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We show that if a graph G is embedded in a surface 7 with representativity \,
then G contains at least w(\&1)�2x pairwise disjoint, pairwise homotopic, non-
separating (in 7) cycles, and G contains at least w(\&1)�8x&1 pairwise disjoint,
pairwise homotopic, separating, noncontractible cycles. � 1996 Academic Press, Inc.

1. Introduction

Several recent papers deal with the representativity of an embedded
graph, e.g., [RoV, RV, S2, FHRRo]. This is a nonnegative integer \ that
measures how densely a graph is embedded in a surface (and will be
defined precisely later). Of particular interest are results that show that
large representativity forces particular structures in the embedded graph.
For example,

(1) there are w \�2x disjoint contractible cycles in the graph, all
bounding discs containing a particular face [FHRRo];

(2) there are w(3\)�4x disjoint noncontractible cycles in any embedding
in the torus [S2];

(3) if \>c23g and G is a triangulation of the sphere with g handles,
then G has a spanning tree with maximum degree at most 4 [T2];
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(4) if \>c22g and G is a 3-connected (4-connected) graph embedded
in the sphere with g handles, then G has a closed spanning walk that visits
each vertex at most 3 (2) times [Y]; and

(5) if \>c22g and G is a 5-connected triangulation of the sphere with
g handles, then G has a Hamilton cycle [Y].

One of the main goals of this article is to show that every embedded
graph has at least w(\&1)�2x pairwise disjoint, pairwise homotopic cycles
that are not separating in the surface.

A second goal is to prove that every graph embedded in a surface with
genus at least 2 has at least w(\&1)�8x&1 pairwise disjoint, pairwise
homotopic cycles that are not contractible but separate the surface. Zha
and Zhao have shown that if the embedding is 7-representative, then there
is a noncontractible separating cycle [ZZ]; we improve this here to
6-representative.

Our results are more general than this, in that the homotopy type of the
polygons can be restricted to some specific class of curves that has additional
algebraic structure. The details of this additional structure will be made clear
in the presentation. Although the homotopy type cannot be completely
prescribed, this does make progress on questions raised by Mohar and
Robertson [MR].

A referee of an earlier version of this article has pointed out that the
results about noncontractible separating cycles follow from [S1], which
gives a very general characterization of when an embedded graph has disjoint
cycles P1 , ..., Pk homotopic to specified curves #1 , ..., #k in the surface. We
do not see a direct way to obtain our result about nonseparating cycles
from [S1]. In any case, our point of view brings out some other points of
independent interest.

For example, we focus on sets of curves in the surface that satisfy an
analogue of Thomassen's three path property [T1] and show that such
sets are in 1�1 correspondence with normal subgroups of the fundamental
group of the surface. Many of the important characteristics associated with
contractible curves apply in this more general setting.

The generality we employ to prove the results about the existence of many
pairwise disjoint, pairwise homotopic nonseparating cycles is a natural
evolution. Initially, we showed the existence of many pairwise disjoint,
pairwise homotopic noncontractible cycles, using arguments very similar to
those given in this paper. In order to obtain the same result but for non-
separating cycles, we were led to considering special sets of curves in the
surface (the ``complete sets of loops'' to be introduced in the next section).
With that generalization in hand, we realized that the arguments (with
only very minor changes) generalized even further to Theorem 6.1.
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One reason for going with the full generality of Theorem 6.1 is to
emphasize the fundamental nature of the three path property in conducting
homotopy arguments. It is only the three path property that is needed to
do many of the basic arguments, and a main theme of this article is to
demonstrate that.

This work is based in large measure on part of the Ph.D. thesis of the
first author [B].

2. Complete Sets of Loops

In this section, we introduce the topological concepts that we require in
this work. The main point is to introduce complete sets of loops, which
form the core of our later discussions.

We require some standard terminology from topology. A standard
reference for this material is [Mu]. A path in a topological space 7 is a
continuous function #: [0, 1] � 7. Set I=[0, 1]. The image of the path #
is #(I). Its basepoint is #(0). It is simple if it is an injection. A loop is a path
# for which #(0)=#(1) and the loop # is simple if it is injective on [0, 1).
If #: [0, 1] � 7 is a path, then #&1: [0, 1] � 7 is the inverse path defined
by #&1(t)=#(1&t).

We require two forms of homotopy of loops��those which require a
fixed common base point x (which is fixed for all calculations) and those
which do not. A homotopy between loops # and #$ with common basepoint
x is a continuous function h: [0, 1]_[0, 1] � 7 such that: (1) for each
t # [0, 1], h(0, t)=#(t), h(1, t)=#$(t); and (2) for each s # [0, 1], h(s, 0)=
h(s, 1)=x. A free homotopy between loops # and #$ (with possibly different
basepoints) is such a continuous function h satisfying (1) above and (2') for
each s # [0, 1], h(s, 0)=h(s, 1).

We use the notation #0 t#1 to say that #0 and #1 are homotopic and
#0 tf #1 to say that #0 and #1 are freely homotopic. Obviously, #0 t#1

implies #0 tf #1 . The fundamental group ?(7, x) has as its elements the
equivalence classes from t.

A loop # is contractible if #tf #$ for some constant loop #$. A repre-
sentative of the identity element of the fundamental group is contractible.
A loop is noncontractible if it is not contractible.

If #, #$ are two paths such that #(1)=#$(0), then the composition # b #$ is
the function defined by

(# b #$)(t)={#(2t),
#$(2t&1),

0�t� 1
2

1
2�t�1.
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In particular, if #, #$ are loops, then their composition is defined if and only
if they have a common basepoint.

The following results are elementary.

Lemma 2.1. (1) For any loops #, #$, and #" with common basepoint x,

(# b #$) b #"t# b (#$ b #").

(2) If # is a loop with basepoint x and : is any path such that :(0)=x,
then :&1 b # b : is a loop with basepoint :(1) that is freely homotopic to #.

(3) It follows from (2) that, for any loops #1 , #2 , ..., #k with a common
basepoint, #1 b #2 b } } } b #k is freely homotopic to #k b #1 b #2 b } } } b #k&1 .

(4) If # and #$ are loops with basepoint x, then # is freely homotopic
to #$ if and only if there is a loop : with basepoint x such that # is homotopic
to :&1 b #$ b :.

A nonempty set C of loops is a complete set of loops if :

(1) C is closed under free homotopy;

(2) if # # C, then #&1 # C; i.e., C is closed under inverses; and

(3) the composition of any two loops of C having a common base-
point is another loop of C.

The concept of complete sets of loops is at the heart of our main results.
We note that the set C0 of contractible loops is a complete set of loops.
Thus, complete sets of loops generalize contractibility.

The following two propositions are easy consequences of the definition.
Here 17 is the set of all loops in 7.

Proposition 2.2. Let C be a set of loops of 7 and let E=17"C. Then
C is complete if and only if the following conditions are satisfied:

(a) E is closed under free homotopy;

(b) let #0 , #1 # 17 have common basepoints and suppose #0 b #1 # E.
Then at least one of #0 and #1 is in E.

Proposition 2.3. Conditions (a) and (b) in Proposition 2.2 are equivalent
to Condition (a) and the following condition:

(c) Let # # E and let _ be a path in 7 such that _(0)=#(0) and _(1)=
#(t) for some t # [0, 1). Let #$, #" be the loops which are the compositions
# | [0, t] b _&1 and # | [t, 1] b _, respectively. Then at least one of #$ and #" is in E.
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Property (c) is the three paths property or TPP. This is motivated by
Thomassen's work on the three path property in graphs (see [T1]).

A complete partition of loops of 7 (or a complete partition of 17) is a
partition (C, E) of the set 17 such that C is a complete set of loops in 7
and E=17"C.

The next result is an important, easy fact about the composition of loops.
It generalizes the well known fact about composition of a contractible loop
with a noncontractible loop.

Proposition 2.4. Let (C, E) be a complete partition of 17 . Let #0 # E
and #1 # C have a common basepoint x0 . Then #0 b #1 is an element of E.

Recall that C0 is the set of contractible loops.

Proposition 2.5. Let C be any complete set of loops. Then C0�C.

Proof. Let # # C. Then #&1 # C and # b #&1 # C. But # b #&1 is freely
homotopic to the constant loop; i.e., it is contractible. K

3. Complete Partitions and the Fundamental Group

In this section we prove that complete partitions of 17 are in a natural
1�1 correspondence with normal subgroups of the fundamental group.
Although there seems to be some understanding of this fact by topologists,
the precise relationship given here is apparently new. So fix a basepoint x
in 7 and let (C, E) be a complete partition. Let Cx=[# # C | #(0)=x].

The following observations are easy.

Observation 1. Cx{<.

Observation 2. If # # Cx and #$t#, then #$ # Cx .

It follows that Cx partitions into a set ?(C, x) of homotopy classes, so
that ?(C, x) is a nonempty subset of the fundamental group ?(7, x).

Proposition 3.1. ?(C, x) is a normal subgroup of ?(7, x).

Proof. Let [#], [#$] # ?(C, x). We first prove that ?(C, x) is a subgroup
of ?(7, x) by showing that [#]&1 b [#$] # ?(C, x). Since [#&1] b [#$]=
[#&1 b #$], we will be done if we prove that #&1 b #$ # Cx . Since # # C, we
have that #&1 # C. Since C is closed under composition, #&1 b #$ # Cx .

