mathscr{C}-representativity. The following (which is the main concrete result of this work) is obtained by choosing $(\mathscr{C}, \mathscr{E})$ to be the separating partition $\left(\mathscr{C}_{s}, \mathscr{E}_{s}\right)$.

Corollary 7.2. Let G be a graph embedded in an orientable surface Σ. Then G contains a set of $\lfloor(\rho(G)-1) / 2\rfloor$ pairwise disjoint, pairwise freely homotopic nonseparating cycles.

In a similar vein, we have the following.

Corollary 7.3. Let G be a graph embedded in a nonorientable surface Σ. Let $(\mathscr{C}, \mathscr{E})$ be a complete partition such that \mathscr{E} contains only orientationreversing loops. Then G has a set of $L(\rho(G)-1) / 4\rfloor$ pairwise disjoint pairwise homotopic cycles, each traversed by a loop which is 2-freely homotopic to a loop in \mathscr{E}.

If the nonorientable genus of Σ is at least 2 , then each of the cycles in Corollary 7.3 separates the surface into two pieces, neither of which is homeomorphic to a disc. There is more about separating cycles in the next section.

We conclude this section with some remarks about algorithms. One of the most important issues that needs resolution is to know how a complete partition might be "given."

Thomassen's three path algorithm [T1] shows that if $(\mathscr{C}, \mathscr{E})$ is a complete partition and there is a polynomial algorithm for determining if a (simple loop that traverses a) cycle P is in \mathscr{E}, then there is a polynomial algorithm for finding a shortest cycle in \mathscr{E}. Thomassen describes a polynomial algorithm to determine if a cycle is separating and a polynomial algorithm to determine if a cycle is essential. Therefore, our proofs shows there is a polynomial time algorithm to find the $\rho / 2$ pairwise disjoint, pairwise homotopic nonseparating cycles guaranteed in Corollary 7.2.

But for other, more exotic, complete partitions, the situation is less clear. It would be quite interesting to know if membership in \mathscr{E} can always be determined in polynomial time for any complete partition $(\mathscr{C}, \mathscr{E})$.

8. Noncontractible Separating Cycles

In this section, we prove an analogue of Corollary 7.2 for noncontractible separating cycles in the embedded graph. Recall that $\left(\mathscr{O}_{0}, \mathscr{E}_{0}\right)$ is the fundamental partition, so that \mathscr{C}_{0} consists of the contractible loops.

Theorem 8.1. Let G be a 3-connected embedding with representativity ρ in an orientable surface of genus at least 2. Let $(\mathscr{C}, \mathscr{E})$ be any complete partition, let $\gamma \in \mathscr{E}$ and let $l=l\left(\gamma, \mathscr{C}_{0}\right)$. Then G contains

$$
\left\lfloor\frac{\rho+\rho_{\delta}(G)-l-1}{8}\right\rfloor-1
$$

pairwise disjoint, pairwise freely homotopic cycles, each separating a homotope of γ from some other loop in \mathscr{E}_{0}.

Proof. Let t be the largest positive integer such that $2 t \leqslant\left(\rho+\rho_{\mathscr{E}}-\right.$ $l-1) / 2$. In order for the theorem to have any content, we must have $2 t \geqslant 8$ and, therefore, $\rho \geqslant 17$. By theorem 6.1, there are $2 t \mathscr{C}_{0}$-parallels in G, each homotopic to γ. Let them be $C_{1}, C_{2}, \ldots, C_{2 t}$, labelled so that, for each $j=2, \ldots, 2 t, C_{j-1}$ and C_{j} bound a cylinder \mathbf{C}_{j} containing all the cycles C_{1}, \ldots, C_{j-2}.

If γ is separating, then the cycles $C_{1}, \ldots, C_{2 t}$ more than satisfy the conclusion of the theorem. Thus, we may assume γ is not separating.

Let $v_{0}, f_{1}, v_{1}, f_{2}, \ldots, f_{k}, v_{k}$ be a shortest face chain disjoint from the interior of \mathbf{C}_{1} with $v_{0} \in V\left(C_{1}\right)$ and $v_{k} \in V\left(C_{2}\right)$. Let γ^{\prime} denote the simple path through these faces and their connecting vertices, so that γ^{\prime} joins a vertex of $f_{1} \cap C_{1}$ to a vertex of $f_{k} \cap C_{2}$.

