University of Luubljana
Institute of Mathematics, Physics and Mechanics Department of Mathematics
Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 36 (1998), 616

DIRAC'S MAP-COLOR
 THEOREM FOR CHOOSABILITY

$\begin{array}{lll}\text { T. Böhme } & \text { B. Mohar } & \text { M. Stiebitz }\end{array}$

ISSN 1318-4865

June 19, 1998

Ljubljana, June 19, 1998

Dirac's Map-Color Theorem for Choosability

T. Böhme
Technical University of Ilmenau, D-98684 Ilmenau, Germany

B. Mohar
University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia

M. Stiebitz
Technical University of Ilmenau, D-98684 Ilmenau, Germany

June 17, 1998

Abstract

It is proved that the choice number of every graph G embedded on a surface of Euler genus $\varepsilon \geq 1$ and $\varepsilon \neq 3$ is at most the Heawood number $H(\varepsilon)=\lfloor(7+\sqrt{24 \varepsilon+1}) / 2\rfloor$ and that the equality holds if and only if G contains the complete graph $K_{H(\varepsilon)}$ as a subgraph.

1 Introduction

1.1 History and results

This paper is concerned with the choice number of graphs embedded on a given (closed) surface. Surfaces can be classified according to their genus and orientability. The orientable surfaces are the sphere with g handles Σ_{g}, where $g \geq 0$. The non-orientable surfaces are the surfaces $\Pi_{h}(h \geq 1)$ obtained by taking the sphere with h holes and attaching h Möbius bands along their boundary to the boundaries of the holes. Π_{1} is the projective plane, Π_{2} is the Klein bottle, etc. The Euler genus $\varepsilon(\Sigma)$ of the surface $\Sigma=\Sigma_{g}$ is $2 g$, and
the Euler genus of $\Sigma=\Pi_{h}$ is h. Then $2-\varepsilon(\Sigma)$ is the Euler characteristic of Σ.

Consider a simple graph G with vertex set V and edge set E that is embedded on a surface Σ of Euler genus $\varepsilon=\varepsilon(\Sigma)$. Euler's Formula tells us that $|V|-|E|+|F| \geq 2-\varepsilon$, where F is the set of faces and with equality holding if and only if every face is a 2-cell. Therefore, if $|V| \geq 3$, then $|E| \leq 3|V|-6+3 \varepsilon$. For $\varepsilon \geq 1$, this implies that G is $(H(\varepsilon)-1)$-degenerate, that is every subgraph of G has a vertex of degree at most $H(\varepsilon)-1$, where

$$
H(\varepsilon)=\left\lfloor\frac{7+\sqrt{24 \varepsilon+1}}{2}\right\rfloor .
$$

Consequently, if $\varepsilon \geq 1$, then

$$
\chi(G) \leq \chi_{l}(G) \leq H(\varepsilon),
$$

where $\chi(G)$ denotes the chromatic number of G and $\chi_{l}(G)$ denotes the choice number of G. For every surface Σ distinct from the Klein bottle, the Heawood number $H(\varepsilon)$ is, in fact, the maximum chromatic number of graphs embeddable on Σ where the maximum is attained by the complete graph on $H(h)$ vertices. This landmark result, that was conjectured by Heawood [9], is due to Ringel [13] and Ringel \& Youngs [14]. Conversely, every graph with chromatic number $H(\varepsilon)$ embedded on Σ contains a complete graph on $H(\varepsilon)$ vertices as a subgraph. This result was proved by Dirac [3,5] for the torus and $\varepsilon \geq 4$ and by Albertson and Hutchinson [1] for $\varepsilon=1,3$.

Franklin [7] proved that the coloring problem for the Klein bottle has not the answer $H(2)=7$ but 6 . Furthermore, there are 6 -chromatic graphs on the Klein bottle without a K_{6}. One example of such a graph is given in [1]. Brooks' theorem for the choice number implies that if G is a graph on the Klein bottle, then $\chi_{l}(G) \leq 6$. For graphs on the sphere the maximum chromatic number is 4 , however the maximum choice number is 5 . The last statement follows from results of Thomassen [15] and Voigt [17].