To prove that ?(C, x) is normal in ?(7, x), let [#] # ?(7, x), and [#$] #
?(C, x). We have to prove that [#] b [#$] b [#]&1 # ?(C, x). As in the last
paragraph, it suffices to prove that # b #$ b #&1 # Cx . By Lemma 2.1(3),
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(# b #$) b #&1
tf #&1 b (# b #$). But #&1 b (# b #$)t (#&1 b #) b #$t#$, and so

# b #$ b #&1 # Cx . K

For the opposite direction, let H be a normal subgroup of ?(7, x). Let
CH denote the set of all loops # for which there is a [#$] # H such that
#tf #$.

Proposition 3.2. If H is a normal subgroup of ?(7, x), then CH is a
complete set of loops.

Proof. Clearly, CH is not empty. Since tf is transitive, CH is closed
under free homotopy. Since #tf #$ implies #&1

tf #$&1, CH is also closed
under inverses.

Finally we show that CH is closed under composition. Let #1 , #2 # CH

have common basepoint y. We have to prove that #1 b #2 # CH .
For i=1, 2, let [#$i] # H be such that #i tf #$i . Let hi : I_I � 7 be a free

homotopy such that hi (t_[0])=#i (t) and hi (t_[1]=#$i (t), for t # I.
Define :i : I � 7 by :i (s)=hi ((0, s)). It follows that :i (0)=#i (0)=y and
:i (1)=x.

The loop $i=:&1
i b #i b :i is freely homotopic to #i and has basepoint x.

Furthermore, $i # [#$i] (see Lemma 5.1.1).
Since H is normal and :&1

1 b :2 is a loop with basepoint x, we have that
(:&1

1 b :2)&1 b $1 b (:&1
1 b :2) is in CH . Simplifying yields :&1

2 b #1 b :2 is in CH .
Therefore, [:&1

2 b #1 b :2] b [:&1
2 b #2 b :2] # H, so that :&1

2 b #1 b #2 b :2 # CH .
By Lemma 2.1(2), this last path is freely homotopic to #1 b #2 , so
#1 b #2 # CH . K

We now show that the operations of Propositions 3.1 and 3.2 are actually
inverses.

Theorem 3.3. There is a bijection between the set of complete sets of
loops of 7 and the set of normal subgroups of ?(7, x) given by the relations

H=?(CH , x), C?( C , x)=C.

Proof. Let H be a normal subgroup of ?(7, x):

[#] # ?(CH , x) � # # CH and #(0)=x

� _[#$] # H such that #tf #$ and #(0)=x (Lemma 2.1(4))

� _[:] # ?(7, x), [#$] # H such that [#]=[:&1] b [#$] b [:]

� [#] # H.

The proof of the second relation is similar. K
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The complete set of loops C0 consisting of the contractible loops
corresponds to the trivial subgroup of ?(7, x) consisting just of the identity.
The complete partition (C0 , E0) is the fundamental partition.

The commutator subgroup Hs of ?(7, x) is a normal subgroup and it
can be shown [GH] that the simple loops in the corresponding complete
set of loops Cs separate 7 into two components, at least one of which is
orientable. The complete partition (Cs , Es) of 17 is the separating partition.

Although it does not concern us in this work, there is another ``separating
partition'' in the nonorientable case. Let Hn be the smallest subgroup of
?(7, x) containing Hs and [:2 | : is orientation-reversing]. Every simple
loop # in 7 for which #(I) separates 7 into two pieces is freely homotopic
to a loop in Hn .

There is a particular characteristic shared by C0 and Cs that turns out
to play an important role for us. A complete partition (C, E) is a crossing
partition if, for any simple loop # # C and any loop #$, if #$ crosses # trans-
versely at some point, then #$ crosses # at least twice. It is an easy exercise
to show that both (C0 , E0) and (Cs , Es) are crossing partitions.

The following proposition will be very useful when dealing with non-
orientable loops.

Proposition 3.4. Let 7 be a nonorientable surface, and let (C, E) be a
crossing partition of 17 . Then all orientation-reversing simple loops are in E.

For the proof, we make use of the following notion. A loop #1 is n-freely
homotopic to the loop #2 if #1 tf #n

2 , for some integer n. Thus, 1-freely
homotopic is the same as freely homotopic and any loop is &1-freely
homotopic to its inverse.

Proof. Let # be an orientation-reversing simple loop. Then there is a
Mo� bius band M whose boundary is a simple loop #$ that is 2-freely
homotopic to #. Let _ be a path from one point of #$ to another point of #$
and that intersects # only once and this intersection is a transverse crossing.
There is a simple loop #" whose image is contained in #$(I) _ _(I) that
intersects # in a single point, which is a transverse crossing. K

We have one last complete partition to mention here. If 7 is nonorientable,
then the set Cp of all orientation-preserving loops is a complete set of loops.
This corresponds to an index-2 subgroup of the fundamental group. The
complete partition (Cp , Ep) is the orientation-preserving partition.

4. C-Representativity of Embeddings

We shall now consider a graph G embedded in a surface 7. A helpful
reference for some of the basic concepts is [RoV]. The main point of this
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section is to generalize the notion of representativity to C-representativity,
for any complete set of loops C. We shall prove results about C-represen-
tativity paralleling standard results about representativity. In particular, it
is finite and it attained by a simple loop. This discussion requires a detailed
understanding of loops in surfaces, which is where we begin. There are
some basic facts about neighbourhoods of points in a graph embedded in
a surface described in [HR]. We will use these as needed without explicit
reference.

A surface is a compact connected Hausdorff space for which every point
has a neighbourhood homeomorphic to R2. Portions of this work generalize
to more general 2-manifolds, but our interest is with surfaces.

Theorems 4.1 and 4.2 are the main nontrivial technical points central to
the entire discussion. Let :: [0, 1] � 7 be a path and let I be a subinterval
of [0, 1]. Then the multiplicity of : on I is the number of ordered pairs
(t, t$) such that t, t$ # I, t<t$ and :(t)=:(t$). The multiplicity of a loop is
the multiplicity of the loop on [0, 1).

Theorem 4.1. Let 7 be a surface and let 8 be a closed subset of 7.
Suppose # is a loop in 7 disjoint from 8. Then there is a homotope #$ of #
that is disjoint from 8 and has finite multiplicity.

There are several proofs of this that we could give here. We have chosen
this one because it is completely elementary. In particular, it does not rely
on knowledge of the fundamental group of a surface��it depends only on
the existence of disc neighbourhoods.

Proof. For each t # [0, 1], let D� t be a closed disc in 7 with interior Dt

such that #(t) # Dt and D� t is disjoint from 8.

Claim 1. There is a $>0 such that if 0<t$&t<$, then there is a disc
Ds such that #([t, t$])/Ds .

If not, then for each positive integer N, there exists tN and t$N such that
0<t$N&tN<1�N and no Ds contains #([tN , t$N]). There exists an infinite
sequence Nj for which the sequences tNj and t$Nj both converge to t*.

There is a disc Ds containing #(t*). By continuity, there is a $>0 such that
if |t&t*|<$, then #(t) # Ds . Thus, for sufficiently large j, #([tNj , t$Nj])/Ds ,
a contradiction that proves Claim 1.

Fix the positive integer N large enough so that if 0<t$&t�1�N, then
there is a disc Ds containing #([t, t$]). For j=1, 2, ..., N, let Ij denote the
interval [( j&1)�N, j�N]. There is some disc Dsj containing #(Ij). Relabel
the discs Ds1

, Ds2
, ..., DsN as D1 , D2 , ..., DN .

In N steps, we shall find the homotope of # that has finite multiplicity.
Let :: [0, 1�N] � 7 be a simple path in D1 joining #(0) with #(1�N ). (If
these points happen to be the same, then we can choose : to be a simple
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loop.) Let #1 be the loop obtained by traversing : on [0, 1�N] and # on
[1�N, 1]. Because : and #| [0, 1�N] are both paths in the disc D1 having the
same end points, they are homotopic. Therefore, #1 and # are homotopic.

Now suppose i�1 and we have #i homotopic to #, #i (I) disjoint from 8
and #i has finite multiplicity on [0, i�N]. We now show how to obtain #i+1.

Identify the closed disc D� i+1 with the unit disc in the plane, which we
use for metric reference. Since #(Ii+1)/Di+1 , and #(Ii+1) is compact, there
is some real number r<1 such that #(Ii+1) is contained in the open disc
of radius r. Notice that #i (i�N ) is in this disc of radius r.

Claim 2. There are at most finitely many components of D� i+1"

#i ([0, i�N]) that have a point in the disc of radius r.

For otherwise, there is a point r* of #i ([0, i�N]) for which every neigh-
bourhood contains a point in each of infinitely many such components.
(Pick one point rn from each of infinitely many such components. Let r*
be a limit point of the infinite set of rn .) We shall show that the finite
multiplicity of #i on [0, i�N] does not allow this.

Let 0�t1<t2< } } } <tp�i�N be those t # [0, i�N] such that #i (t)=r*.
For each j=1, 2, ..., p, let J( j, =)=[tj&=, tj+=] & [0, i�N] and let J(=)=
� p

j=1 J( j, =). We claim that for some =>0, #i is injective on J(=)"[t1 ,
t2 , ..., tp].