Now we look for disjoint paths in G homotopic to γ^{\prime}, disjoint from the interior of \mathbf{C}_{1}, and only their endpoints are in $C_{1} \cup C_{2}$. (In this context, a homotopy allows the endpoints to vary, although they must remain on C_{1} and C_{2}.) Let W_{1} be the walk from v_{0} to v_{k} through the boundaries of $f_{1}, f_{2}, \ldots, f_{k}$ on one side of γ^{\prime}.

Suppose this walk has a repeated vertex v, so v is incident with f_{i} and f_{j}, with $1 \leqslant i<j \leqslant k$. If $j \neq i+1$, then the face chain $v_{0}, f_{1}, \ldots, v_{i-1}, f_{i}, v, f_{j}$, $v_{j}, \ldots, f_{k}, v_{k}$ joins C_{1} to C_{2} and is shorter than f_{1}, \ldots, f_{k}. This is impossible, so $j=i+1$. As G is 3 -connected and $\rho \geqslant 3$, the intersection of two faces is either empty, a vertex, or an edge with its two ends. Therefore, f_{i} and f_{i+1} must intersect in an edge and the walk W_{1} traverses this edge twice, as (..., $u, e, v, e, u, \ldots)$. Simply deleting these two traversals of e from the walk (for all occurrences of such traversals) produces a path P_{1} homotopic to γ^{\prime}. Note that P_{1} is disjoint from the interior of \mathbf{C}_{1} and P_{1} has one end on C_{1} and the other end on C_{2}. It is not clear that P_{1} necessarily is internally disjoint from C_{1} and C_{2}-in fact this need not be the case. But any such intersections must take place within the cylinder containing γ and bounded by C_{3} and C_{4}. Therefore, the fact that the face chain $v_{0}, f_{1}, \ldots, f_{k}, v_{k}$ is shortest implies that simply taking P_{1} to start at its last intersection with C_{1} and finish at its first intersection with C_{2} yields a path still homotopic to γ^{\prime}.

By an argument very similar to that used in the proof of Theorem 6.1 to get the loop σ_{2} (on the way to obtaining C_{2}), we get a walk W_{2} homotopic to γ^{\prime} and W_{2} is on the side of γ^{\prime} opposite to P_{1}, with the ends being chosen so that W_{2} meets C_{1} and C_{2} only at its ends. We claim that W_{2} is disjoint from P_{1} and contains a path P_{2} homotopic to γ^{\prime}.

As to disjointness, suppose there is a vertex v of P_{1} also in W_{2}. Then v is in the boundary of the face f_{i} and is in the wheel neighbourhood of the vertex w in common between f_{j-1} and f_{j}. Suppose, without loss of generality, that $i \geqslant j$. If $i \neq j, j+1$, then there is a face chain shorter than $v_{0}, f_{1}, \ldots, f_{k}, v_{k}$ joining C_{1} and C_{2}, which is impossible. If $i=j$ or $j+1$, then there is a simple loop from v to w, through f_{j} and f_{i} back to v. This loop goes through at most three vertices and faces, crosses γ^{\prime} transversely exactly once, and is disjoint from the interior of \mathbf{C}_{1}. Therefore, it is noncontractible, so $\rho \leqslant 3$, another contradiction. Therefore, W_{2} and P_{1} are disjoint.

Observe that both W_{2} and P_{1} are homotopic to γ^{\prime} (keeping the endpoints in the homotopy on C_{1} and C_{2}). Suppose W_{2} has a repeated vertex v, with v in the wheel neighbourhoods of w and x. In order not to have a shorter sequence of faces joining C_{1} and C_{2}, w and x can be separated by no more than two faces in the chain $v_{0}, f_{1}, \ldots, f_{k}, v_{k}$. This produces a face chain through v, w, x of length at most 4 . As $\rho \geqslant 17$, this must be contained in a disc. Deleting the portion of W_{2} that is in this disc produces a shorter walk that is homotopic to γ^{\prime}. Continuing in this way, we end up with a path P_{2},
contained in W_{2}, that is homotopic to γ^{\prime}. This path, P_{2}, has one end in C_{1} and the other in C_{2}, but is otherwise disjoint from the cyclinder \mathbf{C}_{1}.

For $i=1,2$, let u_{i} be the vertex of P_{i} in C_{1} and let v_{i} be the end of P_{i} in C_{2}. There are paths Q_{1} and Q_{2} in C_{1} and C_{2}, respectively, with Q_{1} joining u_{1} and u_{2} and Q_{2} joining v_{1} and v_{2}, such that $P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2}$ is a contractible cycle.

