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Graphs that have two disjoint noncontractible cycles in every possible embedding
in surfaces are characterized. Similar characterization is given for the class of graphs
whose orientable embeddings (embeddings in surfaces different from the projective
plane, respectively) always have two disjoint noncontractible cycles. For graphs
which admit embeddings in closed surfaces without having two disjoint noncon-
tractible cycles, such embeddings are structurally characterized. � 1996 Academic

Press, Inc.

1. INTRODUCTION

Graphs in this paper are finite and undirected. They may contain loops
and parallel edges. A cycle Cn of length n�1 in a graph G is a subgraph
of G on n cyclically adjacent vertices. The cycle of length 1 is just a loop,
and a cycle of length 2 is a subgraph of G consisting of two vertices and
a pair of parallel edges between them.

Dirac [2] (cf. also [5]) proved that a 3-connected graph G contains no
two disjoint cycles if and only if one of the following cases occurs: G is a
wheel K1 V Cn (n�3) with 3 or more spokes, G=K5 , or G has at least 6
vertices and contains vertices x, y, z # V(G ) which cover all the edges of G.
In the last case, G=K3, k (k�3) or G is a graph obtained from K3, k by
adding 1, 2, or 3 edges between the vertices in the color class of K3, k con-
taining 3 vertices. Dirac's result can be generalized to arbitrary graphs.
Since the removal of vertices of degree 0 or 1, and the suppression of ver-
tices of degree 2 in a graph do not change the number of cycles, we may
without loss of generality treat only the case when the minimal vertex
degree is at least 3. A graph G with the minimal degree 3 or more does not
contain two disjoint cycles if and only if one of the following cases occurs:
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(a) G has a vertex x # V(G ) such that G&x is a forest.

(b) G has a vertex x # V(G ) such that G&x is a simple cycle and G
has no loops at x, i.e., G is a wheel with the spokes allowed to be multiple
edges.

(c) G=K5 .

(d) There are vertices x, y, z # V(G ) such that G&[x, y, z] is
edgeless, there are no loops at x, y, z, and no parallel edges between
[x, y, z] and V(G )"[x, y, z]. (But parallel edges between x, y, z are
allowed.)

In the study of properties of graphs embedded in (closed) surfaces, it is
important to know as much as possible about the separating (homology)
properties and the homotopy properties of cycles of the graph. A cycle C
of a graph G embedded in some surface is essential if C is noncontractible
on the surface. Every graph that is 2-cell embedded in a surface distinct
from the 2-sphere contains an essential cycle. Moreover, the essential cycles
of a 2-cell embedded graph G on 7 determine a d-dimensional subspace of
the cycle space of G, where d is equal to twice the genus of 7 if 7 is orien-
table, or d is the genus of 7 in the nonorientable case. However, it can
happen that any two essential cycles intersect. Such examples are the
graphs K3, k which have arbitrarily large genus and nonorientable genus
(for k large) but do not have disjoint essential cycles. An interesting out-
come of our results is that these graphs (and simple extensions of them) are
more or less the only such examples.

We characterize graphs which have two disjoint essential cycles in every
embedding in surfaces. It is shown that these are precisely the graphs that
cannot be embedded in the projective plane with exception of the graphs
K3, k (k�5) and simple extensions of these graphs (Theorem 3.1). Similar
characterizations are given for the class of graphs whose orientable embed-
dings (embeddings in a surface different from the projective plane, respec-
tively) always have two disjoint essential cycles (Theorem 4.2). It turns out
that among the projective planar graphs such graphs are precisely those
which can be embedded in the projective plane with representativity three
or more.

In the second part of the paper we present a structural characterization
of graphs embedded in surfaces (maps) without disjoint essential cycles.
This settles the disjoint essential cycles problem initiated in [6].

2. BASIC DEFINITIONS

Let K be a subgraph of G. A K-component in G is a subgraph of G which
is either an edge e # E(G )"E(K ) (together with its endpoints) which has
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both endpoints in K, or it is a connected component of G&V(K) together
with all edges (and their endpoints) between this component and K.
(K-components are sometimes also called K-bridges in G.) We say that a
K-component B in G is attached to a vertex x of K if x # V(B & K ). For
X�V(G ), an X-component is an H-component where H is the edgeless
graph with vertex set equal to X.

A subgraph K of G is a K2, 3 -graph in G if K consists of two vertices
x, y and three internally disjoint (x, y)-paths P1 , P2 , P3 , and there is a
K-component B that is attached to internal vertices of P1 , P2 , and P3 . (See
Fig. 1a which shows such a subgraph K together with the part of B
attached to the paths Pi .) Similarly, K is a K4 -graph in G if it is
homeomorphic to K4 , and there is a K-component that is attached to all
four vertices of degree 3 in K (Fig. 1b). A subgraph of G is a K-graph if it
is either a K2, 3 -graph or a K4-graph. The following well-known facts will
be used in the sequel (cf. [3]).

Lemma 2.1. Let K be a K2, 3 -graph in G. If G is embedded in a surface
7, then at least two of the cycles of K are essential.

Lemma 2.2. Let K be a K4 -graph in G. If G is embedded in a surface 7,
then at least two ``triangles'' of K are essential cycles on 7.

Corollary 2.3. If G contains two disjoint K-graphs, then it contains
two disjoint essential cycles in every embedding.

Let G be a graph and k an integer. If G=G1 _ G2 with E(G1) &

E(G2)=<, |E(G1)|�k, |E(G2)|�k, and |V(G1) & V(G2)|=k, then we say
that the vertex set V(G1) & V(G2) is a k-separator of G. If G has at least
k+1 vertices and contains no l-separator for l<k, then G is k-connected.
Let us remark that our definition of k-connectivity slightly differs from the
usual one if k�4 but in case when k�3, it agrees with other definitions,

Fig. 1. K-graphs.
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also taking care of loops and parallel edges. A vertex of degree 3 in G
together with the incident edges is a triad in G.

Let G be a graph embedded in a surface 7. The minimal number of inter-
sections with G of any noncontractible simple closed curve # on 7 is
denoted by \(G ) and is called the representativity (or the face-width) of
the embedded graph. By elementary topology, \(G) is also the minimum
number of intersections of # with G where # is any noncontractible simple
closed curve which passes through vertices and faces only, and which uses
no vertex or face more than once. The reader is referred to [9] for more
details about representativity of embeddings.

A graph is planar if it admits an embedding in the plane. By a plane
graph we refer to a planar graph together with an embedding in the plane.
If G is a graph embedded in some surface and H is a subgraph of G such
that every cycle in H is contractible on the surface, then H is said to be
plane embedded. In such a case, there is a closed disk in the surface that
contains G.