For if it were not, then for each m, there would exist t$m , t"m # J(1�m) such
that t$m{t"m and #i (t$m)=#i (t"m){r*. But then the multiplicity of #i on
[0, i�N] is infinite.

Let s=0 if both t1>0 and tp<i�N, let s=1 if either t1=0 or tp=i�N,
but not both, and let s=2 if t1=0 and tp=i�N. We shall define an embedding
of the graph K1, 2p&s in D� i+1. We map the central vertex to r*, the leaves
to #i (ti\=) and the edges to #i ((ti&=, ti)) and #i ((ti , ti+=)). (Suitable care
needs to be employed if s>0.)

There is a disc 2/Di+1 and a homeomorphism h: 2 � R2 such that
h(r*) is the origin and h(K1, 2p&s & 2) is 2p&s straight rays from the origin
to infinity. For a sufficiently small circular disc 2$ in R2, 2$ intersects
h(#i ([0, i�N])) only in h(r*) and bits of the 2p&s straight rays. This
corresponds to a neighbourhood of r* in Di+1 that intersects only finitely
many components of Di+1"#i ([0, i�N]), completing the proof of Claim 2.

By Claim 2, #i ([0, i�N]) meets the closures of at most finitely many
components of Di+1"#i ([0, i�N]). Let these components be R1 , R2 , ..., Rk .
For j=1, 2, ..., k, let tj* be the largest t # Ii+1 such that #i (t) is in the
closure of Rj .

There is a j1 such that #i (i�N )=#(i�N) is in the closure of Rj1 and
t*j1

>i�N. Suppose we have already defined the positive integers j1 , j2 , ..., jm .
If t*jm=(i+1)�N, then stop. Otherwise, there is a jm+1 such that #(t*jm) is in
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the closure of Rjm+1
and t*jm+1

>t*jm . For some m*�k, we shall have
t*jm*

=(i+1)�N. Set t*j0=i�N.
For m=1, 2, ..., m*, there is a simple path :m : [t*jm&1

, t*jm] � R� jm , where
R� jm is the closure of Rjm , such that :m(t*jm&1

)=#(t*jm&1
), :m(t*jm)=#(t*jm) and

:m is otherwise disjoint from #i ([0, i�N]). Define #i+1 to be #i on [0, i�N],
:m on [t*jm&1

, t*jm], m=1, 2, ..., m*, and # on [(i+1)�N, 1]. Obviously, #i+1

has finite multiplicity on [0, (i+1)�N], is disjoint from 8 and is
homotopic to #i (and therefore to #), as required.

Finally, #N is the loop with finite multiplicity that is disjoint from 8 and
is homotopic to #. K

The following is a straightforward induction on the multiplicity, based
on the TPP Proposition 2.3.

Corollary 4.1.1. Let 7 be a surface, let (C, E) be a complete partition
of 17 such that E{<, and let 8 be a closed subset of 7 for which there is
a loop # # E with #(I) disjoint from 8. Then E contains a simple loop #$ with
#$(I) disjoint from 8.

The other technical result we need is the following, whose proof is due
to Bob Brown. We are grateful to Helga Schirmer for her efforts in relaying
the messages to get this proof.

Let # be a loop and let 0�t$<t"<1. The two paths obtained by restrict-
ing # to [t$, t"] and [t", 1] _ [0, t$] are the subpaths of # induced by t$ and
t". Thus, if #1 and #2 are the two subpaths of # induced by t$ and t", then
#1(I) _ #2(I)=#(I) and #tf #1 b #2 .

For a loop # and a path _ such that _(0)=#(t$) and _(1)=#(t"), let
#1 and #2 be the two subpaths of # induced by t$ and t". For some
= # [1, &1], both #1 b _= and #2 b _&= are loops. These two loops are the
%-decomposition of # with respect to _.

Theorem 4.2. Let (C, E) be a complete partition of 17 . Let #1 be a simple
loop in C and let #2 be a loop in E. Suppose there exist distinct t$, t" such
that #2(t$) and #2(t") are both in #1(I). Then there exist distinct a, b such that
#2(a), #2(b) # #1(I) and, for at least one of the two subpaths, say #$2 , of #2

induced by a and b, #$2((a, b)) is disjoint from #1 and the two loops in the
%-decomposition of #1 with respect to #$2 are both in E.

Proof. There are at most countably many subintervals In=[an , bn] of
[0, 1] such that #2(In) meets #1(I) in just the endpoints. Let _n be the path
#2 : In � 7. Let N�7 be either an open cylinder or an open Mo� bius strip
with equator #1 .

We claim that at most finitely many of the sets _n([an , bn]) are not
contained in N. For suppose not. Then let A be the (infinite) set of integers
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n for which _n(In) is not contained in N. For each n # A, let tn # In be such
that _n(tn) � N. Let t* be a limit point of T=[tn | n # A]. If t* # (ak , bk) for
some k # [1, 2, ...], then (ak , bk) is an open set containing t* and at most
one of the points in T, a contradiction. Therefore, #2(t*) # #1(I). Thus, N is
an open set containing #2(t*), but N contains none of the points in #2(T ),
which is impossible.

Let _1 , ..., _k be the paths that have an image point not in N. For I=1,
2, ..., k, let $i, 1 and $i, 2 be the %-decomposition of #1 with respect to _i . We
note that #1 is freely homotopic to the composition of $i, 1 and $i, 2 . Therefore,
either both $i, 1 and $i, 2 are in E or neither is.

In order to obtain a contradiction, we suppose that, for each i=1, 2, ..., k,
both $i, 1 and $i, 2 are in C.

We suppose $i, 1 traverses _&1
i first and then follows the subpath :i of #1 .

Let ,1 be the loop obtained from #2 by replacing the portion along I1

with :&1
1 .

Since #2 is freely homotopic to the composition ,1 b $1, 1 and $1, 1 is in C,
it follows from Proposition 2.2 that ,1 is in E.

We now repeat the process. Having got ,j # E, we obtain ,j+1 by replacing
the portion of ,j corresponding to Ij+1 with :&1

j+1. Thus, ,j is freely
homotopic to the composition $1, j+1 b ,j+1 . It follows that ,j+1 # E. Do
this until we have ,k # E.

Note that ,k(I)/N. The fundamental group of N is cyclic and generated
by [#1]. (We may choose #2(t) to be the basepoint for the computations
involving the fundamental group.) Therefore, ,k is homotopic to #r

1 , for
some integer r. But then ,k # C, a contradiction. Therefore, some $i, 1 is in
E, as claimed. K

Let G be a graph embedded in a surface 7 and let # # 17 . Then cr(#, G)
is the number of t # [0, 1) such that #(t) # G. Given a complete partition
(C, E) of 17 with E{<, the C-representativity of G is \=(G)=
min[cr(#, G) | # # E]. If (C, E) is the fundamental partition (C0 , E0), then
this is just the usual representativity.

We next show that C-representativity is finite. Then we show that the
C-representativity is attained by a simple loop that goes through only vertices
of G.

Corollary 4.2.1. For any complete partition (C, E) of 17 with E{<,
and any embedding of G in 7, the C-representativity of G is finite.

Proof. We show the existence a simple loop # in E for which cr(#, G)
is finite. By Corollary 4.1.1 there is a simple loop # in E. If cr(#, G) is finite,
then we are done. Otherwise, there is some closed edge e of G such that #
goes through e infinitely often.
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There is a closed disc 2 in 7 that meets G only in e, with only the ends
of e in the boundary of 2. The boundary of 2 is the image of a simple loop
#0 that is contractible and, therefore, is in C. Clearly # must intersect #0(I)
at least twice, since #(I) is not contained in 2.

By Theorem 4.2, there is a simple loop #$ in E made up of a simple subpath
of # and a simple subpath of #0 . Obviously, #$ meets e in at most two
points, namely the ends of e. We repeat this for each edge of G (of which
there are only finitely many) to obtain a simple loop in E that meets G
only finitely often. K

We are now prepared for the final touch.

Theorem 4.3. Let G be a graph embedded in a surface 7 and let (C, E)
be a complete partition of 17 . Then there is a simple loop # # E such that
cr(#, G)=\E(G) and #(I) & G�V(G).

Proof. We begin by showing the existence of a simple loop in E that
attains the C-representativity. If \E(G)=0, then the result follows from
Corollary 4.1.1, with 8=G. Thus, we can assume \E(G)>0. Let # # E be
such that cr(#, G)=\E(G).

Now consider the case that \E(G)=1. Then there is a single face F of
G such that #(I) is contained in the closure of F. Let x be the single
point in #(I) & G. We can assume #(0)=x. There is a closed disc 2 in 7
containing x such that 2 & G is just x and an appropriate number of rays
emanating from x. Let #1 be a simple loop whose image is the boundary
of 2.

Then # meets #1 at least twice, so, by Theorem 4.2, there is a subinterval
I=[a, b] of [0, 1] such that #(I ) has only its ends in #1(I) and both the
loops made up of #: I � 7 and the subpaths of #1 are in E. Thus, #(I ) is
disjoint from 2, except for its ends.

If #(a)=#(b), then #: I � 7 is a loop in E that is disjoint from G,
contradicting the assumption that \E(G)=1. Therefore, #(a) and #(b) are
distinct points of 2.