The first noncontractible separating cycle we get is the cycle $C_{1}^{*}=P_{1} \cup$ $P_{2} \cup R_{1} \cup R_{2}$, where R_{1} is the path complementary to Q_{1} in C_{1} joining u_{1} and u_{2}, and R_{2} is the analogous path in C_{2}. It is clear that this is separating, as one side is the region F consisting of \mathbf{C}_{1} and the disc bounded by $P_{1} \cup P_{2} \cup Q_{1} \cup Q_{2}$. Cut out F and cap the cycle C_{1}^{*} with a disc on both pieces, giving surfaces Σ_{1} and Σ_{2}, with the former containing F. Then Σ is the connected sum of Σ_{1} and Σ_{2}, so $\mathfrak{g}(\Sigma)=\mathfrak{g}\left(\Sigma_{1}\right)+\mathfrak{g}\left(\Sigma_{2}\right)$.

The only question is, what is $\mathfrak{g}\left(\Sigma_{1}\right)$? It is at least 1 , since it contains the noncontractible loop γ that we started with. It is not more than 1 , since there is no noncontractible loop that is not freely homotopic to γ and disjoint from γ. Hence, it must be exactly 1 . Since $\mathfrak{g}(\Sigma)>1$, we see that $\mathfrak{g}\left(\Sigma_{2}\right) \geqslant 1$ and, therefore, C_{1}^{*} is an noncontractible separating cycle.

In order to construct the remaining separating parallels, recall we have the $2 t$ parallels $C_{1}, \ldots, C_{2 t}$. We suppose we have $2 j$ disjoint homotopic paths $P_{1}, \ldots, P_{2 j}$, each joining a vertex of C_{1} to a vertex of C_{2}, but otherwise disjoint from \mathbf{C}_{1}. The labelling is such that P_{1}, P_{3}, \ldots occur in this order going away from γ^{\prime} and P_{2}, P_{4}, \ldots occur in this order going away from γ^{\prime} and on the other side of γ^{\prime} from P_{1}, P_{3}, \ldots. If $j<t-1$, then we describe how to obtain $P_{2 j+1}$ and $P_{2 j+2}$. We also assume that, for every $i \leqslant j$, each vertex of $P_{2 i-1}$ is incident with a face in a face chain, disjoint from the interior of the cylinder bounded by C_{1} and C_{2}, of length at most $i-1$ ending at a face incident with a vertex of P_{1}; for the vertices of $P_{2 i}$, they are in such a chain of length at most $i-1$ ending at a face incident with a vertex of P_{2}.

The paths $P_{2 j+1}$ and $P_{2 j+2}$ are to be found in the wheel neighbourhoods of the vertices of $P_{2 j-1}$ and $P_{2 j}$, respectively, making sure we go on the "outer" side. The concerns which need to be addressed are the following:
(1) we actually construct paths;
(2) the new paths are disjoint from the previous paths and from each other;
(3) the new paths are homotopic to the previous paths; and
(4) no internal vertex of any path is in $C_{1} \cup C_{2}$.

The construction is essentially the same as that for the \mathscr{C}_{1}-parallels presented in the proof of Theorem 6.1. We must determine the walk that
will contain the path. So, for example, we consider the possibility that two vertices v, w of $P_{2 j-1}$ are incident with a common face f on the outer side of $P_{2 j-1}$. There are face chains of length at most $j-1$ from each of v and w to P_{1}, ending at vertices incident with faces f_{r} and f_{s}, respectively, with $1 \leqslant r \leqslant s \leqslant k$. Then there is a face chain through $f_{1}, \ldots, f_{r}, v, f, w$, and $f_{s}, f_{s+1}, \ldots, f_{k}$ of length at most $2 j-2+1+r+k-s+1$ joining C_{1} to C_{2}. This must be at least k, so $2 j \geqslant s-r$. On the other hand, there is a closed face chain through v, f, w, and $f_{r}, f_{r+1}, \ldots, f_{s}$ which has length at most $2 j-2+1+s-r+1 \leqslant 4 j \leqslant 4(t-2)<\rho$. Therefore, the loop face-represented by this face chain is contractible. In this way, we get the same nesting effect as in the proof of Theorem 6.1 and can describe the required walk W which is homotopic to $P_{2 j-1}$.

