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An algorithm for computing the algebraic structure count in poly-
graphs is presented. It expresses the related determinant of the
adjacency matrix of a polygraph in terms of the determinants of
monographs and bonding edges between the monographs. The al-
gorithm is illustrated on a class of polygraphs with two bonding
edges between monographs and computations for selected exam-
ples of polygraphs of this class are presented.
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INTRODUCTION

Perfect matchings of a molecular graph are known in chemistry as the
Kekulé structures of the related molecule.1–16 Kekulé and other valence bond
structures have played for decades an important role in organic chemistry.17

CROATICA CHEMICA ACTA CCACAA 72 (4) 853¿867 (1999)

* Author to whom correspondence should be addressed. (E-mail: graovac@rudjer.irb.hr)
Also at Faculty of Science, University of Split, Nikole Tesle 12, HR–21000 Split, Croatia



Especially, the stability of benzenoid hydrocarbons depends on the
number K of Kekulé structures of the related hexagonal graphs. However,
in the case of more general, but still alternant molecules (represented by bi-
partite graphs), the parity of Kekulé structures has to be taken into account
in order to rationalize their stability.5

Two Kekulé structures are said to be of opposite (same) parity if one is
obtained from the other by cyclically rearranging an even (odd) number of
double bonds in a molecule. In this way, Kekulé structures decompose into
two equivalence classes of opposite parity whose cardinalities are denoted
by K+ and K–, where K = K+ + K–. The algebraic structure count, ASC, is
then defined as:

ASC = � K+ – K– � (1)

and it is able to model the stability of both benzenoid (where ASC = K = K+)
and other alternant molecules.18,19 Similar quantity, Corrected Structure
Count, was introduced by Herndon.12,13

In the present paper, we study ASC in polymers which are conveniently
represented by polygraphs, especially those where building blocks of poly-
mers are mutually isomorphic and where there is a uniform bonding be-
tween blocks. For such highly structured objects, efficient algorithms have
been developed to compute various graph invariants. Many of them are
based on extensive use of recursions for the invariant under considera-
tion.1,2,14,15 However, recursive formulae for the ASC depend in a complex
manner on the structure of a graph (cf. Refs. 1 and 3). For several special
classes like �n�acenylenes,1,4 including their subclass of �n�phenylenes, cir-
culenes,10 antikekulene and its homologs,9 recursive formulae have been ob-
tained. However, one has to find some other route to compute the ASC in
general. Fortunately, the ASC of a graph G can be expressed as:7,8,17

ASC2 = � det (A) � (2)

namely by the determinant of the adjacency matrix A = A(G) of G, i.e., by
the constant coefficient of the characteristic polynomial of G.

Here we present an algorithm to compute the determinant of polygraphs
as a new way to compute their ASC.

Let us note that the ASC loses its meaning in general, non-alternant
molecules (represented by non-bipartite graphs) since the parity of their Ke-
kulé structures can not be consistently defined. However, as the determi-
nant of a graph has found applications in some chemical models (see, for ex-
ample, Refs. 7 and 17), the method developed here could be of use in those
models as well.
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POLYGRAPHS

The notions of a monograph and a polygraph were introduced into che-
mical graph theory as a formalization of the chemical notions of monomer
and polymer. Polygraphs with open (closed) ends are called fasciagraphs (ro-
tagraphs) if all monographs are isomorphic and the bonding between them
is uniform throughout a polygraph.

Let M1, M2, ...., Mn be arbitrary, mutually disjoint graphs, and let X1, X2,
..., Xn be a sequence of sets of unordered pairs of vertices such that Xi �
V(Mi) � V(Mi+1), i=1,2,..., n (where index i+1 is taken modulo n). Each pair
(x,y) � Xi can be viewed as an edge joining the vertex x of V(Mi) with a ver-
tex y of V(Mi+1).

Observe that the edges in Xn join vertices of V(Mn) with vertices of
V(M1). A polygraph

Wn = Wn (M1, M2, ..., Mn; X1, X2, ..., Xn)

over monographs M1, M2, ..., Mn is defined in the following way:

V(Wn) = V(M1) � V(M2) � ... � V(Mn),

E(Wn) = E(M1) � X1 � E(M2) � X2 � ... � E(Mn) � Xn.

