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Abstract

The model of the torus as a parallelogram in the plane with oppo�

site sides identi�ed enables us to de�ne two families of parallel lines

and to tessellate the torus� then to associate to each tessellation a

toroidal map with an upward drawing� It is proved that a toroidal

map has a tessellation representation if and only if its universal cover

is ��connected� Those graphs that admit such an embedding in the

torus are characterized�

� Introduction

Given a graph G� let V �G� be the set of vertices of G� E�G� the set of edges
of G� For A � V �G� we denote by E�A� the set of edges of G with both
ends in A�

A map M on a surface � is a connected graph G together with a ��cell
embedding of G in �� Two maps are equivalent if there is a homeomorphism
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of � mapping the graph of the 
rst map onto the graph of the second� It
is well�known that the equivalence classes of maps on orientable surfaces
correspond naturally to rotation systems on the underlying graphs ��� Let
us recall that a rotation system on a graph G is a set of cyclic permutations
�v �v � V �G�� where �v cyclically permutes edges emanating from v� �v
corresponds to the cyclic order of these edges around v on the surface� A
similar combinatorial representation can be given for maps on nonorientable
surfaces �cf�� e�g�� �� or �	��� The rotation system around the faces of M
de
nes the dual map M�� A mapM and its dualM� can be simultaneously
drawn in � such that each vertex of M� corresponds to an interior point of
the corresponding face of M �and vice versa�� and such that precisely dual
pairs of edges cross each other�

If M is a map in � whose underlying graph has n vertices� e edges and
f faces� then n� e� f � ���� where ���� is the Euler characteristic of the
surface ��

In this paper we only consider maps on closed surfaces �i�e� compact
surfaces without boundary� and maps in the plane� Most attention is given
to the torus which can be represented by a parallelogram Q in the plane
whose opposite sides are pairwise identi
ed� This representation of the torus
carries the local geometry of the plane and hence we call it the �at torus�

From now on we shall assume that � is a closed surface� M a map on
�� and G the underlying graph of M � An angle of M �respectively� M�� is
a pair of consecutive arcs at a vertex v of M �respectively� a face f of M��
The angle map of M is a map A on � whose vertices are the vertices of
M plus the vertices of M� �i�e�� the faces of M�� and whose edges are the
angles of M � each angle being incident with the corresponding vertex and
face of M �	�� The set of angles incident with a vertex v of M has a local
rotation determined by M � and the set of angles incident with a face of M
inherits the local rotation from M�� The angle map A is bipartite and each
face of A is a quadrangle whose diagonals are a pair of dual edges of M and
M�� An example is shown in Figure 	�b� where the dotted lines represent
the edges of M and they are not part of A� The dual map of A is known as
the medial map of M �

An important concept related to drawings of graphs in the plane is the
notion of upward drawings where each edge of a graph is oriented and drawn
in the plane R� so that the ordinate monotonically increases when we tra�
verse the edge according to its orientation� In order to de
ne an upward
drawing of a graph G on the torus� we 
rst need a de
nition of a mono�
tone arc� Consider� without loss of generality� the �at torus obtained from
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Figure 	� A toroidal map and its angle map

a parallelogram Q in the plane� The lines parallel to the sides of Q ori�
ented according to the usual axes determine horizontal and vertical circuits
on the torus� At each point of the torus two circuits cross� the vertical one
being crossed always by the horizontal one� for instance� from left to right�
A �polygonal� arc on the torus is monotone if it can be oriented such that
by traversing the arc in the chosen direction� one crosses horizontal circles
only from bottom to top� In particular� the vertical circuits are examples of
monotone arcs� Let us observe that a monotone arc may cross a horizontal
circuit more than once by �winding� around two or more times� The de
ni�
tion of horizontal circles is easily extended to the case when the horizontal
direction is not necessarily parallel to a side of Q� Monotone arcs are de
ned
accordingly� An upward drawing of a toroidal map M is a map equivalent
to M drawn on the torus with monotone �polygonal� arcs such that at each
vertex v of M � at least one edge incident to v enters v from below �with re�
spect to the chosen horizontal direction� and at least one edge enters v from
above �see Figure 	�a��� The authors have shown in �� by using network
�ow techniques that every toroidal map with ��connected universal cover
admits a drawing in the �at torus that is an upward drawing and� moreover�
the corresponding drawing of the dual map is upward at the same time �with
respect to the vertical circuits instead of the horizontal ones��

A stronger concept than upward drawings is the tessellation representa�
tion of a map� This concept was investigated in case of planar graphs by
Tamassia and Tollis �	�� Given horizontal and vertical directions � and
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Figure �� A tessellation representation of a toroidal map

�� of the �at torus �possibly distinct from the directions of the sides of the
fundamental parallelogram Q�� we consider a family of horizontal line seg�
ments called the vertices� and a family of vertical line segments called the
faces� all disjoint except that each segment of one family touches at each
end a segment of the other family at one of its internal points� A map is
associated with a tessellation in the following way� Horizontal segments are
the vertices� vertical segments the faces� Each of the obtained quadrangular
regions determines an edge of the map� it is� by de
nition� incident with two
vertices by its two horizontal sides� and with two faces by its two vertical
sides� The local rotation �v around the vertex v is determined by the order
of edges obtained by traversing the boundary of a small neighborhood of
the vertical segment corresponding to v in the clockwise direction� This rule
determines the map up to equivalence� A tessellation of the torus is then
a representation of a toroidal map de
ned by its vertices� faces and edges
as introduced above� An example of a tessellation and the corresponding
map is shown in Figure � and a tessellation representation of the map from
Figure 	�a� is presented in Figure �� Our main result is that a toroidal
map admits a tessellation representation if and only if it is essentially ��
connected� This� in particular� implies the above mentioned result of ��
about the simultaneous upward drawings of the map M and its dual M��

In Section � we present several characterizations of essentially ��connected
maps on the torus and show that they can be obtained from two minimal
maps by vertex splitting and creating digons� Section � contains the proof of
the main theorem about existence of tessellation representations� Part � is
devoted to the visibility representation and grid contact graphs as corollaries
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Figure �� A tessellation representation of the map from Figure 	

of the main theorem� In Part �� a characterization of those graphs that can
be embedded as an essentially ��connected map on the torus is presented�

Similar questions as addressed in this paper for the �at torus have been
considered in the case of the plane by Fraysseix� O� de Mendez� and Pach
��� and for the torus by Kratochvil and Przytycka ���

� Essentially ��connected maps

The universal cover of the surface � is the simply connected surface ��
together with a covering projection p � ��� �� We refer to �� for the gen�
eral theory of covering spaces and for basic properties of universal covering
spaces� If G is the graph of a map on �� then p���G� de
nes a map in ���
By the homotopy lifting property of covering maps ��� a lifting of a closed
walk W of G into the cover �� is a closed walk in p���G� if and only if W is
contractible in �� In particular� every facial walk of G �i�e�� the walk in G
corresponding to the traversal of the boundary of a face� is lifted to facial
walks in the covering map�

The universal cover of the �at torus represented by the parallelogram Q
is the plane paved with replicates of Q� and the lifting of a map in the torus
is an in
nite plane graph� A part of such a pavement is shown in Figure ��

A map is essentially ��connected if the graph of its universal cover map
is ��connected� Figure � shows an example �of a part� of the universal cover
of an essentially ��connected toroidal map whose graph is not ��connected�
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Essentially ��connected maps can be characterized in several other ways�

Figure �� A part of the universal cover of a toroidal map

Lemma ��� Given a map M of a graph G on a surface � whose Euler

characteristic ���� is not positive� the following conditions are equivalent�

�i� M is essentially ��connected	

�ii� No facial walk f of M contains a proper closed subwalk which is con�

tractible on �	

�iii� There are no planar separations in the graph G of M � i	e	� if G� and

G� are graphs each having at least one edge� and such that G � G��G�

and G� �G� � fvg� where v is a vertex� then G� and G� each contain

a circuit that is non�contractible on �	

�iv� The angle map A of M has no homotopic pair of parallel edges� i	e	�

a pair of edges bounding a disk	

�v� For every subset S of the vertices of the angle map A of M we have�

�jSj � jE�S�j � ������ �	�
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Proof� �i� � �ii�� Since ���� 	 �� the underlying surface of the universal
covering map �M ofM is the plane� It is well known that a �possibly in
nite�
graph in the plane is ��connected if and only if every facial walk is a simple
cycle �not meeting the same vertex twice�� Since every facial walk �and
every contractible subwalk of a facial walk� in M lifts into �M to a facial
walk of the same length �a subwalk of a facial walk� respectively�� �i� and
�ii� are easily seen to be equivalent�

�ii�
 �iii�� Suppose that G admits a planar separationG � G��G�� G��
G� � fvg� and suppose that G� contains only circuits that are contractible
on �� Consider a facial walk f ofM which is not contained entirely in E�G��
or in E�G��� Then f is the union of nonempty closed segments from E�G��
and from E�G��� By our choice� G� contains only contractible circuits�
Therefore� any closed segment of f in G� is contractible� This contradicts
�ii��

�iii� 
 �iv�� Suppose that the angle map A of M has a pair of parallel
edges bounding an open disk D� Let the endpoints of these edges of A be
v� a vertex of M � and f � a face of M � Note that �D �G � fvg where �D is
the boundary of the closure of D in �� Since A contains only quadrangular
faces� D is not a face of A� Therefore the subgraphG� � G�D of G contains
at least one edge� If G� � G� ��nD�� then also G� is nontrivial by the same
reason� Since G� is contained in a disk� it only contains contractible circuits�
so the decomposition G � G� �G� is a planar separation which contradicts
�iii��

�iv�
 �v�� Pick S � V �A�� The angle graph A being bipartite� so is the
subgraph A�S� of A induced on S� To prove the inequality �jSj � jE�S�j �
������ it su�ces to consider the case when A�S� is connected and when
jSj � � since ���� 	 �� �Let us note that condition ���� 	 � is really
needed only in cases when A�S� is just a vertex or an edge�� Consider
the induced embedding of A�S� in �� By �iv�� and our assumptions on
connectivity and jSj � �� A�S� contains no digonal faces� Then it is easy to
see by using the Euler�s formula and the bipartiteness of A�S�� that we get
the required inequality�

�v� 
 �ii�� Suppose that a proper closed subwalk Q of a facial walk f
of M is contractible on �� Let x be the endvertex of Q � f � and let ��� ��
be the angles in f corresponding to the appearances of x as an end of Q�
Let e�� e� be the edges in A corresponding to �� and ��� respectively� Note
that e� and e� are parallel edges� joining x and f in A� They determine a
closed curve C on � which is homotopic to Q since it can be �pushed� by
a homotopy within f onto Q� Since Q is contractible� so is C� and thus C
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bounds an open disk D in �� Let S be the set of vertices of A that do not lie
in D� and consider the corresponding submap A�S� of A� Since D is a disk�
the underlying surface of A�S� is also �� The faces of A�S� coincide with
faces of A except for the digonal face D� Thus �jE�S�j equals four times the
number of faces of A�S� minus � �due to the digon�� Euler�s formula then
shows that �jSj � jE�S�j � ������ 	� This contradicts �v��

Note that� since a map M and its dual map M� have the same angle
map� if one ofM�M� is essentially ��connected� so is the other� The essential
��connectivity of toroidal maps appears to be an appropriate generalization
of the ��connectivity planar maps�

Let M be an essentially ��connected map on the torus� An edge e of
M is contractible �resp� removable�� if M�e �resp� M � e� is an essentially
��connected map� Note that if e is contractible �resp� removable�� then its
dual edge e� is removable �resp� contractible� in the dual map M��

Lemma ��� Let M be an essentially ��connected map on the torus and let

e � E�M�	 Then�

�a� If e is incident with a vertex of degree �� then e is contractible	

�b� If e is on a digonal face� then e is removable	

�c� If M has no digonal faces and has at least two vertices� then M has a

contractible edge	

�d� If M has no vertices of degree � and has at least two faces� then M
has a removable edge	

Proof� Statements �a� and �b� are obvious� and �c� and �d� are dual to
each other� So it su�ces to prove �c�� By �a� we may assume that M has
no vertices of degree ��

Since M has two or more vertices� there are non�loop edges in M � Con�
sider e being one of them� If e is not contractible� its contraction results in
a map that is not essentially ��connected� According to Lemma ��	�iv�� the
corresponding angle map contains a digon bounding a disk D� Suppose that
the contracted edge e was chosen in such a way that the number of vertices
in D is as small as possible� By our assumptions �no degree � vertices� no
digons�� D contains an edge of the map M � This edge is then contractible
with respect toM since its contraction yielding a digon in the corresponding
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angle map would contradict the minimality of the originally chosen edge e
and the corresponding disk D�

M0 M1

e e

f f
g

v v

Figure �� Minimal essentially ��connected maps M� and M�

Lemma ��� shows that the only minimal essentially ��connected map
�with neither contractible nor removable edges� on the torus is the map
M� of Figure �� Lemma ��� also implies that every essentially ��connected
toroidal map M can be reduced to one of the two maps M� and M� from
Figure � after a sequence of edge contractions and deletions of digon edges
such that all intermediate maps are essentially ��connected� Keeping track
of that sequence� we may reconstruct M from the map M� or M� obtained
at the end by using the sequence backwards� a deletion being replaced by
the addition of a homotopic parallel edge� a contraction being replaced by
a vertex splitting� In other words�

Corollary ��� Every essentially ��connected toroidal map can be obtained

from one of the maps M� and M� by a sequence of homotopic parallel edge

additions and vertex splittings such that all intermediate maps are essentially

��connected	

� Tessellation representations

From now on we shall only consider maps on the torus� In this section we
shall prove that a toroidal map admits a tessellation representation on the
torus if and only if it is essentially ��connected�

Suppose that we have a tessellation representation of a map M � This
de
nes an orientation of edges of M � each edge e is oriented from the vertex
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corresponding to the base of the rectangle R representing e towards the end
of e corresponding to the upper side of R� For an arbitrary given orientation
of the edges of a map M � an angle at a vertex v is lateral if one of its arcs is
incoming and the other is outgoing at v� Otherwise� if both arcs of an angle
are incoming or both are outgoing at v� then the angle is extremal� Having
an orientation of edges of a map M � we get an orientation of the angle map
A as follows� Given an angle � incident with a vertex v and a face f of M �
the angle � as an edge of A is oriented from f to v if � is lateral� and from
v to f if � is extremal� We say that an orientation of edges of M has the
upward property at v �resp� at f� if there are exactly two lateral angles at
v �resp� two extremal angles at f�� Equivalently� in the oriented angle map
A� the indegree of every vertex �either v or f� is equal to two �see Figure
	�b��� Cf� also �		� An orientation of M � which has the upward property at
every vertex and every face� is called an upward orientation� By the above
remark� an upward orientation induces an indegree�two orientation of the
angle map A� �It is an easy corollary of Euler�s formula that only maps with
Euler characteristic zero admit upward orientations�� Having indegree�two
orientation of A� we can use the following lemma�

Lemma ��� Let k be an integer	 A graph G admits an orientation of its

edges such that each vertex has indegree at most k if and only if the average

degree of the vertices of any subgraph of G is at most �k	

Proof� Let H be an arbitrary subgraph of G and let d��v� denote the
indegree of v � V �G� with respect to an orientation  of edges of G� If
d��v� 	 k for every vertex v� then

jE�H�j 	
X

v�V �H�

d��v� 	 kjV �H�j �

so the average degree in H is at most �k�
Conversely� suppose that jE�H�j 	 kjV �H�j for every subgraph H of G�

Let  be an orientation of edges of G such that the number

S� � �
X

d��v��k

�d��v�� k�

is minimal� If S� � � �� we are done� So� assume that v� is a vertex with
d��v�� 	 k� and let H be the subgraph induced by the vertices v such that
there exists a directed path from v to v�� Then

jE�H�j �
X

v�V �H�

d��v� 	 kjV �H�j�

	�



Since d��v�� 	 k� there is a vertex v� � V �H� such that d��v�� 
 k� By
reversing the arcs on a directed path from v� to v� we get an orientation  

�

satisfying S� �� � S� �� 	� a contradiction�

Figure �� Tessellation representations of maps M� and M�

Now we state the main result of this section�

Theorem ��� A toroidal map admits a tessellation representation if and

only if it is essentially ��connected	

Proof� Suppose that we have a tessellation representation of a map M �
Then we easily get an upward drawing of M which induces an upward ori�
entation of edges of M � This in turn de
nes an orientation of edges of the
angle map A such that every vertex of A has indegree exactly � �cf� the
introduction�� By Lemma ��	� every subgraph of A has average degree at
most �� In our case this means that for every subset S of the vertices of A
we have