Let _: [0, 1] � 2 be a simple path that joins #(b) to #(a) and meets G
only at x if at all. Let _$: [0, 1] � (F"2) _ #([a, b]) be a simple path with
ends #(a) and #(b). (The set F"2 is open, #(a) and #(b) are in the closure
of the component containing #(I ), so there is a simple path in F joining
them.) By the TPP, either _$ composes with #: I � 7 to make a loop in E
or _$ composes with _ to make a simple loop in E. The former is
impossible, since the composition is disjoint from G. Therefore, the
latter occurs and there is a simple loop in E meeting G in only one
point.

We now suppose \E(G)�2.
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Claim 1. For any face F of G, #(t) is in the boundary of F for at most
two t # [0, 1).

Otherwise, let 0�t1<t2<t3<1 be three times at which # meets the
boundary �F of F. For i, j # [1, 2, 3], if #(ti)=#(tj), then let :i, j be a constant
path, with image #(ti). Otherwise, let :ij be a simple path in F joining #(ti)
and #(tj).

Let #1, 2 and #2, 3 be # restricted to [t1 , t2] and [t2 , t3], respectively, and
let #1, 3 be # restricted to [t3 , 1] _ [0, t1]. If :1, 2 b :2, 3 b :1, 3 # E, then
\E(G)=0, since this curve is freely homotopic to one that does not meet
G at all. Thus, by the TPP, at least one of the three loops #i, j b :&1

i, j ,
1�i< j�3, must be in E. But each has fewer crossings with G than #, a
contradiction to the choice of #. Therefore, each face F satisfies cr(#, �F )�2
and Claim 1 is proved.

If some (open) face F meets #(I), then the boundary of F must satisfy
cr(#, �F )�2. Therefore, any face F that meets #(I) has its boundary meeting
#(I) at exactly two different times. We now show that these two different
times must in fact be at two different places as well.

For suppose 0�t1<t2<1 are such that #(t1)=#(t2) # �F. Then, by the
TPP, at least one of the two loops # restricted to [t1 , t2] and its complement
is in E and has fewer crossings with G, a contradiction.

So let F be a face of G such that F & #(I) is not empty and let x and y
be the distinct points in �F such that #(t1)=x and #(t2)=y. Let : be a simple
path in F joining x and y.

By the TPP, one of the two paths in # with ends x and y, together with
:, is in E. Suppose it is the loop using the path across F. This loop is freely
homotopic to one that does not meet G at all, showing \E(G)=0, a con-
tradiction. Therefore, it is the other one. Repeat this for every face that
meets #([0, 1]) and the result is a simple loop that attains the represen-
tativity.

If the simple loop found above that attains the representativity does not
meet G only in vertices, then it meets G in some edge e. We will eliminate
this intersection without destroying any of the other properties. Repeating
this step yields a simple loop in E that attains the representativity and
meets G only in vertices.

Let 2 be a closed disc in 7 that meets G only in e and its endpoints, with
e being contained in the interior of 2. By Theorem 4.2, there is a simple
loop in E whose image is contained in #(I) _ 2 and does not go into the
interior of 2. This loop can be chosen so as to meet G in no more points
than # does. Therefore, it meets G in exactly the same number of points��
the intersection with e being traded for an intersection with an end of e.
This completes the proof. K
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5. The Calculus of Face Chains

A simple loop # that meets an embedded graph G only at vertices
describes an alternating sequence v0 , F1 , v1 , ..., Fn , vn of vertices and faces
of G such that v0=vn , #(I) & G=[v1 , v2 , ..., vn] and

#(I)/\.
n

i=1

Fi+_ [v1 , v2 , ..., vn].

Such sequences are the combinatorial structures with which we shall work
in the remainder of this paper.

A face chain is an alternating sequence v0 , F1 , v1 , ..., Fn , vn of vertices
and faces of an embedded graph G such that, for each i=1, 2, ..., n, vi&1

and vi are in the boundary �Fi of Fi . The length of the face chain is n, and
the face chain is closed if v0=vn .

Given a face chain 4=v0 , F1 , v1 , ..., Fn , vn , a path :4 is obtained by taking
the composition of simple paths in each Fi joining vi&1 and vi , for i=1,
2, ..., n. The face chain is a face-representation of :4 and the length of the
face-representation is n. (There is some ambiguity here. If either Fi is not
homeomorphic to an open disc or one or both of vi&1 and vi is repeated
in the boundary walk of Fi , then the choice of the simple path in Fi is not
determined up to homotopy. Thus, to be represented by the face chain
means there are choices of these simple paths which yield a path freely
homotopic to #. Mostly, these distinctions will not concern us.)

Let (C, E) be a complete partition of 17 for some surface 7. The loop
# is freely C-homotopic to the loop #$ if there is a loop #" # C with the same
basepoint as #$ such that #tf #$ b #". We write #tC #$ to denote that # is
freely C-homotopic to #$.

Lemma 5.1. The relation tC is an equivalence relation.

Proof. We begin with some additional facts about free homotopy.

Lemma 5.1.1. Let h: [0, 1]_[0, 1] � 7 be a free homotopy between the
loops :(t)=h(0, t) and ;(t)=h(1, t). Let _: [0, 1] � 7 be the path defined
by _(s)=h(s, 0)=h(s, 1). Then : and _ b ; b _&1 are homotopic (with fixed
basepoint :(0)).

Proof. We can define the homotopy h� by

h(3t, 0), 0�t�s�3
h� (s, t)={h(s, (3t&s)�(3&2s)), s�3�t�1&s�3

h(&3t+3, 1), 1&s�3�t�1.
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This is a homotopy between : and (a specific parametrization of) the loop
_ b ; b _&1. K

The other result we need is easy.

Lemma 5.1.2. Let : and ; be paths with the same endpoints. Let # and
$ be paths such that #(1)=:(0) and $(0)=:(1). If : and ; are homotopic
(keeping the endpoints fixed ), then # b : is homotopic to # b ; and : b $ is
homotopic to ; b $ (keeping the endpoints fixed ).

Now back to the proof of Lemma 5.1. Reflexivity is trivial. For symmetry,
suppose :tC ;. Then there is a # # C such that :tf ; b #. By Lemma 5.1.1,
there is a path _ such that :t_ b ; b # b _&1. Now Lemma 5.1.2 yields that

_&1 b : b _ b #&1
t_&1 b _ b ; b # b _&1 b _ b #&1

t;.

But _&1 b : b _ b #&1 is freely homotopic to : b _ b #&1 b _&1. Since #&1 is in C
and is freely homotopic to _ b #&1 b _&1, this last loop is also in C and so
;tC :, as required.

We conclude with transitivity. If :tC ; and ;tC #, then, by symmetry,
there exist $, = # C such that ;tf : b $ and ;tf # b =. By transitivity of tf ,
: b $tf # b =. Thus, (# b =)tC :, so by symmetry, :tC (# b =). Thus, there is
a $$ # C such that :tf (# b =) b $$. But (# b =) b $$tf # b (= b $$) and = b $$ # C.
Thus, :tC #, as required. K

We let [#]C denote the set of loops freely C-homotopic to #.
Now let G be a graph embedded in 7. Suppose # is a loop face-represented

by a closed face chain of G. The C-length l(#, C) of # is the shortest length
of any face-representation of any member of [#]C .

By Proposition 2.4, if # is in E, then any #$ for which #tC #$ is also in
E. Therefore, for any # # E that is face-represented by a closed face chain,
\E(G)�l(#, C).

Let 4=v0 , F1 , v1 , ..., Fn , vn be a closed chain and let 4$=w0 , F $1 , w1 , ...,
F $k , wk be a face chain such that w0 is incident with some Fi and wk is incident
with some Fj . For ease of exposition, assume 1�i< j�n. (Up to a cyclic
permutation of 4, this is always the case.) Then there are two face chains
in 4 whose first and last faces are Fi and Fj . Clearly, we can combine each
of these with 4$ to get a closed face chain containing 4$.

The following result is the arithmetic heart of the proof that there are \�2
pairwise disjoint, pairwise homotopic nonseparating cycles.

Theorem 5.2. Let G be embedded in a surface 7 and let (C1 , E1),
(C2 , E2) be two complete partitions such that E2�E1 . Let # be a loop in E2
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whose C1 -length l is finite and let 4=v0 , F1 , ..., Fl , vl be a closed face chain
that represents some loop in [#]C1

. Let 4$=w0 , F $1 , ..., F $k , wk be a face
chain of length k�0 such that w0 and wk are each incident with some face
in 4. (If k=0, then we assume that w0 is incident with distinct faces in the
face chain 4.) If either

k�\
\E1

(G)+\E2
(G)&l&1

2 �&1 (1)

or both w0 and w1 are in [v1 , v2 , ..., vn] and

k�\
\E1

(G)+\E2
(G)&l&1

2 � , (2)

then the face chain formed by 4$ and the shorter face chain (or either if they
have equal length) of 4 between w0 and wk has length <\E1

(G) and, there-
fore, represents a loop that is in C1 .

Proof. Let #* # E2 be a loop face-represented by 4.

(1) Let i and j be indices such that w0 and wk are incident with Fi

and Fj , respectively. Choose the labelling so that 1�i< j�n and 41=w0 ,
Fi , vi , Fi+1, ..., Fj , wk is the shorter of the two face chains from 4 joining
w0 and wk . Let 42 be the other face chain (including Fi and Fj) in 4 joining
w0 and w1 .