The structure of maps can be described by means of ``patches'' in a sur-
face. A closed disk D in 7 is a k-patch if |G & �D|=k and every pair of
points in G & �D is connected by a path in G & D that is internally disjoint
from �D. It is allowed that �D intersects G in the middle of an edge but
we may subdivide such an edge and hence assume that �D & G�V(G ).
A patch D is well connected if D contains a (G & �D)-component that is
attached to all vertices of G & �D. A patch structure of an embedded graph
G in 7 is given by a set of patches D1 , ..., Dp in 7 such that

(i) For 1�i< j�p, patches Di and Dj have disjoint interiors and
�Di & �Dj �G.

(ii) G�D1 _ } } } _ Dp .

Let G be a graph embedded in 7. Suppose that D/7 is a k-patch where
k�3. Let H be the graph on 7 obtained as follows. If k�1, delete
G & int D. If k=2, replace G & int D by an edge in D joining the vertices
of G on �D. If k=3, replace G & int D by a triad in D that is joined to the
vertices of G on �D (see Fig. 2). Then the graph H in 7 is said to be

Fig. 2. An elementary reduction of order 3.
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obtained from G by an elementary reduction of order k. A special case of an
elementary reduction of order 3 is the well known 2Y-exchange that
replaces a facial triangle by a triad. An elementary reduction is nontrivial
if it changes the isomorphism class of the graph. If H$ is obtained from G by
a sequence of elementary reductions, we say that G is a plane extension of H$
in 7. If G and H are abstract graphs (not considered as being embedded
in a surface), we say that G is a planar extension of H if G and H can be
embedded in the same surface 7 so that G is a plane extension of H in 7.

The following lemma is easy to verify.

Lemma 2.4. Let G be a plane extension of a graph H in 7. Then the
maximal number of disjoint essential cycles in G is equal to the maximal
number of disjoint essential cycles in H.

We will also need the following result.

Lemma 2.5. Let G be a graph embedded in a surface 7, and let K be a
subgraph of G and B be a K-component. If B contains an essential cycle, then
there is an essential cycle in B which contains at most one vertex of K.

Proof. Let C be an essential cycle in B. If C satisfies our goal of having
at most one vertex in K, we are done. Otherwise, let x and y be two of the
vertices of V(C) & V(K). Then C=P1 _ P2 where P1 , P2 are paths in B
from x to y. Since B is a K-component, P1 and P2 both contain vertices
that do not belong to K, and so there is a (shortest) path P in B&V(K )
that joins P1 and P2 . Since C is essential, one of the two cycles in C _ P
that is distinct from C must be essential. That cycle misses either x or y,
and therefore uses fewer vertices of K than C. By repeating this procedure,
we eventually get the required cycle in B. K

3. UNAVOIDABLE PAIR OF ESSENTIAL CYCLES

Let G be a graph embedded in a surface 7. If 7 is the 2-sphere,
then G contains no essential cycles, and if 7 is the projective plane, any
two essential cycles intersect. To characterize graphs which have two
disjoint essential cycles in every embedding we must therefore exclude
projective planar graphs. The set of graphs having an embedding without
two disjoint essential cycles is minor closed, i.e., if a graph G has such an
embedding, every minor of G also has such an embedding.

Let x, y, z be vertices of degree k forming one bipartite class of the graph
K3, k . For each pair of the vertices x, y, z we add an arbitrary number
(possibly zero) of edges between these two vertices. The set of all graphs
obtained from K3, k in this way will be denoted by K*3, k .
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Theorem 3.1. Let G be a graph that cannot be embedded in the projec-
tive plane. Then one of the following holds:

(a) In every embedding of G in any surface there are two disjoint
essential cycles.

(b) G contains distinct vertices x, y, z # V(G ) such that every
[x, y, z]-component is a planar graph and there are at least five [x, y, z]-
components that contain all three vertices x, y, z. In this case, an embedding
of G in a closed surface 7 has no two disjoint essential cycles if and only if
every [x, y, z]-component is plane embedded, i.e., the embedding of G is a
plane extension on 7 of some graph K # K*3, k (k�5).

Corollary 3.2. A graph G has two disjoint essential cycles in every
embedding in any surface if and only if it cannot be embedded in the projec-
tive plane and it is not a planar extension of some graph K # K*3, k (k�5).

Proof. No graph embedded in the projective plane and no plane exten-
sion of a graph from K*3, k contains disjoint essential cycles. The rest is
clear by Theorem 3.1. K

Proof of Theorem 3.1. Since G cannot be embedded in the projective
plane, it contains as a minor one of the minor minimal graphs H that do
not embed in the projective plane. For most of the graphs H we will show
that they satisfy (a). Then also G satisfies (a). There will be only one case,
H=K3, 5 , when H will fulfil (b) and not (a). But in this case we will show
that if G has an embedding without disjoint essential cycles, then this
embedding is a plane extension of an embedded K # K*3, k as claimed in (b).

It is known [4, 1] that there are exactly 35 forbidden minors for the
projective plane. Twelve of them (the graphs denoted by A1 , A5 , B3 , C1 ,
C2 , C11 , D1 , D4 , E1 , E6 , E42 , F6 in [4]) are not 3-connected. They are
obtained as �2-amalgamations of Kuratowski graphs (K5 and K3, 3), and
all contain two disjoint K-graphs. We are done by Corollary 2.3.

Another twelve of the graphs are 3-connected, but they contain a
3-separator for which none of the parts they separate is a triangle or a
triad. They are shown in Fig. 3. The graphs C7 , E19 , D12 , E11 , E27 , D9 ,
and G1 all contain disjoint K-graphs, and we are done. Consider now the
graph B1 . The edge joining the two bottom vertices is contained in three
nonseparating triangles. Therefore at least one of them is essential. But for
each of them, there is a K4-graph disjoint from it. By Lemma 2.2 we get
another essential cycle.

In the graph D3 , the cycles 3 4 5 6 and 4 5 6 7 (see Fig. 4 for vertex
labels) are both disjoint from a K4-graph. Therefore both are contractible.
On the other hand, they lie in the K2, 3 -graph on vertices 3, 4, 5, 6, 7. By
Lemma 2.1, this is not possible. The graph E5 is obtained from D3 by a
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Fig. 3. Forbidden minors.

2Y-exchange (replacing a triangle by a triad). Having an embedding of E5

without two disjoint essential cycles we would therefore be able to get such
an embedding of D3 whose nonexistence we already verified.