The aim of this paper is to prove the following extension of Dirac's result.
Theorem 1 Let Σ be a surface of Euler genus ε with $\varepsilon \geq 1$ and $\varepsilon \neq 3$. If G is a graph embedded on Σ, then $\chi_{l}(G) \leq H(\varepsilon)$ where equality holds if and only if G contains a complete subgraph on $H(\varepsilon)$ vertices.

The proof of Theorem 1 for $\varepsilon=2$ and $\varepsilon \geq 4$ is given in Section 2 and resembles the proof of Dirac's result for the chromatic number. The proof for $\varepsilon=1$, i.e. the projective plane, is given in Section 4.

1.2 Terminology

All graphs considered in this paper are finite, undirected and simple. For a graph G, we denote by $V(G)$ the vertex set and by $E(G)$ the edge set of G. The subgraph of G induced by $X \subseteq V(G)$ is denoted by $G[X]$; further, $G-X=G[V(G)-X]$. The degree of a vertex x in G is denoted by $d_{G}(x)$. As usual, let K_{n} denote the complete graph on n vertices.

Consider a graph G and assign to each vertex x of G a set $\Phi(x)$ of colors (positive integers). Such an assignment Φ of sets to vertices in G is referred to as a color scheme (or briefly, a list) for G. A Φ-coloring of G is a mapping φ of $V(G)$ into the set of colors such that $\varphi(x) \in \Phi(x)$ for all $x \in V(G)$ and $\varphi(x) \neq \varphi(y)$ whenever $x y \in E(G)$. If G admits a Φ-coloring, then G is called Φ-colorable. In case of $\Phi(x)=\{1, \ldots, k\}$ for all $x \in V(G)$, we also use the terms k-coloring and k-colorable, respectively. G is said to be k-choosable if G is Φ-colorable for every list Φ for G satisfying $|\Phi(x)|=k$ for all $x \in V(G)$. The chromatic number $\chi(G)$ (choice number $\chi_{l}(G)$) of G is the least integer k such that G is k-colorable (k-choosable). We say that G is Φ-critical if G is not Φ-colorable but every proper subgraph of G is Φ-colorable

1.3 Gallai trees and critical graphs

Let G be a graph. A vertex x of G is called a separating vertex of G if $G-x$ has more components than G. By a block of G we mean a maximal connected subgraph B of G such that no vertex of B is a separating vertex of B. Any two blocks of G have at most one vertex in common and, clearly, a vertex of G is a separating vertex of G iff it is contained in more than one block of G.

A connected graph G all of whose blocks are complete graphs and/or odd circuits is called a Gallai tree; a Gallai forest is a graph all of whose components are Gallai trees.

By a bad pair we mean a pair (G, Φ) consisting of a connected graph G and a list Φ for G such that $|\Phi(x)| \geq d_{G}(x)$ for all $x \in V(G)$ and G is not
Φ-colorable.
Lemma 2 If (G, Φ) is a bad pair, then the following statements hold.
(a) $|\Phi(x)|=d_{G}(x)$ for all $x \in V(G)$.
(b) If G has no separating vertex, then $\Phi(x)$ is the same for all $x \in V(G)$.
(c) G is a Gallai tree.

Lemma 2 was proved independently by Borodin [2] and Erdős, Rubin and Taylor [6]. For a short proof of Lemma 2 based on the following simple reduction idea the reader is referred to [10].

Remark ([11]). Let G be a graph, Φ a list for $G, Y \subseteq V(G)$, and let φ be a Φ-coloring of $G[Y]$. For the graph $G^{\prime}=G-Y$, we define a list Φ^{\prime} by

$$
\Phi^{\prime}(x)=\Phi(x)-\{\varphi(y) \mid y \in Y \text { and } x y \in E(G)\}
$$

for every $x \in V\left(G^{\prime}\right)$. In what follows, we denote Φ^{\prime} by $\Phi(Y, \varphi)$. Then it is straightforward to show that the following statements hold.
(a) If G^{\prime} is Φ^{\prime}-colorable, then G is Φ-colorable.
(b) If $|\Phi(x)|=d_{G}(x)+p$ for some $x \in V\left(G^{\prime}\right)$, then $\left|\Phi^{\prime}(x)\right| \geq d_{G^{\prime}}(x)+p$.