Clearly, 41 has length j&i+1 and 42 has length l&( j&i)+1. Since 41

is not longer than 42 , j&i�l�2. Therefore, the face chain 4$ _ 41 obtained
by concatenating 41 and 4$ has length at most l�2+1+k. Using the estimate
for k given in the hypothesis yields that this chain has length at most

\E1
(G)+\E2

(G)&1

2
,

which is less than \E2
(G), since E2�E1 implies \E2

(G)�\E1
(G). Therefore,

if #1 is a loop face-represented by 4$ _ 41 , then cr(#1 , G)<\E2
(G), and so

#1 is in C2 .
On the other hand, 42 _ 4$ and 41 _ 4$ obviously use every face in 4$

twice, Fi and Fj at most twice, and every other face of 4 once. Thus, these
two face chains have total length at most 2k+l+2, which, by hypothesis,
is at most \E1

(G)+\E2
(G)&1.

Let #2 be a loop face-represented by 4$ _ 42 . Since #* is freely
homotopic to #1 b #2 (care being taken with orientations��#1 and #2 should
traverse 4$ in opposite directions), the TPP implies that at least one of #1

and #2 is in E2 . Since it is not #1 , it must be #2 . Thus, 4$ _ 42 must have
length at least \E2

(G), so the inequality at the end of the preceding
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paragraph shows 4$ _ 41 has length at most \E1
(G)&1. Therefore, #1 is in

C1 , as required.
The proof of (2) is the same, except that now 4$ _ 41 and 4$ _ 42

traverse Fi and Fj a total of once each. K

6. The Main Result

In this section we prove the main result, from which the existence of \�2
pairwise disjoint, pairwise homotopic nonseparating cycles follows easily.
To ease the cumbersome notation, let (C, E) be a complete partition of 17

and let G be a graph embedded in 7. A set of C-parallels is a set of pairwise
disjoint cycles of G, for which there are simple loops having the cycles as
images and which are pairwise freely C-homotopic.

A loop #$ is n-freely C-homotopic to a loop # if #$tC #n. We are really
only interested in the cases 1- and 2-freely C-homotopic. Our main result
is the following.

Theorem 6.1. Let G be a 3-connected graph embedded in a surface 7 with
representativity at least 3. Let (C1 , E1) be a crossing partition and let (C2 , E2)
be a complete partition such that E2�E1 . Let # # E2 and let l=l(#, C1).

(1) If # is orientation-preserving, then G has a set of at least w(\E1
(G)+

\E2
(G)&l&1)�2x C1 -parallels, all in [#]C1

.

(2) If # is orientation-reversing, then G has a set of at least w(\E1
(G)+

\E2
(G)&l&1)�4x C1 -parallels, all in [#2]C1

, i.e., all 2-freely C1-homotopic
to #.

Proof. Let 4=v0 , F1 , v1 , ..., Fl , vl be the simple closed face chain
representing a loop in [#]C, which we may take without loss of generality
to be #. The point of the assumption that G is 3-connected and the
representativity is at least 3 is to ensure that every vertex v of G has a wheel
neighbourhood; i.e., the union of the closed faces incident with v meets the
graph in a wheel, with a possibly subdivided rim. (See [RoV].)

We shall only prove (1). The proof of (2) is similar. Let M=w(\E1
(G)+

\E2
(G)&l&1)�2x and suppose M�1. We shall construct a set [C1 ,

C2 , ..., CM] of C1-parallels in [#]C1
. The Ci with odd indices will be

constructed on the right-hand side of #, while the Ci with even indices will
be on the left-hand side. The outline for the proof is:

I. Construction of C1 .

A. Construction of a loop _1 freely homotopic to # such that _1(I)�G.

B. Construction of a simple loop #1 freely C1-homotopic to # such
that #1(I)�_1(I). Then C1=#1(I).
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II. Construction of C2 .

A. Construction of a loop _2 freely homotopic to # such that _2(I)�G.

B. Construction of a simple loop #2 freely C1-homotopic to # such
that #2(I)�_2(I). Then C2=#2(I).

C. C1 and C2 are disjoint.

III. Construction of Cn , given C1 , ..., Cn&1.

A. Construction of a loop _n freely homotopic to #n&2 such that
_n(I)�G.

B. Construction of a simple loop #n freely C1-homotopic to # such
that #n(I)�_n(I). Then Cn=#n(I).

C. Cn and Cn&2 are disjoint.

D. Cn and Cj are disjoint, j=1, 2, ..., n&3, n&1.

So now we begin with I, the construction of C1 .

A. The construction of _1 . Consider the portions of the boundaries
of F1 , F2 , ..., Fl on the right-hand side of #. Specifically, # splits each of the
closed discs Fi into two closed discs. As we traverse #, one side is naturally
the left-hand side and the other is the right-hand side. Each of these closed
discs is bounded by the portion of # in Fi and part of the boundary of Fi .

Since G is a wheel-neighbourhood embedding, distinct faces intersect
either not at all or in a vertex or in an edge and its ends. For each
i=1, 2, ..., l, let :i : [0, 1] � �Fi be a simple path from vi&1 to vi on the
right-hand side of #. Then let _1 be the composition :1 b :2 b } } } b :l .

B. Constructing #1 . It is easy to see that _1 is a loop that is
homotopic to #. If it is a simple loop, then we are done: #1=_1 . If it is not
simple, then there exist t$ and t" such that 0�t$<t"<1 such that _(t$)=
_(t"). With no loss of generality, we can assume _(t$) is a vertex of G.
We can suppose v is incident with Fi and Fj , with i{j. Apply Theorem 5.2
to find that one of the closed face chains in 4 starting and ending with Fi

and Fj has length <\E1
(G) and, therefore, represents a loop in C1 . But this

loop is freely homotopic to one of the subloops of _ that starts and ends
at v. Thus, _ contains a subloop ;1 # E2 that is freely C1 -homotopic to _.

There are at most finitely many ordered pairs (t$, t") such that 0�t$<
t"<1 and _(t$)=_(t") is a vertex of G. The number of such pairs is the
vertex multiplicity of _. Obviously, ;1 has smaller vertex multiplicity.
Therefore, we can repeat this argument finitely often until we arrive at a
simple loop #1 that is freely C1 -homotopic to #.
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II. The construction of C2 .

A. The construction of _2 . Of course we assume M�2. Now consider
the wheel-neighbourhood Ni of vi , i=1, 2, ..., l. The subpath of the loop #
from vi&1 through vi to vi+1 splits Ni into a closed left-hand side Ni, L and
a closed right-hand side, which meet exactly on the subpath.

The subgraph of G&[vi&1 , vi+1] contained in Ni, L contains a vertex
adjacent to vi , as otherwise there is a single face incident with all of vi&1 ,
vi , and vi+1, which shows there is a closed face chain of length l&1 that
represents a loop freely homotopic to #. This contradicts the hypothesis
that the C1-length of # is l.

Let 'i : [0, 1] � Ni, L be a simple path whose image is the boundary of
Ni, L in G from vi&1 to vi . Let ti be the least t>0 for which 'i (t) is a vertex
xi of G adjacent to vi and let ti be the largest t<1 such that 'i (t) is a vertex
yi of G.

Clearly, yi&1=xi , where the indices are read modulo l. Let :i : [0, 1] �Ni,L

be the subpath of 'i restricted to [ti , ti], so :i is a simple path from xi to yi .
The composition _2 of :1 , ..., :l is a loop freely homotopic to #.

B. Construction of #2 . Suppose _2 is not a simple loop. Then there
exist 0�t1<t2<1 such that _2(t1)=_2(t1). Since each :i is simple and every
vertex has a wheel neighbourhood, it must be that there exist i and j and
numbers t$ and t", not both either 0 or 1, such that :i (t$)=:j (t"). Clearly,
we can choose t$ and t" so that :i (t$)=:j (t")=v # V(G).

There is a face F $ of G incident with both vi and v and there is a face
F" of G incident with both vj and v. Let 4$ be the face chain vi , F $, v, F", vj

and recall 4=v0 , F1 , v1 , ..., Fl , vl is the face chain representing #. Since
M�2, we can apply Theorem 5.2(2) to 4 and 4$, so there is a closed face
chain in 4 _ 4$ through 4 which is so short that it must represent a loop
in C1 . The other closed face chain represents a loop in E2 . But each of these
is freely homotopic to one of the subloops of _2 from v to v. Let ;1 be the
subloop of _2 that is in E2 .

Clearly, the vertex multiplicity of ;1 is less than that of _2 . Therefore, in
finitely many steps we obtain #2 that has 0 vertex multiplicity and is, by
Lemma 5.1, freely C1-homotopic to #. It traverses the cycle C2 .

C. C2 is disjoint from C1 . Suppose to the contrary that they have a
vertex v in common. Since #2(I)�� l

i=1 Ni, L and #1(I) is contained in the
corresponding right-hand sides, there exist i and j such that v is a vertex
of both Ni and Nj . There exist faces F $ and F" such that F $ is in Ni, L and
is incident with both vi and v and F" is in Ni, R and is incident with both
vj and v.

Apply Theorem 5.2(2) to the face chain 4"=vi , F $, v, F", vj and the
original face chain 4. Of the two closed face chains through 4", one is so
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short that it represents a loop in C1 . This face chain contains another
closed face chain through 4" that represents a simple loop. This simple
loop is crossed transversely only once by #, contradicting the assumption
that (C1 , E1) is a crossing partition. Thus, C2 is disjoint from C1 .