In the graph F1 , the cycle 4 5 8 7 (see Fig. 4 for labels) is disjoint from
a K2, 3 -graph. Therefore it is contractible. The cycle 4 5 6 7 is disjoint from
the complementary K2, 3 -graph. So it is contractible. Now we have a con-
tradiction as above: two cycles in the K2, 3 -graph on vertices 4, 5, 6, 7, 8
are contractible.

The remaining graph to consider is the graph E3=K3, 5 . Let G be a
graph embedded in some surface containing K3, 5 as a minor. We claim that
G does not contain two disjoint essential cycles if and only if G is a plane
extension of some graph K # K*3, k , k�5. One direction is easy: a plane

Fig. 4. D3 and F1 .
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extension of K cannot contain disjoint essential cycles. Conversely, suppose
that K3, 5 is a minor of G. Then it is easy to see that either G contains a
subgraph K homeomorphic to K3, 5 , or contains as a minor the graph K$3, 5

which is obtained from K3, 5 by splitting a vertex of degree 5 into two adja-
cent vertices x, y of degrees 3 and 4, respectively (see Fig. 5). In the latter
case we will prove that K$3, 5 itself (and therefore also G ) contains disjoint
essential cycles in every embedding. We will use the notation of Fig. 5. The
cycle 1 a 2 x is disjoint from the complementary K2, 3-graph. Assuming that
K has no two disjoint essential cycles under the given embedding, we see
by Lemma 2.1 that 1 a 2 x is not essential. Similarly, 1 b 2 x is not essential.
We have two contractible cycles in the K2, 3 -graph on vertices, 1, 2,
a, b, x. By Lemma 2.1, this is not possible, and we are done.

Suppose now that G contains a subgraph K which is homeomorphic to
K3, 5 . We may assume that G does not contain K$3, 5 as a minor. We also
suppose that G has an embedding without two disjoint essential cycles.
Denote by 1, 2, 3, 4, 5 the vertices of degree 3 in K, and let 1$, 2$, 3$ be
the vertices of degree 5 in K. Denote by K$ the graph obtained from K by
adding the edge 12. This edge is contained in three nonseparating triangles.
Therefore at least one of them is essential. But each triangle is disjoint from
a K2, 3 -graph in K$. Therefore we have two disjoint essential cycles. Conse-
quently, G does not contain K$ as a minor. Consider now a [1$, 2$, 3$]-
component B of G. Since K$ is not a minor of G, B contains at most one
among vertices 1, 2, 3, 4, 5. If B contains an essential cycle, then by
Lemma 2.5, B contains an essential cycle that uses at most one vertex
among 1$, 2$, 3$. But such a cycle is disjoint from a K2, 3-graph in G. By
Lemma 2.1, we have disjoint essential cycles. Thus B contains no essential
cycles, and B can be changed by an elementary reduction to a triad, an
empty graph, or an edge between two of 1$, 2$, 3$. This implies that G is
a plane extension of a graph from K*3, k (for some k�5).

It remains to consider forbidden minors for the projective plane in which
every 3-separator has either a triad or a triangle in one of the parts. There
are exactly 11 such forbidden minors. They are shown in Fig. 6.

Fig. 5. The graph K$3, 5 .
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Fig. 6. Internally 4-connected forbidden minors.

Each of the graphs D17 , E20 , and F4 contains two disjoint K-graphs, and
we just apply Corollary 2.3.

The graph E18 is K4, 4 with a missing edge. Denote by 1, 2, 3, 4 and 1$,
2$, 3$, 4$ the vertices of E18 such that for all i, j # [1, 2, 3, 4], vertices i and
j $ are adjacent, except for i=4, j=4. The graph contains 9 pairs of disjoint
cycles of the form ij $k4$ and p$qr$4 (where [i, k, q]=[1, 2, 3] and
[ j $, p$, r$] = [1$, 2$, 3$]). One out of each pair must be contractible.
Consequently, one of the vertices 4, or 4$ is contained in and least 5
contractible cycles of length 4. Since these cycles are induced and non-
separating, they must be facial, and we have a contradiction since
deg (4)=deg (4$)=3.

The graph E22 is obtained from K5, 4 by deleting a 4-matching. So,
V(E22)=[1, 2, 3, 4, 5, 1$, 2$, 3$, 4$] and the edges are ij $ for i=1, ..., 5,
j=1, ..., 4, and i{j. The subgraph on vertices 1$, 2$, 3, 4, 5 is a K2, 3 -graph
in E22 . By Lemma 2.1, we may assume that one of the cycles 1$32$5 and
1$42$5 is essential. This implies that the cycle 13$24$ that is disjoint from
it is contractible, and consequently it is also a facial cycle. Similarly we
get that all other 4-cycles in the subgraph E22&5 are facial. This already
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determines an embedding of this subgraph, giving no room to add the
vertex 5 without changing any of the faces. A contradiction.

The next graph to consider is the graph A2 which is obtained from the
octahedron graph by adding a new vertex of degree 6. Any of the triangles
of the octahedron is disjoint from the complementary K4-graph. By
Lemma 2.2, all these triangles must be facial if A2 is embedded without two
disjoint essential cycles. Clearly, this is a contradiction.

The remaining cases are easy. The graph B7 is obtained from A2 by a
2Y-exchange (replacing a triangle by a triad). Having an embedding of B7

without two disjoint essential cycles we would therefore be able to get such
an embedding of A2 which is already excluded. Similarly we do the others:
C4 and C3 are obtained by 2Y-exchange from B7 , D2 is obtained from C3 ,
and E2 from D2 . K

4. NON-FLAT GRAPHS

A piecewise-linear embedding of a graph in 3-space R3 is flat if every cycle
of the graph bounds a 2-dimensional disk in R3 that is disjoint from the rest
of the graph. A graph is non-flat if it does not have a flat embedding in R3.
We will show in this section that non-flat graphs have two disjoint essential
cycles in every embedding into a surface different from the projective plane.
(Clearly, on the projective plane we cannot have two disjoint essential
cycles.)

It is not that surprising that non-flat graphs usually have two disjoint
essential cycles. The graphs that admit flat embeddings were recently
characterized by Robertson, Seymour, and Thomas [7, 8] as the graphs
which do not contain a minor isomorphic to one of seven graphs shown in
Fig. 7. These graphs are known as Petersen's family since they can be
obtained from Petersen's graph by means of Y2- and 2Y-exchanges. It is
also known [9] that Petersen's family contains precisely the minor mini-
mal graphs that do not have an embedding into the projective plane with
representativity �2. The representation of the graphs in Fig. 7 is by means
of embeddings in the projective plane. This includes the graph K4, 4 minus
an edge in Fig. 7c which is not projective planar. Therefore two of its edges
must cross.