In the special case when M1, M2, ..., Mn are all isomorphic to a graph M
(i.e., all graphs Mi are disjoint copies of the monograph M) and X1 = X2 = ...
= Xn = X, we call the polygraph a rotagraph and denote it by wn(M; X). A fas-
ciagraph yn(G; X) is defined similarly as a rotagraph wn(G; X) except that
there are no edges between the first and the last copy of the monograph M,
i.e., Xn = 0. In the case of rotagraphs and fasciagraphs, we will consider
their set of vertices as V = �1, ...,n� � V(M).

DETERMINANTS AND GRAPHS

The relationship between determinants and graphs is well established.
Each term in the determinant A of the adjacency matrix A = A(G) of a graph
G is of the form (–1)sgn(p)a1,p(1)a2,p(2)...an,p(n), where n = 	V(G)	 and 
 is a per-
mutation of �1,2,...,n�. The parity sgn�p) is a number of transpositions (mod-
ulo 2) needed to express p as their product. Any permutation can be written
as a product of disjoint cyclic permutations. Each cyclic permutation corre-
sponds to some directed cycle of G, and accordingly a permutation can be
represented by a collection of pairwise disjoint directed cycles of various
sizes (possibly including edges which are considered as cycles of length 2)
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which covers all vertices of G. Note that for permutations with at least one
fixed point, their contribution to the determinant is 0 since the diagonal
entries of A are equal to 0. (Therefore we may assume that there are no
cycles of length 1.) It is easy to see that each directed cycle of even (odd) size
in a collection contributes parity –1 (+1) and the total parity of a collection
equals the product of parities of all directed cycles in a collection.

The above equivalence is illustrated in Figure 1 below for G = C4 (the 4-
membered cycle).

Therefore, the value of det(A(C4)) equals +1+1–1–1 = 0.

The above considerations give a general answer on the dependence of
det(A(G)) = det(G) on the structure of a graph G: see, for example, Refs. 11
and 7.

det(G) = ( ) ( )� 1 C H

H

even (3)

where the summation is taken over all collections H of pairwise disjoint di-
rected cycles of G and Ceven(H) stands for the number of directed cycles of
even size (length) in H.

Let us note that, although the graphs used in chemistry are undirected,
it is easy to represent them by equivalent directed graphs simply by replac-
ing every edge of G by a pair of oppositely directed arcs.

METHOD

In order to develop a recursion formula to compute ASC of polygraphs,
we need a generalization of formula (3). Consider a polygraph Wn = Wn(M1,
M2, ..., Mn; X1, X2, ..., Xn). In order to simplify the arguments, let us first
consider a polygraph G2 = Y2(M1, M2; X1, X2) depicted in Figure 2 where X1
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Figure 1. Representation of permutations by collections of directed cycles in C4.



= X = �x1, x2�, X2 = Ø, i.e., a polygraph with open ends obtained from two
monographs M1 and M2 joined by only two edges x1 = u1v1 and x2 = u2v2.
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Figure 2. Polygraph with open ends having two monographs joined by two edges.

Figure 3. Six types of directed cycles in G2 contributing to det (G2).



In order to compute det(G2), one has to consider all collections of direct-
ed cycles in G2. Each directed cycle in G2 is either completely contained in
M1 or M2 or it contains the arcs of X together with some arcs of M1 and M2.
All possible contributions to det(G2) are shown in Figure 3 where, in order
to keep the drawings simple, only directed cycles containing vertices u1, u2,
v1, v2 are depicted.

There are altogether six various types of contributions (called types (1)–
(6) as denoted in Figure 3). Contributions of type (1) correspond to collec-
tions of all directed cycles completely in M1 and M2. It is easy to see that the
contributions of all such collections of cycles in (3) contribute to det(G2) pre-
cisely the value equal to

det(M1) det(M2). (4)

The contributions of type (2) correspond to collections of directed cycles
in M1 and M2 such that one of the cycles is the 2-membered cycle with verti-
ces u1 and v1. They contribute to det(G2) the value which is equal to

–det(M1 – u1) det(M2 – v2) (5)

where –1 comes from the parity of the 2-membered cycle u1v1. A similar
argument holds for contributions of type (3).

For contributions of type (4) we replace each directed cycle by two di-
rected cycles, as shown in Figure 4, where each of u1u2 and v2v1 is just on
edge add to the graph.