III. Construction of Cn , given C1 , ..., Cn&1.

A. Construction of _n . We assume as inductive hypotheses that
M�n�3 and that, for j=3, 4, ..., n&1, for each vertex v of Cj , there is a
face Fv incident with both v and a vertex v̂ in Cj&2��if j is odd, then Fv is
on the left-hand side of #j and the right-hand side of #j&2 , while if j is even,
then Fv is on the right-hand side of #j and the left-hand side of #j&2. For
each pair of vertices v, v$ of Cj , let :j (v, v$) be the simple subpath of #j

joining v and v$ (in that order, so #j=:j (v, v$) b :j (v$, v)). In Fv choose a
simple path ;v from v to v̂. Then we also assume that :j (v, v$) is C1-homotopic
to ;v b :j&2(v̂, v̂$) b ;&1

v$ . (This means that there are loops in C1 that can be
attached to the former path such that the resulting path is homotopic (with
fixed endpoints) to the latter path.) The base of the inductive construction
is n=1 and n=2, for which these additional considerations are vacuous.

We now show how to construct _n freely homotopic to #n&2. For sake
of definiteness, we shall assume n is odd. The argument is slightly different
in the two cases��we shall indicate where the differences occur. Let 0=t0<
t1<t2< } } } <tm=1 be those t such that #n&2(t) # V(G). For each i=1,
2, ..., m, let wi=#n&2(ti). We are constructing on the right-hand side of
#n&2��by Proposition 3.4, #n&2 is orientation preserving. (In case n is even,
we would construct _n on the left-hand side of #n&2.)

For each i=1, 2, ..., m, let Ni denote the wheel neighbourhood of wi and
let Ni, R denote the closed disc in Ni on the right-hand side of #n&2. Thus,
Ni, R is bounded by a subpath of #n&2 and a path Qi in G. We must deal
with the possibility that some of the Ni, R consist of a single face.

The ends ai and bi of Qi are obviously among w1 , w2 , ..., wm , labelled so
that in #n&2 , the order of traversal is ai , wi , bi . Since G is 3-connected and
3-representative, no single face is incident with all of the wi , and, therefore,
some (at least two) of these vertices, say wi1 , wi2 , ..., wir , are such that wis is
incident with an edge in Nis, R that is not in #n&2(I). We choose the labelling
so that 0<i1<i2< } } } ir�m.

Now we are ready to construct _n . For s=1, 2, ..., m, let +s be a simple
path traversing Qis from ais to bis . Let xs be the first vertex adjacent to wis
after ais that +s encounters and let ys denote the last vertex encountered by
+s before bis . Now let 's denote the subpath of +s from xs to ys .

A little thought shows that ys&1=xs , for s=1, 2, ..., r, with the indices
read modulo r. We set _n to be the composition of '1 , '2 , ..., 'r . By the
construction, it is obvious that _n is freely homotopic to #n&2.
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B. The construction of #n . Before we just go ahead and turn _n into
a simple loop, we must be sure to deal with one special situation first,
which will guarantee that the simple loop is disjoint from Cn&2. Suppose
that some vertex wj of Cn&2 is traversed by _n . Then there is a vertex wis
and a face F that is incident with both wj and wis . Let ; be a simple path
in F joining wj and wis .

We first rule out the possibility that F is on the left-hand side of #n&2 at
wj . For we can, as before, find a face chain from each of wj and wis back
to C1 , and obtain a loop that is in C1 . This loop ``lifts'' back to a loop }
including ; and a portion of #n&2 that is in C1 . But then } is simple and
crosses #n&2 transversely only once, contradicting the assumption that
(C1 , E1) is a crossing partition.

Therefore, F is on the right-hand side of # at wj and it follows that j=is$

for some s$. We can assume that 1�s<s$�r and we can deduce that s and
s$ are not consecutive in the cyclic ordering (1, 2, ..., r). Choose such an s$
so that s$&s is minimized.

In particular, wis$&1
does not occur in the boundary of the face F. This

means that, in the wheel neighbourhood of wis$
, the face F is not that face

incident with wis$&1
, so that wis is traversed by 's$ .

There are face chains 4s and 4s$ from each of wis and wis$
to 4, using

faces on the left-hand side of #n&2. Let 4$ be the face chain made up from
F, 4s , and 4s$ . By Theorem 5.2(1), this is so short that, together with part
of 4, it face represents a loop in C1 . Moreover, it lifts to show that either
the subpath of _n from wis$

to wis or the subpath of _n from wis to wis$
,

together with a path across F, makes a loop in C1 .
If a and b are the neighbours of wis$

in �F, then these are repeated vertices
in _n . For one or the other of these, there is a subloop of _n with the
neighbour as basepoint that is both in C1 and contains the traversals of
both wis and wis$

. This is a ``special'' subloop.
Now suppose there is some vertex v of G that is visited more than once

by _n . We note it is not visited more than r times. Let us suppose _n(t1)=
_n(t2)=v for some 0�t1<t2<1. Then _n restricted to each of [t1 , t2] and
[0, t1] _ [t2 , 1] is a loop whose composition is in E2 .

Claim 1. One of these two loops is in C1 .

This claim is the heart of the whole matter. Suppose v occurs in 'p(I)
and 'q(I), with 1�p<q�r. Then v is incident with a face F1 that is also
incident with wip and with a face F $1 that is also incident with wiq . Now we
can apply the inductive assumption to find faces F2 , F3 , ..., F(n&1)�2 and
F $2 , F $3 , ..., F $(n&1)�2 so that the face chain v, F1 , wip , F2 , ŵip , F3 , ..., F(n&1)�2 ,
v* joins v to a vertex v* in C1 and the face chain v, F $1 , wiq , F $2 , ŵiq , F $3 , ...,
F $(n&1)�2 , v+ joins v to a vertex v+ in C1 .
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Thus, the face chain 4v from v* to v+ obtained by concatenating these face
chains has length n&1. Since n�M, Theorem 5.2(1) applies. (If n is even, a
similar argument, which we omit, is required to show that Theorem 5.2(1)
applies.) Therefore, there is a face chain 4*v containing 4v and a portion of
the original face chain 4 that represents a loop }1 in C1 . Now we can use
the inductive assumption to find a loop }2 that is freely C1 -homotopic to
}1 (and so it is in C1 , but it only uses the portions of 4v down to C3 and
then cuts across #3).

Repeating this (n&1)�2 times, we get a loop }(n&1)�2 that consists of a
simple path in F1 , a simple path in F $1 , and a portion of #n&2; }(n&1)�2 is
in C1 . But by construction of _n , the loop }(n&1)�2 is homotopic to one of
the subloops of _n . Therefore, one of the two loops in the statement of the
claim is in C1 and Claim 1 is proved.

Because each vertex of G is visited at most finitely often by _n , in finitely
many steps we can remove loops in C1 from _n and obtain a simple loop
#n that is in E2 , being sure to start by removing the ``special'' subloops.

The proof will be complete when we show that the inductive properties
still hold. First, it is obvious that every vertex in Cn=#n(I) is incident with
a face that is on the left-hand side of #n that is also incident with some one
of the wis on the right-hand side of #n&2. Therefore, we need only prove
that if v and v$ are any two vertices of Cn , then each of the portions of #n

between them is C1-homotopic to the corresponding portion of #n&2.
But this is also obvious from the construction; there are only finitely

many C1 loops in _n that have been avoided in obtaining #n . In the portion
of the traversal of #n under consideration, replace these C1 loops to obtain
a subpath of _n from v to v$ that is homotopic to the path in #n&2. Therefore,
the path in #n is C1 -homotopic to this path, as required.

C. Cn is disjoint from Cn&2 . This was guaranteed by the removal of
the ``special'' subloops of _n .

D. Cn is disjoint from Cj , j=1, 2, ..., n&3, n&1. Let j be largest such
that Cn and Cj have a common vertex v. If j and n have different parity
(i.e., if j is even), then there is a face chain from v through Cn&2 , Cn&4 , ..., C1

and through Cj&2 , Cj&4 , ... to a vertex incident with a face of 4. The last
faces of these chains are on different sides of #. These face chains combine
to a single face chain 4$ to which Theorem 5.2(1) applies. Thus, there is a
closed face chain containing part of 4 that is so short it represent a loop
in C1 . In fact, we can find within this first face chain a face chain that
contains a part of 4 and the last faces mentioned previously, but which
represents a simple loop. This face chain is so short that the simple loop
in C1 .

But this simple loop crosses # transversely exactly one, a contradiction
to the assumption that (C1 , E1) is a crossing partition.
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If, on the other hand, j is odd, then there are face chains from v through
Cn&2 , ..., C1 and through Cj&2 , ..., C1 . These combine with a face chain
within 4 to produce a face chain so short that it represents a loop in C1 .
Again, we can find within this a face chain that contains the first two faces
of the ones down from v and it represents a simple loop in C1 . This loop
crosses #n&2 transversely exactly once, again contradicting the fact that
(C1 , E1) is a crossing partition. K

7. Consequences of the Main Theorem

There are obviously many possible consequence of Theorem 6.1, as we
have many possible choices for C1 , C2 , and #. One somewhat surprising
result is the following.

Corollary 7.1. Let G be a graph embedded in an orientable surface 7
and let (C, E) be any complete partition. Then G contains a set of
w(\(G)&1)�2x pairwise disjoint, pairwise freely homotopic cycles, each
traversed by a simple loop in E.