Theorem 4.1. If a graph G contains one of the seven graphs in Petersen's
family as a minor, then every embedding of G in a surface different from the
projective plane has two disjoint essential cycles.

Proof. It suffices to give a proof for the seven graphs in Petersen's
family. Suppose that G is one of them, and that G is embedded in a surface
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Fig. 7. Petersen's family.

7 different from the projective plane, and that G does not contain two
disjoint essential cycles.

Consider first the case G=K6 . There are 1
2( 6

3)=10 different pairs of
disjoint triangles in G. One in each pair is not essential, and thus facial.
Therefore G has at least 10 faces. By Euler's formula we have:

/(7)�|V(G )|&|E(G )|+10=1. (1)

Since 7 is not the projective plane and not the 2-sphere (into which K6

cannot be embedded), we have /(7)�0, and this contradicts (1).
Since K6 has no embedding without two disjoint essential cycles in a sur-

face different from the projective plane, the same holds for the graphs
obtained from K6 by 2Y-exchanges. But this covers all the graphs of
Petersen's family except the graph K3, 3+v (K3, 3 plus a vertex adjacent to
all six vertices of K3, 3), which is shown on Fig. 7d. This graph contains
9 pairs of disjoint cycles (a triangle determined by v and an edge of K3, 3

plus the complementary quadrilateral). In each of these pairs, one of the
cycles is not essential. Since all the considered cycles are induced and non-
separating, they are facial if they are not essential. So we have a graph with
7 vertices, 15 edges, and at least 9 faces. By Euler's formula we see that
/(7)�1, and so 7 is the projective plane. K

Theorem 4.2. Let G be a graph which is not a planar extension of a
graph from K*3, k (k�5). Then the following assertions are equivalent:
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(a) G has two disjoint essential cycles in every embedding into any
orientable surface.

(b) G has two disjoint essential cycles in every embedding into any sur-
face different from the projective plane.

(c) G cannot be embedded in the projective plane with representativity
at most 2.

(d) G contains one of the 35 forbidden minors for the projective plane
or one of the graphs from Petersen's family as a minor.

Proof. Equivalence of (c) and (d) was proved by Vitray [10]. By
Theorems 3.1 and 4.1, (d) implies (b). Clearly, (b) implies (a). Hence, it
suffices to show that (a) implies (c).

Suppose now that G can be embedded in the projective plane with
representativity at most 2. If the representativity is 0 or 1, then G is a
planar graph, and G does not satisfy (a) because of its embedding in the
2-sphere. If the representativity is 2, let # be an essential curve meeting the
graph G exactly in two vertices, x, and y. If we cut the projective plane
along #, we get an open disk D with x and y on its boundary appearing
interlaced. It is easy to see that D can be embedded in the torus so that the
closure of D is a disk with two pairs of opposite points (corresponding to
x and y, respectively) identified. This determines an embedding of G in the
torus that does not have disjoint essential cycles. K

5. BASIC EXAMPLES

In the rest of the paper we shall consider the structure of maps without
disjoint essential cycles. There are embedded graphs which ``obviously'' do
not contain disjoint essential cycles. Examples of such maps are:

(a) Any graph embedded graph in the 2-sphere or the projective
plane.

(b) Any plane embedded graph. Such an embedded graph G contains
no essential cycles at all, and there is an open disk in the surface con-
taining G.

(c) A graph G embedded in such a way that for some vertex x of G,
the subgraph G&x is plane embedded.

(d) A map G in 7 has the projective wheel structure if there are
vertices x, y1 , y2 , ..., yt (t�1) in G such that the following holds:

(d1) G&x& yi is plane embedded for every i, 1�i�t.
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(d2) There are disjoint open disks D1 , D2 , ..., Dt in 7 such that for
each i, 1�i�t, the boundary �Di of the closure of Di intersects G in
vertices x, yi , yi+1 (index modulo t), and these vertices appear on �Di in
order x, yi , x, yi+1. If t>1, Di is homeomorphic to a closed unit disk with
a pair of opposite vertices on the boundary identified. If t=1, D1 is a disk
with two pairs of opposite points identified.

(d3) Every [x, y1 , y2 , ..., yt]-component Q of G is either con-
tained in some Di (1�i�t), or it is a plane embedded [x, yi]-component
for some i. In the latter case, Q contains no essential cycles, and after an
elementary reduction, Q will either disappear or it will be replaced by an
edge between x and yi .

Although the closures Di of the disks Di from (d2) are not disks, we shall
call them patches of the embedding. Every map with the projective wheel
structure can be easily transformed into a map in the projective plane. See
Fig. 8 where shaded patches represent disks Di and dotted lines represent
the [x, yi]-components that are not in the disks Di (i=1, ..., t). The
obtained map in the projective plane also has the projective wheel struc-
ture. Its representativity is at most two.

By (d1), every essential cycle in G either contains the vertex x, or it
contains all of y1 , ..., yt . Suppose now that there is an essential cycle C1

through y1 , ..., yt and an essential cycle C2 containing x, where
C1 & C2=<. Then C2 is contained in an [x, y1 , ..., yt]-component Q. By
(d3) and since C1 contains all vertices yj , Q lies in some Di . By (d2), C2

intersects every ( yi , yi+1)-path in Q. Since the only possibility for C1 to
come from yi to yi+1 in two distinct ways is to cross Di , we see that C1

must intersect C2 . It follows that a map with the projective wheel structure
contains no disjoint essential cycles.

Fig. 8. The projective wheel structure.
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We will use the following fact that can be easily verified. If G satisfies
(d1)�(d3) and G� is a plane extension of G such that x # V(G� ) (i.e., x is not
a result of an elementary reduction of order 3), then G� has the projective
wheel structure as well.

(e) Maps of K3, k-type (k�0): A map G is of K3, k -type if it contains
vertices x, y, z such that every [x, y, z]-component is plane embedded and
the number of [x, y, z]-components containing all of x, y and z is equal to
k. Then G is a plane extension of a graph from K*3, k . (Let us observe that
the converse does not hold.) Hence maps of K3, k-type do not have disjoint
essential cycles.

(f ) K5 and its plane extensions (K5 -type).

Above cases (a)�(f ) correspond in a natural way to Dirac's graphs [2]
without two disjoint cycles (see the introduction). Examples of type (a) and
(b) are similar to forests, type (c) corresponds to graphs G with a vertex
x such that G&x is a forest, (d) to wheels (the vertex x corresponds to the
centre of the wheel), K3, k-type embeddings to graphs in which three ver-
tices cover all the edges, and K5-type is simply an analogue of K5 .

We will show that the above examples (together with some small varia-
tions) exhibit all maps without disjoint essential cycles. At this point, let us
briefly discuss maps of K3, k-type and their planar extensions.