If the length of the original cycle is d, then we get two cycles of lengths
d1 and d2, respectively, where d1 + d2 = d. Obviously, the number of even cy-
cles is 0 or 2 if d is even, and it is equal to 1 if d is odd. In both cases, the
number of even cycles changes its parity.

The above construction can be formulated in terms of determinants as
follows: in the adjacency matrix of M1, replace the row of u1 by a row of ze-
ros, the column of u2 by a column of zeros, and put matrix element equal to
1 in position u1u2. Denote such matrix by ( )M1 1

2

out u
in u

�
�

. In terms of the graph,
this construction corresponds to deletion of all arcs emanating (outgoing)
from vertex u1 to other vertices, deletion of all arcs sinking (ingoing) at ver-
tex u2, and addition of arc u1u2. Therefore, the corresponding contribution to
the determinant can be written as

–det(( )M1 1

2

out u
in u

�
�

) det(( )M2 2

1

out v
in v

�
� ), (6)

where the minus sign is due to the change of parity of the number of even
cycles. Similar procedure applies to contributions of type (5) and they con-
tribute to det(G2) a value given by
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–det(( )M1 2

1

out u
in u

�
�

) det(( )M2 1

2

out v
in v

�
� ). (7)

Similarly, contributions of type (6) add to det(G2) a value of

det(M1–u1–u2) det(M2–v1–v2). (8)

The sum of all above terms can be conveniently written in matrix form
as:

det(G2) = A(1) X (A(2))T . (9)

The row vector A(1) picks up the left factors of the contributions discus-
sed above:

A(1) = ((det(M1), det(M1–u1), det(M1–u2),

det ( )M1 1

2

out u
in u

�
�

, det( )M1 2

1

out u
in u

�
�

, det(M1–u1–u2)). (10)

The matrix X is equal to:
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1 2 3 4 5 6

X �

�

�

�

(1)

(2)

(3)

(4)

(5)

(6)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

The column vector (A(2))T takes care of the right factors in the above con-
tributions and is given by:

A(2) = (det(M2), det(M2–v1), det(M2–v2),

det(( )M2 2

1

out v
in v

�
�

, det(( )M2 1

2

out v
in v

�
�

, det(M2–v1–v2)) . (11)

Note that a given ordering of contributions depicted in Figure 3 induces
indexing in (row and column) vectors and matrix X. Once an ordering is cho-
sen, it has to be fixed throughout the computations.

Let us now consider a general polygraph Yn = Yn(M1, M2, ..., Mn; X1, X2,
..., Xn) with open ends (i.e., Xn=0). For det(Yn) one deduces:

det(Yn) = A(1)X(1) A(2)X(2), ..., X(n–1)(A(n))T (12)

where matrices X(1), X(2), ..., X(n–1) are constructed in analogy with X. The
row vectors A(1) and A(n) related to the leftmost and rightmost monographs
of �n are constructed in the same way as vectors A(1) and A(2). However, A(2),
A(3), ..., A(n–1) become matrices. E.g., matrix A(i) is a rectangular S1 � S2 ma-
trix where S1 and S2 are equal to the number of all possible types of con-
tributions defined on the set of edges Xi–1 and Xi, respectively.

The above formulae for the determinant of a polygraph take a simpler
form if one deals with regular polygraphs, in which case, due to the isomor-
phism of all monographs and uniformity of all sets of connecting edges, one
has:

A = A(2) = ... = A(n–1), X = X(1) = X(2) = ... = X(n–1). (13)

Therefore the determinants of fasciagraphs are given by:

det(�n) = A(1) (X A)n–2 X (A(n))T . (14)
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EXAMPLES

We shall illustrate the method developed in this paper on a class of
graphs describing �n�phenylenes, a class of molecules that have recently at-
tracted a considerable attention among chemists; see Ref. 1 and references
therein.

�n�phenylenes are polycyclic conjugated molecules composed of n 6-mem-
bered rings that are coupled to each other via cyclobutadiene (4-membered
ring) units. �n�acenylenes are a generalization of these molecules where a sin-
gle hexagon is replaced by h fused hexagons (polyacene). (Thus �n�phenylenes
can be viewed as a special case where h=1.) Fusion could be done in a linear,
spiral and zig-zag manner, thus defining the fasciagraphs Xn, Yn and Zn, re-
spectively, shown in Figure 5. The index n denotes the number of mono-
graphs. In all these classes, monographs are the same (for a given value of h).
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Note that in all these fasciagraphs the monographs are connected by
two edges only, and one meets the case elaborated above in full detail. Re-
call that there were exactly six various types of contributions. In the follow-
ing examples, we adopt the same ordering of contributions and indexing of
vectors and matrices as given before.