We just remark that to prove Corollary 7.1, we must have \(G)�3 for
the conclusion to have any content, in which case we can assume G is
3-connected (see [RoV]). Thus, Theorem 6.1 applies and we can choose #
to be in E so that it attains the C-representativity. The following (which is
the main concrete result of this work) is obtained by choosing (C, E) to be
the separating partition (Cs , Es).

Corollary 7.2. Let G be a graph embedded in an orientable surface 7.
Then G contains a set of w(\(G)&1)�2x pairwise disjoint, pairwise freely
homotopic nonseparating cycles.

In a similar vein, we have the following.

Corollary 7.3. Let G be a graph embedded in a nonorientable surface
7. Let (C, E) be a complete partition such that E contains only orientation-
reversing loops. Then G has a set of w(\(G)&1)�4x pairwise disjoint pairwise
homotopic cycles, each traversed by a loop which is 2-freely homotopic to a
loop in E.

If the nonorientable genus of 7 is at least 2, then each of the cycles in
Corollary 7.3 separates the surface into two pieces, neither of which is
homeomorphic to a disc. There is more about separating cycles in the next
section.
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We conclude this section with some remarks about algorithms. One of
the most important issues that needs resolution is to know how a complete
partition might be ``given.''

Thomassen's three path algorithm [T1] shows that if (C, E) is a complete
partition and there is a polynomial algorithm for determining if a (simple
loop that traverses a) cycle P is in E, then there is a polynomial algorithm
for finding a shortest cycle in E. Thomassen describes a polynomial algorithm
to determine if a cycle is separating and a polynomial algorithm to determine
if a cycle is essential. Therefore, our proofs shows there is a polynomial time
algorithm to find the \�2 pairwise disjoint, pairwise homotopic nonseparating
cycles guaranteed in Corollary 7.2.

But for other, more exotic, complete partitions, the situation is less clear.
It would be quite interesting to know if membership in E can always be
determined in polynomial time for any complete partition (C, E).

8. Noncontractible Separating Cycles

In this section, we prove an analogue of Corollary 7.2 for noncontractible
separating cycles in the embedded graph. Recall that (C0 , E0) is the
fundamental partition, so that C0 consists of the contractible loops.

Theorem 8.1. Let G be a 3-connected embedding with representativity \
in an orientable surface of genus at least 2. Let (C, E) be any complete
partition, let # # E and let l=l(#, C0). Then G contains

\\+\E(G)&l&1
8 �&1

pairwise disjoint, pairwise freely homotopic cycles, each separating a
homotope of # from some other loop in E0 .

Proof. Let t be the largest positive integer such that 2t�(\+\E&
l&1)�2. In order for the theorem to have any content, we must have 2t�8
and, therefore, \�17. By theorem 6.1, there are 2t C0-parallels in G, each
homotopic to #. Let them be C1 , C2 , ..., C2t , labelled so that, for each
j=2, ..., 2t, Cj&1 and Cj bound a cylinder Cj containing all the cycles
C1 , ..., Cj&2.

If # is separating, then the cycles C1, ..., C2t more than satisfy the conclusion
of the theorem. Thus, we may assume # is not separating.

Let v0 , f1 , v1 , f2 , ..., fk , vk be a shortest face chain disjoint from the
interior of C1 with v0 # V(C1) and vk # V(C2). Let #$ denote the simple path
through these faces and their connecting vertices, so that #$ joins a vertex
of f1 & C1 to a vertex of fk & C2 .
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Now we look for disjoint paths in G homotopic to #$, disjoint from the
interior of C1 , and only their endpoints are in C1 _ C2 . (In this context,
a homotopy allows the endpoints to vary, although they must remain on
C1 and C2 .) Let W1 be the walk from v0 to vk through the boundaries of
f1 , f2 , ..., fk on one side of #$.

Suppose this walk has a repeated vertex v, so v is incident with fi and fj ,
with 1�i< j�k. If j{i+1, then the face chain v0 , f1 , ..., vi&1 , fi , v, fj ,
vj , ..., fk , vk joins C1 to C2 and is shorter than f1 , ..., fk . This is impossible,
so j=i+1. As G is 3-connected and \�3, the intersection of two faces is
either empty, a vertex, or an edge with its two ends. Therefore, fi and fi+1

must intersect in an edge and the walk W1 traverses this edge twice, as
(..., u, e, v, e, u, ...). Simply deleting these two traversals of e from the walk
(for all occurrences of such traversals) produces a path P1 homotopic to #$.
Note that P1 is disjoint from the interior of C1 and P1 has one end on C1

and the other end on C2 . It is not clear that P1 necessarily is internally
disjoint from C1 and C2 ��in fact this need not be the case. But any such
intersections must take place within the cylinder containing # and bounded
by C3 and C4 . Therefore, the fact that the face chain v0 , f1 , ..., fk , vk is
shortest implies that simply taking P1 to start at its last intersection with
C1 and finish at its first intersection with C2 yields a path still homotopic
to #$.

By an argument very similar to that used in the proof of Theorem 6.1 to
get the loop _2 (on the way to obtaining C2), we get a walk W2 homotopic
to #$ and W2 is on the side of #$ opposite to P1 , with the ends being chosen
so that W2 meets C1 and C2 only at its ends. We claim that W2 is disjoint
from P1 and contains a path P2 homotopic to #$.

As to disjointness, suppose there is a vertex v of P1 also in W2 . Then v
is in the boundary of the face fi and is in the wheel neighbourhood of the
vertex w in common between fj&1 and fj . Suppose, without loss of
generality, that i�j. If i{j, j+1, then there is a face chain shorter than
v0 , f1 , ..., fk , vk joining C1 and C2 , which is impossible. If i=j or j+1, then
there is a simple loop from v to w, through fj and fi back to v. This loop
goes through at most three vertices and faces, crosses #$ transversely exactly
once, and is disjoint from the interior of C1 . Therefore, it is noncontractible,
so \�3, another contradiction. Therefore, W2 and P1 are disjoint.

Observe that both W2 and P1 are homotopic to #$ (keeping the endpoints
in the homotopy on C1 and C2). Suppose W2 has a repeated vertex v, with
v in the wheel neighbourhoods of w and x. In order not to have a shorter
sequence of faces joining C1 and C2 , w and x can be separated by no more
than two faces in the chain v0 , f1 , ..., fk , vk . This produces a face chain
through v, w, x of length at most 4. As \�17, this must be contained in a
disc. Deleting the portion of W2 that is in this disc produces a shorter walk
that is homotopic to #$. Continuing in this way, we end up with a path P2 ,
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contained in W2 , that is homotopic to #$. This path, P2 , has one end in C1

and the other in C2 , but is otherwise disjoint from the cyclinder C1 .
For i=1, 2, let ui be the vertex of Pi in C1 and let vi be the end of

Pi in C2 . There are paths Q1 and Q2 in C1 and C2 , respectively, with Q1

joining u1 and u2 and Q2 joining v1 and v2 , such that P1 _ P2 _ Q1 _ Q2 is
a contractible cycle.

The first noncontractible separating cycle we get is the cycle C 1*=P1 _

P2 _ R1 _ R2 , where R1 is the path complementary to Q1 in C1 joining u1

and u2 , and R2 is the analogous path in C2 . It is clear that this is separating,
as one side is the region F consisting of C1 and the disc bounded by
P1 _ P2 _ Q1 _ Q2 . Cut out F and cap the cycle C 1* with a disc on both
pieces, giving surfaces 71 and 72 , with the former containing F. Then 7 is
the connected sum of 71 and 72 , so g(7)=g(71)+g(72).

The only question is, what is g(71)? It is at least 1, since it contains the
noncontractible loop # that we started with. It is not more than 1, since
there is no noncontractible loop that is not freely homotopic to # and disjoint
from #. Hence, it must be exactly 1. Since g(7)>1, we see that g(72)�1
and, therefore, C 1* is an noncontractible separating cycle.

In order to construct the remaining separating parallels, recall we have
the 2t parallels C1 , ..., C2t . We suppose we have 2j disjoint homotopic
paths P1 , ..., P2j , each joining a vertex of C1 to a vertex of C2 , but
otherwise disjoint from C1 . The labelling is such that P1 , P3 , ... occur in
this order going away from #$ and P2 , P4 , ... occur in this order going away
from #$ and on the other side of #$ from P1 , P3 , .... If j<t&1, then we
describe how to obtain P2j+1 and P2j+2. We also assume that, for every
i� j, each vertex of P2i&1 is incident with a face in a face chain, disjoint
from the interior of the cylinder bounded by C1 and C2 , of length at most
i&1 ending at a face incident with a vertex of P1 ; for the vertices of P2i ,
they are in such a chain of length at most i&1 ending at a face incident
with a vertex of P2 .

The paths P2j+1 and P2j+2 are to be found in the wheel neighbourhoods
of the vertices of P2j&1 and P2j , respectively, making sure we go on the
``outer'' side. The concerns which need to be addressed are the following:

(1) we actually construct paths;

(2) the new paths are disjoint from the previous paths and from each
other;

(3) the new paths are homotopic to the previous paths; and

(4) no internal vertex of any path is in C1 _ C2 .