Proposition 5.1. Let G be a graph with an embedding of K3, k -type in
some surface 7. Then G contains vertices x, y, z such that the following
holds:

(a) There are exactly k well connected 3-patches D1 , ..., Dk in 7 with
x, y, z on their boundaries and such that Di & Dj=[x, y, z], 1�i< j�k.

(b) All [x, y, z]-components that are not contained in D1 , ..., Dk are
contained in p�0 1-patches and 2-patches Dk+1 , ..., Dk+ p where
�Dk+i & G/[x, y, z] (1�i�p) and such that Di & Dj �[x, y, z]
(1�i< j�k+ p).

Proof. (a) and (b) hold by definition of K3, k-type except that we need
to prove that the patches Di can be chosen such that they pairwise intersect
only in x, y, z. Every [x, y, z]-component B is contained in a patch D(B)
such that �D(B) & G is equal to V(B) & [x, y, z]. It is easy to see that for
distinct [x, y, z]-components B, B$, D(B) and D(B$) can be replaced by
their subsets D1(B) and D1(B$) which contain B and B$, respectively, and
intersect as required. After doing this for all possible pairs of [x, y, z]-com-
ponents, we get the required patch structure. K

Every map of K3, k-type is a plane extension of an embedding of a graph
from K*3, k . The next proposition shows that the converse holds if k�4.
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Fig. 9. Embeddings of planer extensions of K3, 3 without disjoint essential cycles.

Moreover, it classifies embeddings of planar extensions of K3, k that do not
have disjoint essential cycles.

Proposition 5.2. Suppose that G is a planar extension of the graph K3, k

where k�4, and that G is not a planar extension of some K3, l l<k. Then
an embedding of G does not have disjoint essential cycles if and only if the
embedding is of K3, k-type.

Proof. Let K=K3, k with vertices x, y, z of degree k. Consider an
embedding of G that is a plane extension of an embedding of K. Since k�4,
x, y, z are also vertices of G. The embedding of K has k well connected
patches containing [x, y, z]-components, and since k is minimal, the same
holds for G. Suppose now that G is embedded in some (other) surface and
that an [x, y, z]-component B contains an essential cycle C. By Lemma 2.5,
we may assume that x # V(C ) but y, z � V(C ). Since k�4, there are three
[x, y, z]-components distinct from B that are attached to all of x, y, z. They
determine a K2, 3 -graph disjoint from C. By Lemma 2.1, we have an essential
cycle disjoint from C. Consequently, no [x, y, z]-component contains an
essential cycle. This implies that the embedding of G is of K3, k -type. K

In contrast with Proposition 5.2, planar extensions of K3, 3 can have
embeddings without disjoint essential cycles that are not of K3, 3 -type.
However, their structure cannot be too complicated. The general patch structure
of such embeddings is shown in Fig. 9 (as embeddings in the projective plane)
where the 3-patches are well connected and the broken lines represent an
arbitrary number of additional 2-patches between the corresponding vertices.

6. LOW CONNECTIVITY CASES

The following lemma will help us discover elementary reductions.

Lemma 6.1. Let G be a graph embedded in a surface 7, let K be a sub-
graph of G and let H be the union of all K-components in G. Suppose that
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H is connected, that no cutvertex of H belongs to K and that every cycle of
H is contractible. Let A be the set of vertices of attachment of all K-com-
ponents. Then there is a closed disc 2 in 7 containing H. If 2 & B=H, then
we can choose 2 so that �2 & G=A.

Proof. If H is 2-connected, then it is easy to show that there is a cycle
C in H that bounds a closed disc 2 in 7 such that H�2. We can, there-
fore, find a ``tree-like'' set of discs with disjoint interiors intersecting at cut-
vertices of H such that each disc contains some of the blocks of H and each
block of H is contained in one of these discs. If two of these discs touch at
a cutvertex v of H, we can add a small disk Dv around v such that the
union of the two disks and Dv is a closed disc in 7. After a finite number
of steps we are left with a single disc 2 such that H�2 and �2 & G�H.
If 2 & G=H, then A��2. Since there is an open disc in 7 that contains
2, we can get another closed disc 2$ containing 2 such that �2$=A. K

Our first reduction lemma enables us to restrict our attention to 2-con-
nected graphs.

Lemma 6.2. Let G be a graph embedded in a surface 7 without two dis-
joint essential cycles. Then one of the following cases holds:

(a) G is a plane extension of a 2-connected graph H in 7 (with
elementary reductions of order 0 and 1 only).

(b) G is a planar graph embedded in 7 in such a way that for some
cutvertex v of G, G&v contains no essential cycles.

Proof. If G is disconnected, then at most one of its components con-
tains an essential cycle. All other components can be removed by using
elementary reductions of order 0. Thus we may assume that G is connected.
If v is a cutvertex of G, let B1 , ..., Bs be the [v]-components of G. If one
of them, say B1 , does not contain essential cycles, then by Lemma 6.1,
there is an elementary reduction of order 1 that removes B1 (and possibly
some other Bi) from G. By repeating such reductions, we get a graph H
with all endblocks containing essential cycles. Consequently, every pair of
blocks has a vertex in common, and so, if H is not 2-connected, it contains
exactly one cutvertex v (or |V(G )|�2 in which case we clearly have (b)).
Every essential cycle must use v. Therefore H&v contains no essential
cycles. By Lemma 6.1, each component R of H&v is contained in a closed
disc 2R such that all vertices of R that are adjacent to v lie on �2R . This
implies that H is a planar graph (although the embedding in 7 is not
necessarily plane). It follows that the original graph G is also planar and
that it satisfies (b). K
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Our next result describes the geometric structure of maps in which all
essential cycles are covered by two vertices.

Lemma 6.3. Let G be a graph in 7 that does not contain two disjoint
essential cycles. Suppose that there are vertices x and y of G such that every
essential cycle in G contains either x or y. Then one of the following cases
holds:

(a) G is a planar graph embedded in 7 in such a way that for some
vertex v of G, G&v contains no essential cycles.

(b) G is a projective planar graph, and its embedding in 7 (as well as
an embedding in the projective plane) has the projective wheel structure.

(c) The embedding of G is of K3, k-type (k�0).

(d) G is of K5 -type. In this case G is nonplanar.

Proof. By using elementary reductions of order at most 2, we get a map
on which no further nontrivial elementary reductions of order at most 2 are
possible. The obtained map still has the properties stated in the lemma, and
it satisfies (a), (b), (c), or (d) if and only if the original map does. By
Lemma 6.2, we may assume that G is 2-connected. Excluding (a), we may
also assume that there are essential cycles that do not use x, and there are
some that do not use y.