The remaining items are handled by similar arguments. It is useful to keep in mind that the best general inequality we can get for $4 t$ is $4 t \leqslant \rho-1$. In one case, we actually are right at this inequality, so that we cannot guarantee any more disjoint paths in this homotopy class.

Each of the remaining noncontractible separating cycles $C_{j}^{*}, j \geqslant 2$, is obtained from the cycles $C_{2 j-1}$ and $C_{2 j}$ and the paths $P_{2 j-1}$ and $P_{2 j}$, in a manner similar to that for C_{1}^{*}. We must be careful to make sure C_{j}^{*} is a cycle and that it is homotopic to C_{1}^{*}. If $P_{2 j-1}$ and $P_{2 j}$ both meet each of $C_{2 j-1}$ and $C_{2 j}$ in a single point, then there is no difficulty.

Suppose, then, for example, that $P_{2 j}$ has at least two vertices in common with $C_{2 j}$. (There are really four cases here, but they are all handled in the same manner.) Let x be the last vertex (as we traverse $P_{2 j}$ from C_{2} to C_{1}) in $P_{2 j}$ that is in $C_{2 j}$. There is a face chain of length at most j joining x to a vertex w_{i} incident with both f_{i} and f_{i+1} (faces of the original chain joining C_{1} and C_{2}). There is a second face chain of length at most j joining x to a vertex of the face chain of length l that is contained in \mathbf{C}_{1}. Combining these two face chains with the part of the face chain from w_{i} to C_{1} (which has length i), we get a face chain of length at most $2 j+i$ from C_{1} to C_{k}. This must be at least k, so that $2 j \geqslant k-i$.

On the other hand, using the other part of the face chain from C_{1} to C_{2}, we get a face chain between two vertices of the face chain of length l of length at most $2 j+(k+1-i)$. If this has length at most $\left(\rho+\rho_{\mathscr{E}}-l-1\right) / 2-1$, then Theorem 5.2 implies that there is a face chain using this one and part of the one representing γ that is represents a contractible loop. This happens certainly if $4 j+1 \leqslant\left(\rho+\rho_{\mathscr{E}}-l-1\right) / 2-1$, which is the limiting factor in the number of separating parallels that we get.

Corollary 8.1.1. Let G be a graph embedded with representativity ρ in an orientable surface Σ of genus at least two. Then there is a set of $\lfloor(\rho-1) / 8\rfloor-1$ pairwise disjoint, pairwise homotopic noncontractible separating cycles.

9. Miscellaneous Improvements and Results

In this section, we discuss the existence of a single noncontractible separating cycle. In the nonorientable case, Corollary 7.3 assures us that such a cycle exists whenever $\rho \geqslant 5$ and $\tilde{\mathfrak{g}}(\Sigma) \geqslant 2$-we do not know how to improve this. However, in the orientable case, Theorem 8.1 requires $\rho \geqslant 17$ to get the first noncontractible separating cycle. This is not as good as the bound of 7 in [ZZ]. However, if one only wishes just one noncontractible separating cycle, the argument of [ZZ] can be improved, as shown below, to apply to 6 -representative embeddings in orientable surfaces.

Theorem 9.1. Let G be embedded in an orientable surface Σ of genus at least 2. If G is 6 -representative, then G has a noncontractible separating cycle.

Proof. As discussed earlier, we may assume G is 3-connected. Let ρ be the representativity of G and let $v_{0}, f_{1}, \ldots, f_{\rho}, v_{\rho}$ be a face chain facerepresenting a noncontractible loop γ. If $\rho \geqslant 7$, then we let C_{1} be a cycle through the boundaries of the f_{i} on one side of γ (as in the proof of Theorem 6.1). (So if γ is separating, then we are done, so we can assume γ is not separating.)

We then get C_{2} as in the proof of Theorem 6.1 , so C_{2} goes through the boundaries of the wheel neighbourhoods of the vertices through which γ passes, on the other side of γ.

If $\rho=6$, then we let $v_{1}, v_{2}, \ldots, v_{6}$ be the vertices through which γ passes, in this order. Choose C_{1} to go through v_{1}, v_{3}, v_{5} and the boundaries of the wheel neighbourhoods of v_{2}, v_{4}, v_{6}-all on one side of γ. Choose C_{2} to go through v_{2}, v_{4}, v_{6} and the boundaries of the wheel neighbourhoods of v_{1}, v_{3}, v_{5}, all on the other side of γ. It is easy to see that these are disjoint homotopic noncontractible cycles.