Example 1. For linear fasciagraphs Xn with h = 1, one has:

A(1) = �–4,0,2,2,0,1�, A(2) = �–4,0,2,2,0,1�,

X �
�

�

�

�

�
�
�
�
�
�

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

-

-

�

�

�
�
�
�
�
�

, A �

�

�

�

�

�

�

�
�
�
�
�
�

4 0 2 2 0 1

0 0 0 0 1 0

2 0 1 0 0 0

2 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

�

�

�
�
�
�
�
�

,

A X� �

�

�

�

�

�

�

�

�
�
�

4 0 2 2 0 1

0 0 0 0 1 0

2 0 1 0 0 0

2 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

�
�
�

�

�

�
�
�
�
�
�

and det(Xn) and ASC(Xn) can be calculated by Eq. (14). For n = 1, 2, ..., 20,
the results are assembled below:

n det(Xn) ASC(Xn) n det(Xn) ASC(Xn)

1 –4 2 11 –144 12
2 9 3 12 169 13
3 –16 4 13 –196 14
4 25 5 14 225 15
5 –36 6 15 –256 16
6 49 7 16 289 17
7 –64 8 17 –324 18
8 81 9 18 361 19
9 –100 10 19 –400 20

10 121 11 20 441 21
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Example 2. For spiral fasciagraphs Yn with h = 1, A(1), A(2), X are as in
the previous example, while:

A �

�

� � �

� � �

� � �

�

�

4 0 2 2 0 1

0 1 0 0 0 0

2 0 1 2 0 1

2 0 2 1 0 1

0 0 0 0 1 0

1 0 1 1 0 1

�
�
�
�
�
�

�

�

�
�
�
�
�
�

, A X� �

� � �

�

�

�

�

� �

� 4 0 2 2 0 1

0 1 0 0 0 0

2 0 1 2 0 1

2 0 2 1 0 1

0 0 0 0 1 0

1 0 1 1 0 1�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

and for n = 1, 2, ..., 20, one obtains:

n det(Xn) ASC(Xn) n det(Xn) ASC(Xn)

1 –4 2 11 –54289 233

2 9 3 12 142129 377

3 –25 5 13 –372100 610

4 64 8 14 974169 987

5 –169 13 15 –2550409 1597

6 441 21 16 6677056 2584

7 –1156 34 17 –17480761 4181

8 3025 55 18 45765225 6765

9 –7921 89 19 –119814916 10946

10 20736 144 20 313679521 17711

Example 3. In the case of zig-zag fasciagraphs Zn with h = 1, A(1), A(2), X

are the same as in the previous example, and it appears convenient to take
two consecutive monographs as a new monograph, M', whose related matri-
ces are given by

A'�

� � �

�

�

�

�

�

�
�
�

9 0 3 3 0 1

0 1 0 0 0 0

3 0 1 0 0 0

3 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

�
�
�

�

�

�
�
�
�
�
�

, A' X� �

�

�

� �

� �

�

�

� 9 0 3 3 0 1

0 1 0 0 0 0

3 0 1 0 0 0

3 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0�

�
�
�
�
�
�

�

�

�
�
�
�
�
�
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One should distinguish between the even and odd values of n.

For even n = 2k: det(Zn) = A(1) X (A' X)k–1 (A(2))T, and for n = 2, 4, ..., 20
one gets:

n det(Zn) ASC(Zn) n det(Zn) ASC(Zn)

2 9 3 12 142129 377

4 64 8 14 974169 987

6 441 21 16 6677056 2584

8 3025 55 18 45765225 6765

10 20736 144 20 313679521 17711

For odd n = 2k+1, by taking into account one more monograph at the
end, A(2) should be replaced by vector A' =�–4,0,2,2,0,1�. Now one has:
det(Z2k+1) = A(1) � X � (A � X)k–2 � (A')T, and thus for n=1, 3, ..., 19, one gets:

n det(Zn) ASC(Zn) n det(Zn) ASC(Zn)