Theorem 3 ([11]) Assume that $k \geq 4$ and $G \neq K_{k}$ is a Φ-critical graph where Φ is a list for G satisfying $|\Phi(x)|=k-1$ for every $x \in V(G)$. Let $H=\left\{y \in V(G) \mid d_{G}(y) \geq k\right\}$ and $L=V(G)-H$. Then the following statements hold.
(a) $G[L]$ is empty or a Gallai forest and $d_{G}(x)=k-1$ for every $x \in L$.
(b) $G[L]$ does not contain a K_{k}.
(c) $2|E(G)| \geq\left(k-1+(k-3) /\left(k^{2}-3\right)\right)|V(G)|$.

Proof. For the proof of (a), consider the vertex set X of some component of $G[L]$ and let $Y=V(G)-X$. Since G is Φ-critical, there is a Φ-coloring φ of $G[Y]$. Let $G^{\prime}=G[X]=G-Y$ and $\Phi^{\prime}=\Phi(Y, \varphi)$. By the above remark,
$\left(G^{\prime}, \Phi^{\prime}\right)$ is a bad pair and, therefore, Lemma 2 implies that G^{\prime} is a Gallai tree and $d_{G}(x)=k-1$ for all $x \in X$. This proves (a).

To prove (b), suppose that $G[L]$ contains a K_{k}. Then, because of (a), K_{k} is a component of G. Since every Φ-critical graph is connected, this implies that $G=K_{k}$, a contradiction.

Statement (c) follows from (a), (b) and a result of Gallai. He proved in [8] that if G is a graph on n vertices and m edges such that the minimum degree is at least $k-1(k \geq 4)$ and the subgraph of G induced by the set of vertices of degree $k-1$ is empty or a Gallai forest not containing a K_{k}, then $2 m \geq\left(k-1+(k-3) /\left(k^{2}-3\right)\right) n$.

2 Proof of Theorem 1 for $\varepsilon=2$ and $\varepsilon \geq 4$

Let Σ be a surface of Euler genus ε where $\varepsilon=2$ or $\varepsilon \geq 4$ and let

$$
\begin{equation*}
k=H(\varepsilon)=\lfloor(7+\sqrt{24 \varepsilon+1}) / 2)\rfloor . \tag{1}
\end{equation*}
$$

Let G be an arbitrary graph embedded in Σ. Since G is $(k-1)$-degenerate, $\chi_{l}(G) \leq k$ and we need only to show that $\chi_{l}(G) \leq k-1$ provided that G does not contain a K_{k}.

Suppose that this is not true and let G be a minimal counterexample. Then G does not contain a K_{k} and there is a list Φ for G such that $|\Phi(x)|=$ $k-1$ for all $x \in V(G)$ and G is Φ-critical. Let $n=|V(G)|$ and $m=|E(G)|$. Then, by Euler's Formula,

$$
\begin{equation*}
2 m \leq 6 n-12+6 \varepsilon . \tag{2}
\end{equation*}
$$

Furthermore, $n \geq k+1$ and, by Theorem 3,

$$
\begin{equation*}
2 m \geq\left(k-1+\frac{k-3}{k^{2}-3}\right) n . \tag{3}
\end{equation*}
$$

First, assume $n \geq k+4$. Then it follows from (2) and (3) that

$$
\left(k-7+\frac{k-3}{k^{2}-3}\right)(k+4) \leq 6 \varepsilon-12
$$

and, therefore,

$$
\begin{equation*}
k^{2}-3 k+\frac{(k-3)(k+4)}{k^{2}-3} \leq 6 \varepsilon+16 . \tag{4}
\end{equation*}
$$

It can be verified that (4) leads to a contradiction for $\varepsilon=2$ and $4 \leq \varepsilon \leq 10$. If $\varepsilon \geq 11$, then $k \geq 11$ and, therefore,

$$
\frac{(k-3)(k+4)}{k^{2}-3}>1 .
$$

Consequently, because of (4), $k^{2}-3 k-15-6 \varepsilon<0$ implying that

$$
k<\frac{3+\sqrt{24 \varepsilon+69}}{2} .
$$

On the other hand, because of (1),

$$
k \geq \frac{5+\sqrt{24 \varepsilon+1}}{2} .
$$

Hence $2+\sqrt{24 \varepsilon+1}<\sqrt{24 \varepsilon+69}$. This implies that $4 \sqrt{24 \varepsilon+1}<64$ and, therefore, $\varepsilon<255 / 24<11$, a contradiction.