�jSj � jE�S�j � � � ���

By Lemma ��	�v�� M is essentially ��connected�
To prove the converse� we have to construct a tessellation representing

an arbitrary given essentially ��connected map M � This is done step by
step as M can be obtained �according to Lemma ���� from M� and M� by
a sequence of parallel edge additions and vertex splittings� We start with a
tessellation representation of M� or M� shown in Figure ��
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Figure �� Extending a tessellation after a vertex splitting

Let us now consider the two types of generating rules� Adding a parallel
edge is simple� the rectangle corresponding to the edge e splits into two by
adding a vertical line in the middle� Of course� the new vertical segment
corresponds to the digonal face�

The vertex splitting operation is slightly more involved� Up to symme�
tries� we have to consider four cases as displayed in Figure �� Note that in
the 
rst vertex�splitting rule� the orientation of the edge e depends on the
relative position of the two faces involved in the splitting� These rules give
the procedure how to obtain a tessellation representation ofM starting from
M� or M�� The proof is complete�

The proof of Theorem ��� also yields a polynomial time algorithm for
constructing tessellation representations of essentially ��connected toroidal
maps� Since a tessellation representation determines an upward orientation�
we also get a polynomial time algorithm for upward orientations�
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There are other possibilities for tessellation representations of M� and
M�� However� in none of them is any direction � or �� of the tessellating
rectangles parallel to the sides of the fundamental parallelogram Q of the
�et torus� It would be interesting to know which toroidal maps have a tes�
sellation representation in the square model of the torus with the directions
� and �� parallel to the sides of the fundamental square�

� Some corollaries on graph drawing

��� Upward drawing

A tessellation representation of a toroidal map M determines an upward
drawing and an upward orientation of M � In proving that the maps which
admit tessellation representations are essentially ��connected� we used Lemma
��	 where only their upward orientation was needed� Therefore we also have�

Corollary ��� A toroidal map admits an upward orientation if and only if

it is essentially ��connected	

��� Visibility representations

Let M be an essentially ��connected toroidal map� By Theorem ��� it has
a tessellation representation� Let us consider the horizontal segments Hv�
v � V �M�� A vertex v is adjacent to a vertex u in M if and only if Hv

contains a segment S of positive length such that by shifting S in the vertical
direction �� we bump into Hu �or vice versa�� We say that the segment Hu

is ��visible from Hv� The intervals Hv� v � V �M�� thus uniquely determine
M � Such a representation of M is called an ��visibility representation of
M � For the ��visibility it is not important whether Hv are open or closed
segments� If we take as Hv half�open segments �without their left endpoints�
say�� then the tessellation of M yields a visibility representation for M
where a point of Hv can see a point of Hu in the vertical direction if and
only if uv � E�M�� Such notion of visibility �in the plane� was considered
by Melnikov ��� Tamassia and Tollis �	� and independently Wismath �	�
characterized which graphs have such a visibility representation in the plane�
Corollary ��� below gives a toroidal analogue of that result�

Tessellation representation is a stronger concept than ��visibility repre�
sentation since it gives simultaneous ��visibility representations for M and
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its dual mapM�� However� our next lemma shows that an ��visibility repre�
sentation of a map M can be transformed into a tessellation representation
of M �

Lemma ��� Every ��visibility representation of a toroidal map M without

digonal faces can be transformed into a tessellation representation of M 	

Proof� Let Hv� v � V �M�� be the horizontal segments of an ��visibility
representation of M � For each edge uv � E�M�� let Quv be a quadrangle
determined by ��visibility of Hu and Hv� The base of Quv is a segment
S�u� v� � Hu �say�� and the upper side of Quv is a segment S�v� u� � Hv�
Suppose that the quadrangles Quv are chosen such that the segments S�u� v�
and S�v� u� are maximal� Now� the vertical sides of the quadrangles Quv�
uv � E�M�� give rise to vertical segments in the torus� None of these
segments can become a closed circle since what we started with was an ��
visibility representation of a ��cell embedded graph� Now it is easy to see
that we got a tessellation representation of M �

Theorem ��� and Lemma ��� yield�

Corollary ��� A toroidal map admits an ��visibility representation in the

�at torus �or has a visibility representation with half�open horizontal seg�

ments� if and only if it is essentially ��connected	

��� Toroidal grid contact graphs

Two families of horizontal and vertical segments of the grid of the �at torus�
each one being disjoint from the others except for some contact points be�
tween two segments of di!erent families� de
ne a bipartite toroidal graph�
called a grid contact graph� Relying on our tessellation theorem we get a
characterization of the graphs which can be represented as toroidal grid
contact graphs on the �at torus�

Theorem ��� A graph H can be represented as the contact graph of straight

line segments on the �at torus where all segments corresponding to the same

bipartition class of H are mutually parallel if and only if H is a bipartite
graph that can be embedded in the torus in such a way that no pair of parallel

edges bounds a disk	
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Proof� A toroidal grid contact graph representation of H on the torus
determines an embedding in the torus without parallel edges bounding discs�
Conversely� let us embed H in the torus without homotopic parallel edges�
By repeatedly adding paths of length � or � between vertices of the graph
it is possible to get an embedded graph eH such that�

�a� H is an induced subgraph of eH�
�b� eH is bipartite�
�c� eH is ��cell embedded �and thus also connected��
�d� eH has no homotopic parallel edges�
�e� No face of eH has repeated vertices�
Now� beside the white bipartition class W and the black class B of

vertices of eH� consider a third class R of red vertices� add a new vertex
r � R in every face f of eH� and join r by red edges to every white vertex
of f � The resulting map H has bipartition �W�B � R� and also satis
es
�a�"�e�� By Lemma ��	 �equivalence of conditions �i� and �iv��� H is the
angle graph of an essentially ��connected map G� and by Theorem ��� we
can get a tessellation representation of G� It is clear that the tessellation
representation yields the required grid contact representation of H� By �a��
the restriction to the segments corresponding to vertices of H yields the
required representation for H�

It is worth pointing out that Theorem ��� is closely related to results of
Bellantoni et al� �� who considered the grid dimension of graphs� By taking
a parallel to results of ��� Theorem ��� characterizes graphs whose �toroidal
grid dimension� is at most two�

� Graphs of essentially ��connected maps

It is of some interest to know which abstract graphs can be obtained as
graphs of essentially ��connected toroidal maps� It is easy to 
nd some
su�cient conditions for a graph G to have a representation as an essentially
��connected toroidal map� For example� if G is ��connected� then every
��cell embedding of G in the torus yields an essentially ��connected map�
We claim that every ��connected graph �except graphs Cn� n � �� with
genus at most 	 has a ��cell embedding in the torus� This is clear if the
graph G has genus 	� On the other hand� if G is planar� consider one of
its plane embeddings� Let e � uv be an arbitrary edge of G with one of
its endvertices� say u� having degree at least �� Such an edge exists if and
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only if G is not a cycle� Let F�� F� be the two faces in the plane containing
e on the boundary� By replacing the unbounded face by a disk and adding
a �handle� joining F� and F� we get an embedding of G in the torus� If
f � uw � �F� is an edge at u distinct from e� we can re�embed it by using
the handle so that it attaches u from �inside� of F�� It is clear that this
gives rise to a ��cell embedding of G in the torus�

Recall that a graph is non�separable if it is either a vertex� a loop� a
bond �p � 	 parallel edges�� or a ��connected graph�

Let G�� � � � � Gk �k � �� be non�separable graphs� each containing at least
one edge and such that at least one of Gi �	 	 i 	 k� is not isomorphic toK��
A graphG is a cyclic amalgamation ofG�� � � � � Gk if there are vertices ui� vi �
V �Gi� �possibly ui � vi if Gi �� K��� i � 	� � � � � k� and G is isomorphic to
the graph obtained from the �disjoint� union of G�� � � � � Gk after identifying
ui with vi�� �index modulo k�� i � 	� � � � � k�

Theorem ��� A graph G can be represented as an essentially ��connected

toroidal map if and only if it satis
es one of the following conditions�

�a� G is ��connected� it has an embedding in the torus� and it is not a
cycle Cn for some n � �	