The construction is essentially the same as that for the C1-parallels
presented in the proof of Theorem 6.1. We must determine the walk that
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will contain the path. So, for example, we consider the possibility that two
vertices v, w of P2j&1 are incident with a common face f on the outer side
of P2j&1. There are face chains of length at most j&1 from each of v and
w to P1 , ending at vertices incident with faces fr and fs , respectively, with
1�r�s�k. Then there is a face chain through f1 , ..., fr , v, f, w, and
fs , fs+1 , ..., fk of length at most 2j&2+1+r+k&s+1 joining C1 to C2 .
This must be at least k, so 2j�s&r. On the other hand, there is a closed
face chain through v, f, w, and fr , fr+1, ..., fs which has length at most
2j&2+1+s&r+1�4j�4(t&2)<\. Therefore, the loop face-represented
by this face chain is contractible. In this way, we get the same nesting effect
as in the proof of Theorem 6.1 and can describe the required walk W which
is homotopic to P2j&1.

The remaining items are handled by similar arguments. It is useful to
keep in mind that the best general inequality we can get for 4t is 4t�\&1.
In one case, we actually are right at this inequality, so that we cannot
guarantee any more disjoint paths in this homotopy class.

Each of the remaining noncontractible separating cycles C j*, j�2, is
obtained from the cycles C2j&1 and C2j and the paths P2j&1 and P2j , in a
manner similar to that for C 1*. We must be careful to make sure C j* is a
cycle and that it is homotopic to C 1*. If P2j&1 and P2j both meet each of
C2j&1 and C2j in a single point, then there is no difficulty.

Suppose, then, for example, that P2j has at least two vertices in common
with C2j . (There are really four cases here, but they are all handled in the
same manner.) Let x be the last vertex (as we traverse P2j from C2 to C1)
in P2j that is in C2j . There is a face chain of length at most j joining x to
a vertex wi incident with both fi and fi+1 (faces of the original chain joining
C1 and C2). There is a second face chain of length at most j joining x to
a vertex of the face chain of length l that is contained in C1 . Combining
these two face chains with the part of the face chain from wi to C1 (which
has length i), we get a face chain of length at most 2j+i from C1 to Ck .
This must be at least k, so that 2j�k&i.

On the other hand, using the other part of the face chain from C1 to C2 ,
we get a face chain between two vertices of the face chain of length l of length
at most 2j+(k+1&i). If this has length at most (\+\E&l&1)�2&1,
then Theorem 5.2 implies that there is a face chain using this one and part
of the one representing # that is represents a contractible loop. This happens
certainly if 4j+1�(\+\E&l&1)�2&1, which is the limiting factor in the
number of separating parallels that we get. K

Corollary 8.1.1. Let G be a graph embedded with representativity \ in an
orientable surface 7 of genus at least two. Then there is a set of w(\&1)�8x&1
pairwise disjoint, pairwise homotopic noncontractible separating cycles. K
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9. Miscellaneous Improvements and Results

In this section, we discuss the existence of a single noncontractible
separating cycle. In the nonorientable case, Corollary 7.3 assures us that
such a cycle exists whenever \�5 and g~ (7)�2��we do not know how to
improve this. However, in the orientable case, Theorem 8.1 requires \�17
to get the first noncontractible separating cycle. This is not as good as the
bound of 7 in [ZZ]. However, if one only wishes just one noncontractible
separating cycle, the argument of [ZZ] can be improved, as shown below,
to apply to 6-representative embeddings in orientable surfaces.

Theorem 9.1. Let G be embedded in an orientable surface 7 of genus at
least 2. If G is 6-representative, then G has a noncontractible separating cycle.

Proof. As discussed earlier, we may assume G is 3-connected. Let \
be the representativity of G and let v0 , f1 , ..., f\ , v\ be a face chain face-
representing a noncontractible loop #. If \�7, then we let C1 be a cycle
through the boundaries of the fi on one side of # (as in the proof of
Theorem 6.1). (So if # is separating, then we are done, so we can assume
# is not separating.)

We then get C2 as in the proof of Theorem 6.1, so C2 goes through the
boundaries of the wheel neighbourhoods of the vertices through which #
passes, on the other side of #.

If \=6, then we let v1 , v2 , ..., v6 be the vertices through which # passes,
in this order. Choose C1 to go through v1 , v3 , v5 and the boundaries of the
wheel neighbourhoods of v2 , v4 , v6��all on one side of #. Choose C2 to go
through v2 , v4 , v6 and the boundaries of the wheel neighbourhoods of
v1 , v3 , v5 , all on the other side of #. It is easy to see that these are disjoint
homotopic noncontractible cycles.

Let x0 , g1 , ..., gk , xk be a shortest face chain joining a vertex x0 of C1 and
a vertex xk of C2 that is disjoint from the interior of the cylinder bounded
by C1 and C2 . Let #$ be the path face-represented by the gj , so #$ meets the
graph exactly at x0 , ..., xk . We pick one side of #$ on which to construct P1 ;
P2 is constructed on the other side of #$.

Consider the wheel neighbourhood of xk&1. Suppose some other face g
incident with xk&1 is incident with some vertex u of C2 , with g on the
specified side of #$. As we rotate around xk&1 , starting at the portion of #$
joining xk&1 to xk and staying on the specified side of #$, let g be selected
so that as we continue from g in this rotation, there is no face between g
and gk&1 that has a vertex in C2 . We redefine our face chain so that gk is
this face g. Now, with #$ going through the new gk and keeping the same
side, there are no faces incident with both xk&1 and a vertex of C2 on that
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side of #$. We perform the same operation at x1 , so that no face incident
with x1 on the specified side of #$ is incident with a vertex of C1 .

Now, let P1 be the path through the face boundaries on the side of #$
opposite to the specified side. (Of course, P1 might not be a path, but is
only trivially not a path��see the proof of Theorem 8.1.) We proceed
exactly as in the proof of Theorem 8.1 to construct the path P2 . However,
the arguments presented in the proof of Theorem 8.1 do not adequately
deal with the possibility that W2 returns to C1 or hits C2 twice. In the
context of Theorem 8.1, this did not matter, since we had this all within the
cylinder bounded by C3 and C4 .

Suppose W2 has two vertices u and v incident with C1 . Then we can
assume u=x0 and v is incident with a face f incident with x0 (recall no face
incident with x1 that is used in creating W2 is incident with a vertex of C1).
Let x0 be incident with the original face fi and v with fj . Then |i&j |�2,
by representativity. This gives a face chain of length at most 4, representing
a contractible loop, so we can simply delete the first part of W2 and get a
new walk in the same homotopy class. Continuing in this way, we may
assume W2 has only one vertex in C1 .

At the other end, there is the same problem to consider, but it requires
a little more delicacy. Suppose W2 meets C2 at the vertex v before the end
of W2 , which is at u. By the construction, the face incident with v must be
incident also with xk . Let v and xk be incident with faces in the wheel
neighbourhoods of vi and vj , respectively. By representativity, |i&j |�3.
This gives a face chain of length at most 6, so if \�7, the face-represented
loop is contractible and we proceed as in the preceding paragraph. (This
is the argument of [ZZ].)

If \=6 and |i&j |�2, then we are done anyway. If |i&j |=3, then our
careful construction of C1 and C2 shows that we can save one face in
getting to one of vi and vj , because in the construction of C2 , we did not
use both the wheel neighbourhood at vi and the wheel neighbourhood at
vj . Therefore, the face chain has length at most 5, and we get the required
contractible face-represented loop.

The rest of the proof proceeds exactly as in the proof of Theorem 8.1 for
the first noncontractible separating cycle. K

Finally, we have a simple, but related fact.

Theorem 9.2. Let C1 and C2 be disjoint homotopic noncontractible
cycles in a graph G embedded in a surface 7, and let l=l(C1 , C0). Then
G contains l totally disjoint paths, each contained within the cylinder
bounded by C1 and C2 and each having one end in C1 and the other end
in C2 .
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Proof. Let P1 , ..., Pk be a maximum collection of such disjoint paths in
the cylinder Q bounded by C1 and C2 . By Menger's theorem, there are k
vertices v1 , ..., vk such that every path in Q from C1 to C2 (from now on
called a (C1 , C2)-path) goes through at least one of the vi . Without loss of
generality, we assume vi is on Pi .

For i=1, ..., k and j=1, 2, let the path Pi have end uij on Cj . The cyclic
order of the ui1 in C1 is the same as that of the ui2 on C2 . We assume these
orders are (u1j , u2j , ..., ukj), for j=1, 2.

We claim there is a face fi within Q incident with both vi and vi+1 . To
see this, let Qij denote the part of Cj between uij and u(i+1) j . Let Pi1 and
Pi2 be the segments of Pi from C1 to vi and from vi to C2 , respectively.
There is no path P in the graph from an internal vertex of Pi1 _ Qi1 _

P(i+1) 1 to an internal vertex of Pi2 _ Qi2 _ P(i+1) 2 so that P (except for its
endpoints) is contained in the open disc bounded Pi _ Pi+1 _ Qi1 _ Qi2 .
For if such a P exists, then there is a (C1 , C2)-path disjoint from the
[v1 , ..., vk]. It follows that the required face fi exists.

The face chain v1 , f1 , v2 , ..., vk , fk , v1 face-represents a loop that is
homotopic to C1 and meets the graph only at v1 , ..., vk . By definition of l,
we have k�l, so we are done. K
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