Now, assume $n \leq k+3$. Then $n \in\{k+1, k+2, k+3\}$. Let $H=\{x \in$ $\left.V(G) \mid d_{G}(x) \geq k\right\}$ and $L=\left\{x \in V(G) \mid d_{G}(x)=k-1\right\}$. By Theorem 3, $V(G)=H \cup L$ and $G^{\prime}=G[L]$ is a Gallai forest.

If $n=k+1$, then G is obtained from a K_{k+1} by deleting the edges of some matching M. Obviously, L is the set of all vertices incident with some edge of M. Since $G[L]$ is a Gallai forest, this implies that $|M|=1$ and, therefore, $|L|=2$. Then G contains a K_{k}, a contradiction.

If $n \in\{k+2, k+3\}$, then we distinguish two cases. For the case when $2 m \geq(k-1) n+k-3$ we can use the same argument as Dirac in [5] to arrive at a contradiction. For the case when $2 m \leq(k-1) n+k-4$, we argue as follows. First, we infer that
(a) $|H| \leq k-4$ and $|L| \geq 6$ if $n=k+2$ or $|L| \geq 7$ if $n=k+3$.

Next, suppose that $G^{\prime}=G[L]$ is a complete graph. By (a), every vertex of H is adjacent to some vertex of L. Since $d_{G}(x)=k-1$ for all $x \in L$, this implies that there are vertices $z \in H$ and $x, y \in L$ satisfying $z x \in E(G)$ and $z y \notin E(G)$. Because of (a) and $|\Phi(v)|=k-1$ for all $v \in V(G)$, there are two Φ-colorings φ_{1}, φ_{2} of $G[H]$ such that $\varphi_{1}(v)=\varphi_{2}(v)$ for all $v \in H-\{z\}$ and $\varphi_{1}(z) \neq \varphi_{2}(z)$. For $i=1,2$, let $\Phi_{i}=\Phi\left(H, \varphi_{i}\right)$ be the list
for $G^{\prime}=G[L]=G-H$. Then, see the remark in Section 1.3, $\left(G^{\prime}, \Phi_{i}\right)$ is a bad pair for $i=1,2$ and, moreover, either $\Phi_{1}(x) \neq \Phi_{1}(y)$ or $\Phi_{2}(x) \neq \Phi_{2}(y)$, a contradiction to statement (b) of Lemma 2.

Finally, assume that $G^{\prime}=G[L]$ is not a complete graph. Since G^{\prime} is a Gallai forest and every vertex of L has degree $k-1$ in G, we infer from (a) that G^{\prime} has at least two blocks and, therefore, $n=k+3,|L|=7$ and G^{\prime} consists of exactly two blocks B_{1}, B_{2} that are both complete graphs on four vertices and that have a vertex x in common. Consequently, $|H|=k-4$ and, since $2 m \leq(k-1) n+k-4$, every vertex of H has degree k in G. Moreover, since $d_{G}(y)=k-1$ for all $y \in L$, every vertex of $L-\{x\}$ is adjacent to all vertices of H in G. Then there are two vertices z, u in H such that $z u \notin E(G)$. Let y denote an arbitrary vertex of $B_{1}-x$. Because of (a) and $|\Phi(v)|=k-1$ for all $v \in V(G)$, there is a Φ-coloring φ of $G[H]$ such that either $\varphi(z)=\varphi(u)$ or $\varphi(z) \notin \Phi(y)$ or $\varphi(u) \notin \Phi(y)$. Let $\Phi^{\prime}=\Phi(H, \varphi)$ be the list for G^{\prime}. Then $\left(G^{\prime}, \Phi^{\prime}\right)$ is a bad pair and, since $y z, y u \in E(G)$ and $|\Phi(y)|=d_{G}(y),\left|\Phi^{\prime}(y)\right|>d_{G^{\prime}}(y)$, a contradiction to Lemma 2(a).