Suppose that for some u, v # V(G ) we have two or more [u, v]-com-
ponents B1 , ..., Bs where s�2. If some Bi contains no essential cycles, it is
just an edge from u to v. Suppose that B1 and B2 both contain essential
cycles. By Lemma 2.5, each of them contains essential cycles that use at
most one of u or v. Now it is easy to see that we have case (a). Hence, at
most one of Bi is nontrivial. If some parallel edges remain, Lemma 6.1
implies that each pair of such edges forms an essential cycle. Thus, we may
assume that G is ``almost'' 3-connected (up to some parallel edges). All
parallel pairs in G are either covered by a single vertex, or there is a third
vertex z and parallel edges appear only between x, y, and z. This is obvious
since the parallel pairs determine essential cycles, and so the subgraph on
the parallel edges does not contain a 2-matching.

The case when we have parallel edge pairs between any two of x, y, z is
easy: If B is an [x, y, z]-component, it is plane embedded. If not, B con-
tains an essential cycle using only one among x, y, z (Lemma 2.5), and this
cycle is disjoint from one of the parallel pairs. Consequently, the map is of
K3, k-type for some k�0.

Suppose that neither x nor y covers all parallel edges. Let z be the vertex
which does. Since x, y cover all essential cycles, the only parallel edges are
between z, x and between z, y. But then x and z cover all essential cycles.
Then we can take z, x to play the role of vertices x, y covering all essential
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cycles. Therefore we may assume from now on that x covers all parallel
edge pairs, and that G is 3-connected up to possible parallel edges at x.

Consider the graph G$=G&x& y. It is connected and plane embedded.
If e, f are edges from y (or x) to G$, there is a cycle Cef determined by e,
f and a path in G$ joining the ends of e and f in G$. Although there are
several possibilities for selecting this cycle, the homotopy class of Cef in 7
is uniquely determined since G$ is plane embedded. We say that e and f are
homotopic if Cef is contractible on 7. The homotopy relation partitions the
edges from y to G$ (and similarly the edges from x to G$) into disjoint
homotopy classes. In the local rotation at y on 7, the edges of the same
homotopy class are consecutive. Therefore it is possible to split the vertex
y into several new vertices, one for each homotopy class of edges from y
to G$, such that the edges at y of any homotopy class remain incident with
the corresponding copy of y and the new graph is still embedded in 7. The
same operation can be done with x. By splitting x and y, as mentioned
above, and removing the edges between x and y, we get a plane embedded
graph H in 7. See Fig. 10 for an example on the torus. We will refer to the
new vertices obtained from x and y after splitting as copies of x and y,
respectively. Note that all copies of x and y lie on the boundary of the
outer face of H.

Since G&x is not plane embedded, H contains at least two copies of y.
Our aim is to show that there are exactly two. Similarly, there are at least
two copies of x in H. Since G$ is connected, no copy of x or y is a cutvertex
of H. Note that H is connected.

Suppose first that H is 2-connected. Any path in H between two copies
of y (or x, respectively) determines an essential cycle in G. Therefore every
path in H between copies of y intersects any path between copies of x.
Since H is 2-connected, this implies that the copies of y and x alternate on
the cycle bounding the outer face of H, and there are exactly two copies
of each of them. This gives the projective wheel structure of G (with
t=1).

Fig. 10. The graph H.
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Suppose now that H is not 2-connected, and let z be a cutvertex of H.
Since all copies of x and y lie on the boundary of the outer face of H, we
may assume that z is also on its boundary. (Otherwise we have an elemen-
tary reduction at z in G.) Let B be one of the components of H&z. Since
G is ``almost'' 3-connected, B is either just one of the copies of x or y, or
there are at least two of these vertices in B. Let us say that B is trivial if
the former possibility occurs, and nontrivial otherwise. If B is nontrivial, it
contains copies of x and of y. Otherwise a path between two copies of x
(or y) would exist in B, and this path would be disjoint from any path
between copies of the other vertex. It may happen that in B there is just
one copy of x and one copy of y. In this case, B+z can be changed into
a triad (attached to x, y, z in the graph G ) by applying an elementary
reduction of order 3. We call such a component B of H&z a triad compo-
nent. Note that a triad component is well connected in G.

Let us first consider the case when there are at least three nontrivial
components of H&z. If one of them contains two copies of x or two copies
of y, it is easy to see that there are disjoint essential cycles in G. Otherwise,
all of them are triad components. It follows that the embedding of G is of
K3, k-type.

From now on we may assume that for every cutvertex z of H, we get at
most two nontrivial components. If for some z, all the components are
either trivial or triad, then we have a plane extension of an embedding of
some K3, k . Therefore we may assume that for every choice of z we have at
least one nontrivial, non-triad component B of H&z.

Suppose that a block Q of H contains at least three cutvertices z such
that H&z contains two nontrivial components. If there are four or more
such cutvertices in Q, it is easy to see that we have disjoint essential cycles.
Hence, there are exactly three. None of them is a copy of x or y. If there
is another cutvertex in Q (separating trivial components), or if Q contains
a copy of x or y, then we get disjoint essential cycles. The same happens
if at least one of the three cutvertices of Q has a non-triad component (dis-
joint from Q). Therefore all three cutvertices in Q have triad components.
Consequently, G is of K5-type.

From now on we will assume that every cutvertex z of H gives rise to at
most two nontrivial components of H&z, and that every block of H con-
tains at most two cutvertices which give rise to two nontrivial components.
Therefore the block structure of H is ``caterpillar-like''. Blocks are arranged
in linear order with possible pendant edges (corresponding to trivial com-
ponents) attached to any of the vertices (see Fig. 11). Let B1 , B2 , ..., Bq be
the consecutive blocks of H in this chain structure. (We do not count the
pendant edges.)

Consider first the case when q=1. The situation is equivalent to the case
when H is 2-connected if at every cutvertex of H, there is exactly one
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Fig. 11. The caterpillar structure of H.

pendant edge (trivial component). So we may assume that a cutvertex z
has two or more trivial components. If both of them are copies of x, the
two copies of y can be joined in H&z (giving rise to the second essential
cycle), unless a copy of y is also one of the trivial components at z. At
most one copy of y is found elsewhere in H. Since x covers all parallel
edges, there is just one copy of y pendant at z. There is exactly one more
copy of y in H. It is either pendant at a cutvertex z$, or it is contained in
B1 . In each case, it is easy to see that we must have the projective wheel
structure with t=3 or t=2, and y1= y, y2=z, y3=z$ (whenever t=3).
This completes the analysis in the case when two copies of x are pendant
at z. Since x covers all parallel edges, we do not have two copies of y pen-
dant at z. Now we may assume that at z we have a copy of x and a copy
of y. If there is just one more copy of x and just one more copy of y, it
is easy to discover the projective wheel structure. Suppose now that we
have two or more additional copies of x. If there are also two more copies
of y, the only possibility is that we have three cutvertices of H, each with
a pendant pair x, y. In this case, G is of K5 -type (if x and y are adjacent),
of K3, 3 -type, or of K3, 2 -type (x, y nonadjacent). Otherwise, there is just
one more copy of y, and it can be seen that we have the projective wheel
structure.