�b� G is a cyclic amalgamation of non�separable planar graphs G�� � � � � Gk

where k � �� G� �� K�� and each of G�� � � � � Gk contains at least one

edge	

Proof� We have already demonstrated su�ciency of �a�� Let us now
prove that graphs satisfying �b� have an essentially ��connected toroidal
representation� For i � 	� � � � � k where Gi �� K�� embed Gi in the �closed�
cylinder Qi in such a way that �Qi is in two distinct faces� say F�� F��
Gi � �Qi � � and ui � �F�� vi � �F�� Such embeddings always exist� For
that purpose take distinct faces F �

�� F
�

� of a planar embedding of Gi such that
ui � �F �

� and vi � �F �

�� Since Gi is non�separable and Gi �� K��K�� such
faces exist� After removing an open disk from each of F �

� and F
�

�� we get a
required cylinder embedding� By cyclically identifying boundaries of these
cylinders we get a torus embedding of G��� � ��Gk with vertices that need to
be identi
ed in common faces� If at least one pair ui� vi are distinct vertices�
then it is obvious that we can get a ��cell embedding of G in the torus �after
adding the remaining graphs Gj that are isomorphic to K�� and making the
appropriate identi
cations of vertices�� If u� � v�� u� � v�� � � � � uk � vk�
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Figure �� The case of a single cutvertex

then we get a ��cell embedding as indicated in Figure �� It is easy to see by
using Lemma ��	�ii� that the resulting maps are essentially ��connected�

We will now show that conditions �a�� �b� are also necessary� Let G be
the graph of a given essentially ��connected map� If G is ��connected� we
have �a�� If G is not ��connected� let B�� � � � � Ba �a 	 	� be its blocks� Since
the map is essentially ��connected� each endblock Bi contains a cycle Ci

that is non�contractible on the surface�
Suppose 
rst that G has two distinct cutvertices� Then distinct cutver�

tices v� v� of G can be chosen such that an endblock� say B�� contains v
and another endblock� say B�� contains v

�� Then C� and C� are disjoint
non�contractible cycles� Therefore they cut the torus into two cylinders� say
Q�Q�� Any other block of G intersects C� � C� only at v or v

�� Since the
map is ��cell� there is a path P � G in Q joining v and v�� There is a similar
path P � in Q�� Let B� be the block of G containing the cycle C� � P � P ��
Now� each remaining block of G is embedded entirely in Q or in Q�� Since
each endblock Bi �i � �� contains a noncontractible cycle� it must intersect
C� in a cutvertex of G� Now it is easy to see that G 
ts case �b� with each
of the graphs G�� � � � � Gk being either one of B�� � � � � Ba� or a part of B�

�between� consecutive vertices of G on P �P � that are either cutvertices of
G or cutvertices of B� �Q or cutvertices of B� �Q

��
The remaining possibility is when G has exactly one cutvertex v� Then

all blocks are endblocks� If one of them contains a non�contractible cycle
which does not pass through v� then the proof is similar to the above� Thus�
we may assume that every non�contractible cycle of G passes through v�
Then G�v consists of several components corresponding to the blocks of G�
Each of such components D is plane embedded �contains only contractible
circuits� and all edges from D to v attach D at the boundary of the �outer�
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face� Therefore all blocks of G are planar graphs� Their identi
cation at v
can also be interpreted as a special case of a cyclic amalgamation �ui � vi
for every i�� Hence we have �b��

It is worth mentioning that recognizing graphs satisfying �a� or �b� can
be done in linear time� For �a�� testing ��connectivity is easy by a depth�
rst
search �	� while checking if G has genus at most 	 can be performed in linear
time by a recent algorithm of Juvan� Marin#cek� and Mohar ��� To test if G
satis
es �b� we 
rst determine all blocks of G and test their planarity� There
must be a block B� containing all cutvertices �otherwise �b� is not satis
ed�
and such that all blocks distinct from B� are planar� Blocks distinct from
B� will appear in the cyclic amalgamation with ui � vi� while B� itself is
a cyclic amalgamation of �at least 	� planar graphs� If there are � or more
cutvertices� it is easy to see how to get the corresponding decomposition�
Having just one cutvertex� we simply apply the algorithm of ���

Acknowledgement� We are greatly indebted to Jan Kratochvil and Hu�
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towards Theorem ����
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