Thus Theorem 1 is proved for $\varepsilon=2$ and $\varepsilon \geq 4$.

3 5-choosability of planar graphs

To prove Theorem 1 for the projective plane, some auxiliary results about list colorings of planar graphs are needed. A graph G is said to be a neartriangulation with outer cycle C if G is a plane graph that consists of the cycle C and vertices and edges inside C such that each bounded face is bounded by a triangle. Thomassen [15] proved that every planar graph is 5 -choosable. His proof is based on the following stronger result.

Theorem 4 Let G be a near-triangulation with outer cycle C and let Φ be a list for G such that $|\Phi(v)| \geq 3$ for all $v \in V(C)$ and $|\Phi(v)| \geq 5$ for all $v \in V(G)-V(C)$. Assume that xy is an edge of $C, \alpha \in \Phi(x)$ and $\beta \in \Phi(y)$. Then there is a Φ-coloring φ of G such that $\varphi(x)=\alpha$ and $\varphi(y)=\beta$.

The next result is an immediate consequence of Theorem 4, see also [16].
Theorem 5 (Thomassen [16]) Let G be a plane graph, let W be the set of vertices on the outer face of G and let Φ be a list for G such that $|\Phi(v)| \geq 3$
for all $v \in W$ and $|\Phi(v)| \geq 5$ for all $v \in V(G)-W$. Assume that $x y$ is an edge on the boundary of the outer face of $G, \alpha \in \Phi(x)$ and $\beta \in \Phi(y)$. Then there is a Φ-coloring φ of G such that $\varphi(x)=\alpha$ and $\varphi(y)=\beta$.

For the proof of Theorem 1 in case of $\varepsilon=1$ we need the following extension of Thomassen's result.

Theorem 6 Let G be a plane graph and let W be the set of vertices on the outer face of G. Let $P=\left(v_{1}, \ldots, v_{k}\right)$ be a path on the boundary of the outer face. Assume that Φ is a list for G satisfying $|\Phi(v)| \geq 5$ if $v \in V(G)-W$, $|\Phi(v)| \geq 4$ if $v \in V(P)-\left\{v_{1}, v_{k}\right\},|\Phi(v)| \geq 2$ if $v \in\left\{v_{1}, v_{k}\right\}$, and $|\Phi(v)| \geq 3$ if $v \in W-V(P)$. Then G is Φ-colorable.

Proof (by induction on the number of vertices of G). For $k \leq 2$, Theorem 6 follows by Theorem 5 . Now assume $k \geq 3$.

If G is the union of two non-trivial subgraphs G_{1}, G_{2} such that $\mid V\left(G_{1}\right) \cap$ $V\left(G_{2}\right) \mid \leq 1$ and P is contained in G_{1}, then we argue as follows. By the induction hypothesis, there is a Φ-coloring φ_{1} of G_{1} and, by Theorem 5, there is a Φ-coloring φ_{2} of G_{2} where $\varphi_{2}(x)=\varphi_{1}(x)$ in case of $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x\}$ (note that x is on the outer face of G_{2}). Then $\varphi_{1} \cup \varphi_{2}$ is a Φ-coloring of G.

Otherwise, G is connected and every block of G is either an edge of P or a 2-connected plane subgraph with an outer cycle C^{\prime} such that $C^{\prime} \cap P$ is a subpath of P with at least two vertices where for distinct 2-connected blocks of G, these subpaths are edge-disjoint. Then there is a near-triangulation G^{\prime} with an outer cycle C such that $V(G)=V\left(G^{\prime}\right), E(G) \subseteq E\left(G^{\prime}\right), W=V(C)$, and P is a subpath of C. Then $C=\left(v_{1}, \ldots, v_{p}\right)$ with $p \geq k \geq 3$. If $p=k$, then Theorem 5 implies that there is a Φ-coloring of G^{\prime} and hence also of G. If $p \geq k+1$, then we argue as follows.