Let $x_{0}, g_{1}, \ldots, g_{k}, x_{k}$ be a shortest face chain joining a vertex x_{0} of C_{1} and a vertex x_{k} of C_{2} that is disjoint from the interior of the cylinder bounded by C_{1} and C_{2}. Let γ^{\prime} be the path face-represented by the g_{j}, so γ^{\prime} meets the graph exactly at x_{0}, \ldots, x_{k}. We pick one side of γ^{\prime} on which to construct P_{1}; P_{2} is constructed on the other side of γ^{\prime}.

Consider the wheel neighbourhood of x_{k-1}. Suppose some other face g incident with x_{k-1} is incident with some vertex u of C_{2}, with g on the specified side of γ^{\prime}. As we rotate around x_{k-1}, starting at the portion of γ^{\prime} joining x_{k-1} to x_{k} and staying on the specified side of γ^{\prime}, let g be selected so that as we continue from g in this rotation, there is no face between g and g_{k-1} that has a vertex in C_{2}. We redefine our face chain so that g_{k} is this face g. Now, with γ^{\prime} going through the new g_{k} and keeping the same side, there are no faces incident with both x_{k-1} and a vertex of C_{2} on that
side of γ^{\prime}. We perform the same operation at x_{1}, so that no face incident with x_{1} on the specified side of γ^{\prime} is incident with a vertex of C_{1}.

Now, let P_{1} be the path through the face boundaries on the side of γ^{\prime} opposite to the specified side. (Of course, P_{1} might not be a path, but is only trivially not a path-see the proof of Theorem 8.1.) We proceed exactly as in the proof of Theorem 8.1 to construct the path P_{2}. However, the arguments presented in the proof of Theorem 8.1 do not adequately deal with the possibility that W_{2} returns to C_{1} or hits C_{2} twice. In the context of Theorem 8.1, this did not matter, since we had this all within the cylinder bounded by C_{3} and C_{4}.

Suppose W_{2} has two vertices u and v incident with C_{1}. Then we can assume $u=x_{0}$ and v is incident with a face f incident with x_{0} (recall no face incident with x_{1} that is used in creating W_{2} is incident with a vertex of C_{1}). Let x_{0} be incident with the original face f_{i} and v with f_{j}. Then $|i-j| \leqslant 2$, by representativity. This gives a face chain of length at most 4 , representing a contractible loop, so we can simply delete the first part of W_{2} and get a new walk in the same homotopy class. Continuing in this way, we may assume W_{2} has only one vertex in C_{1}.

At the other end, there is the same problem to consider, but it requires a little more delicacy. Suppose W_{2} meets C_{2} at the vertex v before the end of W_{2}, which is at u. By the construction, the face incident with v must be incident also with x_{k}. Let v and x_{k} be incident with faces in the wheel neighbourhoods of v_{i} and v_{j}, respectively. By representativity, $|i-j| \leqslant 3$. This gives a face chain of length at most 6 , so if $\rho \geqslant 7$, the face-represented loop is contractible and we proceed as in the preceding paragraph. (This is the argument of [ZZ$]$.)

If $\rho=6$ and $|i-j| \leqslant 2$, then we are done anyway. If $|i-j|=3$, then our careful construction of C_{1} and C_{2} shows that we can save one face in getting to one of v_{i} and v_{j}, because in the construction of C_{2}, we did not use both the wheel neighbourhood at v_{i} and the wheel neighbourhood at v_{j}. Therefore, the face chain has length at most 5 , and we get the required contractible face-represented loop.

The rest of the proof proceeds exactly as in the proof of Theorem 8.1 for the first noncontractible separating cycle.

Finally, we have a simple, but related fact.

Theorem 9.2. Let C_{1} and C_{2} be disjoint homotopic noncontractible cycles in a graph G embedded in a surface Σ, and let $l=l\left(C_{1}, \mathscr{C}_{0}\right)$. Then G contains l totally disjoint paths, each contained within the cylinder bounded by C_{1} and C_{2} and each having one end in C_{1} and the other end in C_{2}.