1 –4 2 11 –54289 233

3 –25 5 13 –372100 610

5 –169 13 15 –2550409 1597

7 –1156 34 17 –17480761 4181

9 –7921 89 19 –119814916 10946

Example 4. For linear acenylenes Xn with h=2, one has:

A(1) = �–9,0,3,3,0,1�, A(2) = A(1),

A �

�

�

�

�

�

�
�
�
�
�
�

�9 0 3 3 0 1

0 0 0 0 1 0

3 0 1 0 0 0

3 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0�

�
�
�
�
�
�

, A X� �

� � �

�

�

�

�

�
�
�

9 0 3 3 0 1

0 0 0 0 1 0

3 0 1 0 0 0

3 0 0 1 0 0

0 1 0 0 0 0

1 0 0 0 0 0

�
�
�

�

�

�
�
�
�
�
�

and, accordingly, for n=1, 2, ..., 20, one obtains:
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n det(Xn) ASC(Xn) n det(Xn) ASC(Xn)

1 –9 3 11 –2149991424 46368

2 64 8 12 14736260449 121393

3 –441 21 13 –101003831721 317811

4 3025 55 14 692290561600 832040

5 –20736 144 15 –4745030099481 2178309

6 142129 377 16 32522920134769 5702887

7 –974169 987 17 –222915410843904 14930352

8 6677056 2584 18 1527884955772561 39088169

9 –45765225 6765 19 –10472279279564025 102334155

10 313679521 17711 20 71778070001175616 267914296

It turns out that the recursion for determinants is given by: an = – 7 an–1
– an–2 +2(–1)n , while for the ASC by: an = 3 an–1 – an–2 .

The recursions for the determinants and the ASC of Examples 1–3 can
be found in Ref. 1.

Example 5. For spiral acenylenes Yn with h=2, one has:

A(1) = �–9,0,3,3,0,1�, A(2) = A(1),

A �

�

� � �

� � �

� � �

�

�

9 0 3 3 0 1

0 1 0 0 0 0

6 0 2 3 0 1

6 0 3 2 0 1

0 0 0 0 1 0

4 0 2 2 0 1

�
�
�
�
�
�

�

�

�
�
�
�
�
�

and for n=1, 2, ..., 20, one obtains:
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n det(Yn) ASC(Yn) n det(Yn) ASC(Yn)

1 –9 3 11 –277089316 16646

2 49 7 12 1614994969 40187

3 –196 14 13 –9412880400 97020

4 225 35 14 54862287529 234227

5 –7056 84 15 –319760844676 565474

6 41209 203 16 1863702780625 1365175

7 –240100 490 17 –10862455838976 3295824

8 1399489 1183 18 63311032253329 7956823

9 –8156736 2856 19 –369003737680900 19209470

10 47541025 6895 20 2150711393832169 46375763

The recursion for determinants is given by: an = –6 an–1 – an–2 + 98, and
for ASC by: an = 2 an–1 + an–2. This recursion as well as recursive formulae
for some other cases of Examples 1–5 were calculated in Ref. 1.

CONCLUSIONS

The difficult problem of computing the ASC in polygraphs has been re-
duced here to computation of the determinant (of the adjacency matrix) of
polygraphs. This determinant has been calculated as the appropriate prod-
uct of matrices A, X and row (column) vectors which describe monographs,
linking edges situation and (in the case of polygraphs with open ends) the
leftmost (rightmost) monograph, respectively. Although only polygraphs
with two linking edges between monographs are treated here in full detail,
the algorithm can be generalized to polygraphs with more linking edges.
The Laplace expansion of determinant over more rows and columns (see,
Ref. 16, p. 106, and Ref. 6, p. 36) and its graphical representation should be
of use in such generalizations.
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SA@ETAK

Ra~unanje determinante i broja algebarskih struktura
u poligrafovima

Ante Graovac, Martin Juvan, Bojan Mohar i Janez @erovnik

Prikazan je algoritam za ra~unanje broja algebarskih struktura u poligrafovima,
u kojemu se pripadna determinanta matrice susjedstva poligrafa izra`ava preko de-
terminanti monografova i veza me|u monografovima. Za ilustraciju algoritma po-
slu`ila je klasa poligrafova u kojima su monografovi me|usobno povezani sa dvije
veze. Prikazani su rezultati ra~una za vi{e poligrafova te klase.
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