First, we consider the case when C has a chord incident with v_{k}, say $v_{k} v_{i}$. If $1 \leq i \leq k-2$, then we apply the induction hypothesis to the cycle $\left(v_{1}, \ldots, v_{i}, v_{k}, \ldots, v_{p}\right)$ and its interior and then we apply Theorem 4 to the cycle $\left(v_{i}, v_{i+1}, \ldots, v_{k}\right)$ and its interior where $v_{k} v_{i}$ is the precolored edge. If $k+2 \leq i \leq p$, then we apply the induction hypothesis to the cycle $\left(v_{1}, \ldots, v_{k}, v_{i}, v_{i+1} \ldots, v_{p}\right)$ and its interior and then we apply Theorem 4 to the cycle $\left(v_{k}, v_{k+1}, \ldots, v_{i}\right)$ and its interior where $v_{k} v_{i}$ is the precolored edge.

Now, we consider the case when C has no chord incident with v_{k}. Let $v_{k-1}, u_{1}, \ldots, u_{m}, v_{k+1}$ be the neighbors of v_{k} in that clockwise order around
v_{k}. As the interior of C is triangulated, $P^{\prime}=\left(v_{k-1}, u_{1}, \ldots, u_{m}, v_{k+1}\right)$ is a path and $C^{\prime}=P^{\prime} \cup\left(C-v_{k}\right)$ is a cycle of G^{\prime}. Let α, β be distinct colors in $\Phi\left(v_{k}\right)$. Define a list Φ^{\prime} for $G^{\prime}-v_{k}$ by $\Phi^{\prime}(v)=\Phi(v)-\{\alpha, \beta\}$ if $v \in\left\{v_{k-1}, u_{1}, \ldots, u_{m}\right\}$ and $\Phi^{\prime}(v)=\Phi(v)$ otherwise. Then we apply the induction hypothesis to C^{\prime} and its interior with respect to the path $P-v_{k}$ and the list Φ^{\prime}. We complete the coloring by assigning α or β to v_{k} such that v_{k} and v_{k+1} get distinct colors. Thus Theorem 6 is proved.

The next result is crucial for the proof of Theorem 1 restricted to the case of the projective plane.

Theorem 7 Let G be a plane graph with outer cycle C of length $p \leq 6$. Assume that Φ is a list for G satisfying $|\Phi(v)| \geq 5$ for all $v \in V(G)$ and φ is a Φ-coloring of $G[V(C)]$. Then φ can be extended to a Φ-coloring of G unless $p \geq 5$ and the notation may be chosen such that $C=\left(v_{1}, \ldots, v_{p}\right)$, $\varphi\left(v_{i}\right)=\alpha_{i}$ for $1 \leq i \leq p$ and one of the following three conditions holds where all indices are computed modulo p.
(a) There is a vertex u inside C such that u is adjacent to v_{1}, \ldots, v_{5} and $\Phi(u)=\left\{\alpha_{1}, \ldots, \alpha_{5}\right\}$.
(b) $p=6$ and there is an edge $u_{0} u_{1}$ inside C such that, for $i=$ 0,1 , the vertex u_{i} is adjacent to $v_{3 i+1}, v_{3 i+2}, v_{3 i+3}, v_{3 i+4}$ and $\Phi\left(u_{i}\right)=$ $\left\{\alpha_{3 i+1}, \alpha_{3 i+2}, \alpha_{3 i+3}, \alpha_{3 i+4}, \beta\right\}$.
(c) $p=6$ and there is a triangle (u_{0}, u_{1}, u_{2}) inside C such that, for $i=0,1,2$, the vertex u_{i} is adjacent to $v_{2 i+1}, v_{2 i+2}, v_{2 i+3}$ and $\Phi\left(u_{i}\right)=$ $\left\{\alpha_{2 i+1}, \alpha_{2 i+2}, \alpha_{2 i+3}, \beta, \gamma\right\}$.

Proof (by induction on the number of vertices of G). If one of the conditions (a), (b) or (c) holds, we briefly say that (G, Φ, φ) is bad. For a subgraph H of G and a vertex $u \in V(G)$, let $d(u: H)$ denote the number of vertices in H that are adjacent to u in G. We consider two cases.