Proof. Let P_{1}, \ldots, P_{k} be a maximum collection of such disjoint paths in the cylinder Q bounded by C_{1} and C_{2}. By Menger's theorem, there are k vertices v_{1}, \ldots, v_{k} such that every path in Q from C_{1} to C_{2} (from now on called a (C_{1}, C_{2})-path) goes through at least one of the v_{i}. Without loss of generality, we assume v_{i} is on P_{i}.

For $i=1, \ldots, k$ and $j=1,2$, let the path P_{i} have end $u_{i j}$ on C_{j}. The cyclic order of the $u_{i 1}$ in C_{1} is the same as that of the $u_{i 2}$ on C_{2}. We assume these orders are $\left(u_{1 j}, u_{2 j}, \ldots, u_{k j}\right)$, for $j=1,2$.

We claim there is a face f_{i} within Q incident with both v_{i} and v_{i+1}. To see this, let $Q_{i j}$ denote the part of C_{j} between $u_{i j}$ and $u_{(i+1) j}$. Let $P_{i 1}$ and $P_{i 2}$ be the segments of P_{i} from C_{1} to v_{i} and from v_{i} to C_{2}, respectively. There is no path P in the graph from an internal vertex of $P_{i 1} \cup Q_{i 1} \cup$ $P_{(i+1) 1}$ to an internal vertex of $P_{i 2} \cup Q_{i 2} \cup P_{(i+1) 2}$ so that P (except for its endpoints) is contained in the open disc bounded $P_{i} \cup P_{i+1} \cup Q_{i 1} \cup Q_{i 2}$. For if such a P exists, then there is a $\left(C_{1}, C_{2}\right)$-path disjoint from the $\left\{v_{1}, \ldots, v_{k}\right\}$. It follows that the required face f_{i} exists.

The face chain $v_{1}, f_{1}, v_{2}, \ldots, v_{k}, f_{k}, v_{1}$ face-represents a loop that is homotopic to C_{1} and meets the graph only at v_{1}, \ldots, v_{k}. By definition of l, we have $k \geqslant l$, so we are done.

References

[AVR] M. Anderson, R. B. Richter, and R. P. Vitray, Representativity and discs in embedded graphs, preprint.
[B] R. Brunet, "On the Homotopy of Polygons in Graph Embeddings," Ph.D. thesis, Carleton University, 1993.
[FHRRo] J. R. Fiedler, J. P. Huneke, R. B. Richter, and N. Robertson, Computing the orientable genus of projective graphs, J. Graph Theory 20 (1995), 297-308.
[GH] M. J. Greenberg and J. R. Harper, "Algebraic Topology: A First Course," Mathematics Lecture Notes Series, Addison-Wesley, New York, 1981.
[HR] P. Hoffman and B. Richter, Embedding graphs in surfaces, J. Combin. Theory Ser. B 36 (1984), 65-84.
[MR] B. Mohar and N. Robertson, Disjoint essential circuits in toroidal maps, in "Planar Graphs" (W. T. Trotter, Ed.), Dimacs Series in Discrete Math. and Theor. Comp. Sci. Vol. 9, Amer. Math. Soc., Providence, RI, 1993, pp. 109-130.
[Mu] J. R. Munkres, "Topology: A First Course," Prentice-Hall, Englewood Cliffs, NJ, 1975.
[RV] R. B. Richter and R. Vitray, Contractible and noncontractible curves in surfaces, preprint.
[RoV] N. Robertson and R. Vitray, Representativity of surface embeddings, in "Paths, Flows, and VLSI-Layout" (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, Eds.), pp. 293-328, Springer-Verlag, Berlin, 1990.
[S1] A. Schrijver, Disjoint circuits of prescribed homotopies in a graph on a compact surface, J. Combin. Theory Ser. B 51 (1991), 127-159.
[S2] A. Schrijver, Graphs on the torus and geometry of numbers, J. Combin. Theory Ser. B 58 (1993), 147-158.
[T1] C. Thomassen, Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B 48 (1990), 155-177.
[T2] C. Thomassen, Trees in triangulations, J. Combin. Theory Ser. B $\mathbf{6 0}$ (1994), 56-62.
[Y] X. Yu, Disjoint paths, planarizing cycles, and spanning walks, preprint.
[ZZ] X. Zha and Y. Zhao, On non-null separating circuits in embedded graphs, Contemp. Math. 147 (1993), 349-362; in "Graph Structure Theory" (N. Robertson and P. D. Seymour, Eds.), Amer. Math. Soc., Providence, RI, 1993.