Suppose now that q�2. For i=2, 3, ..., q, denote by yi the cutvertex
shared by Bi&1 and Bi . We will say that yi is simple if one of the parts of
H& yi is a triad component. Let us first assume that y2 and yq are not sim-
ple. In this case B1 contains two copies of x, say, and one copy of the other
vertex y. Similarly, Bq contains two copies of x and one copy of y. Since
there are paths between the two copies of x in B1& y2 (and the same in
Bq& yq), there are no other copies of y in H. But there may be other copies
of x in B1 , B2 , ..., B&q, or pendant at these blocks. However, for each i,
there are at most two copies of x that belong to Bi"[ yi , yi+1] or are pen-
dant at vertices of Bi different from yi and yi+1 . If there are two such
copies x$, x" for some i, then every path in Bi joining them must cross
every ( yi , yi+1)-path in Bi . It follows that x$, x", yi , and yi+1 appear on
the outer boundary of Bi in the interlaced order x$, yi , x", yi+1. The same
holds in B1 if y1 is considered as a copy of y in this part. Similarly in Bq .
It is now evident that we have the projective wheel structure.
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The next case is when y2 is simple and yq is not simple. Bq& yq contains
two copies of the same vertex, say x, and a copy of y. No other block Bi

(1<i<q) has a copy of y attached to it. Suppose that Bq& yq contains
two copies of y. Then q=2 and no copy of x or y is pendant at y2 . Now
it is easy to see that x and y are pendant in two pairs at Bq and we have
a K5-type embedding. This case is complete.

Suppose now that Bq contains just one copy of y. Then one finds the
projective wheel structure as before.

We argue as above if yq is simple and y2 is not simple.
The remaining possibility is when y2 and yq are both simple. We have a

copy of x and a copy of y at each of the parts corresponding to B1 and Bq ,
respectively. If there is no other copy of y, we get the projective wheel
structure (as above). Similarly, if there are no other copies of x. Suppose
now that we have additional copies of x and of y. Let K be the graph
obtained from H by deleting B1& y2 and Bq& yq (and pendant copies of
x and y) and adding vertices x*, y*. Join x* to all (remaining) copies of
x and y* to all copies of y. Any two disjoint paths in K from [x*, y*] to
[ y2 , yq] give rise to disjoint essential cycles in G. By Menger's Theorem we
have a vertex z # V(K) blocking all paths between these two sets. It is easy
to see that z is a cutvertex of H. Since any cutvertex of H gives rise to at
most two nontrivial components, we have just copies of x and y pendant
at z. If z lies on every path in H from y2 to yq , then the [z]-component
of H containing B1 does not contain disjoint essential cycles. Similarly for
the [z]-component of Bq . Thus we have K3, 2 -type (determined by x, y, z).
On the other hand, if there is a path P in H&z from y2 to yq , then we have
K5-type with respect to vertices x, y, z, y2 , yq . K

Now we are able to show that we can restrict our main attention to
3-connected graphs.

Lemma 6.4. Let G be a graph in 7 that does not contain two disjoint
essential cycles. Then either:

(a) G is a plane extension of a 3-connected graph H in 7 (with
elementary reductions of orders at most 2).

(b) G is a planar graph embedded in 7 in such a way that for some
vertex v of G, G&v contains no essential cycles.

(c) G is a projective planar graph, and its embedding in 7 (as well as
an embedding in the projective plane) has the projective wheel structure.

(d) The embedding of G is of K3, k-type, k�0.

(e) G is of K5 -type.
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Proof. All choices (a)�(e) resist elementary reductions of order at most
2. Therefore we can assume by Lemma 6.2 that G is 2-connected. Suppose
that x, y is a 2-separator of G. If some [x, y]-component of G does not
contain essential cycles, then it can be replaced by a single edge xy using
an elementary reduction guaranteed by Lemma 6.1. Therefore we may
assume that every [x, y]-component, that is not just an edge from x to y,
contains an essential cycle. Note that we may have several edges between
x and y.

Let B be an [x, y]-component, and let C be an essential cycle in B. By
Lemma 2.5, B contains an essential cycle that does not use one of x or y.
Thus, every [x, y]-component is either just an edge, or it contains an
essential cycle that uses at most one of x and y. Suppose that we have two
or more [x, y]-components that are not just edges. Let C1 be an essential
cycle in one of them that does not use y, say. Let C2 be such a cycle in
another [x, y]-component. Since C1 & C2 {<, we have x # V(C1) &

V(C2). It follows that any other essential cycle in G passes through x.
Therefore G&x is plane embedded. In the same way as in the proof of
Lemma 6.2, we conclude that G is a planar graph.

It remains to consider the case when G has only one nontrivial [x, y]-
component B. (If there are none, we clearly have case (b).) Since x, y is a
2-separator, there is more than just one edge between x and y. By making
appropriate elementary reductions, we may assume that no two such edges
are homotopic, i.e., every pair determines an essential cycle in G. Thus,
every essential cycle in G uses either x or y (or both). By Lemma 6.3 we
have (b), (c), (d), or (e).

If there is another 2-separator u, v, we do the same, and we either get
one of the cases (b)�(e), or reduce [u, y]-components so that u, v is no
longer a 2-separator. This gives rise to a 3-connected graph. K

7. PLANAR GRAPHS

We have shown that graphs that are not embeddable in the projective
plane always contain disjoint essential cycles, except when they are planar
extensions of graphs from K*3, k , k�5. In this section we give for a large
class of the remaining graphs a complete description of which of their
embeddings have disjoint essential cycles and which do not. First we prove
a lemma.

Lemma 7.1. Let G be a 2-connected plane graph and let C be a family
of cycles of G satisfying the following conditions:

(a) No two cycles in C are disjoint.
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(b) If C # C, let D be the disk bounded by C, and let D$=D� ,
D"=R2"D. Then there are facial cycles C (1), C (2) # C such that C (1)�D$,
C (2)�D".