Case 1: There is an edge $v w$ of C such that $d(u: C-v-w) \leq 2$ for all vertices u inside C. Then let $X=V(C-v-w)$ and define a list Φ^{\prime} for the plane graph $G^{\prime}=G-X$ by

$$
\Phi^{\prime}(u)=\Phi(u)-\left\{\varphi\left(v^{\prime}\right) \mid u v^{\prime} \in E(G) \& v^{\prime} \in X\right\}
$$

if u is a vertex inside C and $\Phi^{\prime}(u)=\Phi(u)$ for $u \in\{v, w\}$. Theorem 5 implies that there is a Φ^{\prime}-coloring φ^{\prime} of G^{\prime} with $\varphi^{\prime}(v)=\varphi(v)$ and $\varphi^{\prime}(w)=\varphi(w)$. Hence φ can be extended to a Φ-coloring of G.

Case 2: For every edge $v w$ of C, we have $d(u: C-v-w) \geq 3$ for some vertex u inside C. Then $p \geq 5$.

First, assume that G has a separating cycle C^{\prime} (i.e. there are vertices inside and outside C^{\prime}) of length at most four. Then $C^{\prime} \neq C$. Let G^{\prime} be the graph obtained from G by deleting all vertices inside C^{\prime}. If φ can be extended to a Φ-coloring of G^{\prime}, then, by Case 1 , we can extend this coloring to the vertices inside C^{\prime} and, therefore, φ can be extended to a Φ-coloring of G. Otherwise, we conclude from the induction hypothesis that $\left(G^{\prime}, \Phi, \varphi\right)$ is bad and, therefore, (G, Φ, φ) is bad, too.

Now, assume that G is tough, that is G has no separating cycle of length at most four. Let u denote a vertex inside C such that $d=d(u: C)$ is maximum. Then $3 \leq d \leq 6$. If $d \geq 5$, then u is the only vertex inside C, since otherwise G would not be tough. Then, clearly, φ can be extended to a Φ-coloring of G unless (a) holds.

If $d=4$, then, since G is tough, the assumption of Case 2 implies that $p=6, C=\left(v_{1}, \ldots, v_{6}\right), u$ is adjacent to, say, v_{1}, \ldots, v_{4} but not to v_{5} and v_{6}, and all vertices of $G-V(C)-\{u\}$ are inside the cycle $C^{\prime}=\left(v_{1}, u, v_{4}, v_{5}, v_{6}\right)$. Clearly, there is a color $\alpha \in \Phi(u)-\left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right), \varphi\left(v_{4}\right)\right\}$. If there is no vertex w inside C^{\prime} such that w is adjacent to all vertices of C^{\prime} and $\Phi(w)=\left\{\alpha, \varphi\left(v_{1}\right), \varphi\left(v_{4}\right), \varphi\left(v_{5}\right), \varphi\left(v_{6}\right)\right\}$, then, by the induction hypothesis, φ can be extended to a Φ-coloring of G with $\varphi(w)=\alpha$. Otherwise, because of G is tough, this vertex w is the only vertex inside C^{\prime} and we easily conclude that φ can be extended to a Φ-coloring of G unless (b) holds.