Then either

(i) G contains two vertices such that every cycle in C contains at least
one of them, or

(ii) G has four faces bounded by cycles C1 , C2 , C3 , C4 # C and dis-
tinct vertices xij # V(Ci) & V(Cj) (1�i< j�4) such that G is the union of
four patches D1 , D2 , D3 , D4 as shown in Fig. 12. Every cycle C # C contains
edges from at least three of the patches D1 , D2 , D3 , D4 , and none of these
patches contains just a triad.

Proof. Suppose that (i) is not the case. We will pay special attention to
those cycles in C which are facial in the corresponding plane embedding of
G. Denote the set of such cycles by C0 /C.

Suppose first that there is a vertex x # V(G ) which is contained in at least
3 cycles from C0 , say C2 , C3 , C4 . Since x does not cover C, there is a cycle
C1 # C which does not contain x. By (b) we may assume that C1 # C0 .
Denote by zi a vertex in C1 & Ci , i=2, 3, 4. Let C$ # C be a cycle that con-
tains neither x nor z2 . Either the disk D$ bounded by C$ or its complement
does not contain x. The same component of R2"C$ does not include z2

since x, z2 do not lie on C$ but they lie on the boundary of a common face
bounded by C1 . By (b), we may thus assume that C$ # C0 . It is easy to see
that if z3 {z4 , then C$ is disjoint from one among the cycles C2 , C3 ,
C4 # C. Therefore, z3=z4 . Now we repeat the same procedure with z3

instead of z2 , and we get a contradiction with our assumptions.
We may assume from now on that no three cycles from C0 meet a vertex.

Excluding (i), C{< and G is not just a cycle. Thus, there are at least two

Fig. 12. The octahedron patch structure.
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cycles in C0 because of (b). Denote them by C1 and C2 and let
x12 # V(C1 & C2). Since x12 does not cover C, we see as above that there
is a cycle C3 # C0 that does not contain x12 . Denote by xij a vertex shared
by Ci and Cj , 1�i< j�3. Consider a cycle C4 # C not containing x12 and
x13 . Since these two vertices are in the same face, we may assume by (b)
that C4 # C0 . Define vertices xij as above also in cases when 1�i< j=4.
All vertices xij , 1�i< j�4, are pairwise distinct since no three cycles from
C0 meet at a vertex. Then the situation is as Fig. 12 where C4 is assumed
to bound the infinite face.

By adding a vertex in each of the faces bounded by C1 , ..., C4 and joining
these vertices through vertices xij of G, we get an embedding of K4 . This
uniquely determines the 3-patches of Fig. 12 as subgraphs of G. If one of
the shaded patches (say the one in the centre) contains a cycle from C, we
get a cycle disjoint from one of the Ci (C4 in our case). Consequently, we
have (ii). Since no three cycles from C0 meet at a vertex, not patch Di

(i=1, 2, 3, 4) contains just a triad. K

Lemma 7.1 will be used in case when C is the collection of essential
cycles of a planar graph embedded in some surface. If the patch structure
of an embedded graph G is as shown in Fig. 12, we say that the map is of
octahedron type.

Corollary 7.2. Let G be a planar graph embedded in a surface 7. Then
G has no disjoint essential cycles if and only if one of the following cases
holds:

(a) For some vertex v # V(G ), G&v contains no essential cycles.

(b) The embedding of G has the projective wheel structure.

(c) The embedding is a plane extension of an embedding of K3, k where
k # [0, 1, 2].

(d) The embedding of G is of octahedron type.

Proof. Sufficiency of (a)�(d) is clear. Suppose now that G does not con-
tain disjoint essential cycles. By Lemma 6.2 we may assume that G is 2-con-
nected since the only elementary reductions used to make G 2-connected
are of order 0 or 1. Let C be the set of essential cycles of G on 7. We claim
that C satisfies conditions (a) and (b) of Lemma 7.1. Property (a) holds by
assumptions. Let C # C and let D, D$ be as in (b). Suppose that no facial
cycle in D$ belongs to C and that C is such an example with the smallest
number of faces in D$. Clearly, C is not facial. It is easy to see that D con-
tains a face F of G such that D"F is homeomorphic to a disk D$ in the
plane. Let C1 be the facial walk of F and let C$ be the cycle bounding D$.
By our assumptions, C1 � C. By elementary properties of homotopy we see
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that C$ # C. If C$ is facial, this contradicts our choice of C. Otherwise, it
contradicts minimality of C. Existence of C (2) is proved in the same way.

Having verified (a) and (b), we have case (i) or (ii) of Lemma 7.1.
Suppose that (i) is the case. By Lemma 6.3 we either have (a), (b) or (c).
Since G is planar, K3, k-type with k�3 is excluded.

If we have (ii), then there are four closed disks D1 , ..., D4 /7 which
intersect only in points xij , 1�i< j�4, as shown in Fig. 12, and such that
G/D1 _ D2 _ D3 _ D4 . None of the disks Di contains essential cycles.
Thus we have (d). K

8. CONCLUSION

Our results present almost a complete solution of the following Disjoint
Essential Cycles Problem:

(DECP) Given a graph G, characterize all embeddings of G in closed
surfaces such that no two essential cycles are disjoint.

First of all, if G cannot be embedded in the projective plane, then the following
two cases occur. If G contains three vertices, say x, y, z, such that for each
[x, y, z]-component B the graph B together with edges xy, xz, yz is planar,
then an embedding of G does not have two disjoint essential cycles if and only
if the embedding is of K3, k-type for some k�5 (Theorem 3.1(b)). Otherwise,
every embedding of G contains disjoint essential cycles (Theorem 3.1(a)).

Similarly, if G admits an embedding in the projective plane with
representativity 3 or more, then an arbitrary embedding of G has disjoint
essential cycles if and only if it is not an embedding in the projective plane
(Theorem 4.1).

At the other extreme, embeddings of planar graphs without disjoint
essential cycles are characterized by Corollary 7.2. The only remaining case
is a nonplanar graph with an embedding of representativity 2 in the projec-
tive plane. (Note that graphs with an embedding of representativity 1 in
the projective plane are planar.) Suppose that G is such a graph. By the
results of Section 6 it suffices to consider the case when G is 3-connected.
Its embedding with two vertices covering all the essential cycles are further
characterized by Lemma 6.3. Excluding this possibility, we then use the fact
that there is a vertex x and a contiguous subset (with respect to the local
rotation at x) of edges incident to x whose removal results in a 2-connected
planar graph G$. Moreover, the projective embedding of G and the planar
embedding of G$ are closely related. Now, Corollary 7.2 can be applied.
A long and tedious case analysis then yields a characterization of embed-
dings of G without disjoint essential cycles. However, the case analysis is
long, and we decided not to include it into this paper.
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