Finally, consider the case $d=3$. Since G is tough, we infer from the assumption of Case 2 that if $d(u: C)=3$ for some vertex u inside C, then u has three consecutive neighbors on C. Furthermore, we conclude that there are at least three vertices u_{0}, u_{1}, u_{2} inside C such that $C=\left(v_{1}, \ldots, v_{6}\right)$ and, for $i=0,1,2$, the neighbors of u_{i} on C are $v_{2 i+1}, v_{2 i+2}, v_{2 i+3}$ with $v_{7}=v_{1}$. G being tough, all vertices of $V(G)-V(C)-\left\{u_{0}, u_{1}, u_{2}\right\}$ are inside the cycle $C^{\prime}=\left(v_{1}, u_{0}, v_{3}, u_{1}, v_{5}, u_{2}\right)$. If $\left(u_{0}, u_{1}, u_{2}\right)$ is a triangle, then $V(G)=$ $V(C) \cup\left\{u_{0}, u_{1}, u_{2}\right\}$ and, therefore, either φ can be extended to a Φ-coloring of G or, for $i=0,1,2, \Phi\left(u_{i}\right)=\left\{\varphi\left(v_{2 i+1}\right), \varphi\left(v_{2 i+2}\right), \varphi\left(v_{2 i+3}\right), \beta, \gamma\right\}$, that is
(c) holds. Hence, we may assume that $u_{0} u_{2} \notin E(G)$. Let $G^{\prime}=G-v_{2}$. The outer cycle of G^{\prime} is $C^{\prime}=\left(v_{1}, u_{0}, v_{3}, v_{4}, v_{5}, v_{6}\right)$. Let $\varphi^{\prime}(v)=\varphi(v)$ for $v \in V\left(C^{\prime}\right)-\left\{u_{0}\right\}$, and let $\varphi^{\prime}\left(u_{0}\right)$ be a color in $\Phi\left(u_{0}\right)-\left\{\varphi\left(v_{1}\right), \varphi\left(v_{2}\right), \varphi\left(v_{3}\right)\right\}$. If $\left(G^{\prime}, \Phi, \varphi^{\prime}\right)$ is not bad, then the induction hypothesis implies that φ^{\prime} can be extended to a Φ-coloring of G^{\prime} and we are done. If $\left(G^{\prime}, \Phi, \varphi^{\prime}\right)$ is bad, then there is a vertex inside C^{\prime} distinct from u_{1} and u_{2} which has two neighbors in $\left\{v_{1}, v_{3}, v_{5}\right\}$ (since u_{2} has only three neighbors in C^{\prime}). Since G is tough, no vertex inside C^{\prime} except u_{1} and u_{2} can have two neighbors in $\left\{v_{1}, v_{3}, v_{5}\right\}$. This contradiction completes the proof.

4 List colorings on the projective plane

In this section we prove Theorem 1 for the projective plane. Let G denote an arbitrary graph embedded on the projective plane. Since G is 5 -degenerate, $\chi_{l}(G) \leq 6$ and we need only to show that G is 5 -choosable provided that G does not contain a K_{6}.

In the sequel, let Φ denote a list for G such that the following two conditions hold.
(a) $|\Phi(x)|=5$ for all $x \in V(G)$.
(b) If K is a complete subgraph on 6 vertices of G, then $\Phi(x) \neq \Phi(y)$ for two vertices $x, y \in V(K)$.

By induction on the number of vertices of G, we prove that G is Φ-colorable.
If G contains a vertex x of degree at most 4 , then, by the induction hypothesis, there is a Φ-coloring φ of $G-x$. Clearly, because of (a), φ can be extended to a Φ-coloring of G.

Next, consider the case when G contains a contractible cycle C of length three such that C is a nonfacial cycle of G. Let G_{I} denote the plane subgraph of G that consists of the cycle C and the vertices and edges inside C. Moreover, let $G_{O}=G-\left(V\left(G_{I}\right)-V(C)\right)$. Then G_{O} has fewer vertices than G. Hence, by the induction hypothesis, there is a Φ-coloring φ_{O} of G_{O}. By Theorem 7, there is a Φ-coloring φ_{I} of G_{I} such that $\varphi_{I}(v)=\varphi_{O}(v)$ for all $v \in V(C)$. Clearly, $\varphi_{I} \cup \varphi_{O}$ is a Φ-coloring of G. Therefore, we may henceforth assume:
(c) The minimum degree of G is at least 5 and each contractible cycle of length three in G is a facial cycle of G.

If all cycles of G are contractible, then G is planar and, by Theorem 4, G is Φ-colorable. Hence we may assume that G contains a noncontractible cycle. Let $k \geq 3$ be the length of a shortest noncontractible cycle of G, and let \mathcal{N} denote the set of all noncontractible cycles of G having length k. Our aim is to show that there is a cycle $C \in \mathcal{N}$ such that a certain Φ-coloring of C can be extended to a Φ-coloring of the plane graph $G-V(C)$.

Consider a noncontractible cycle $C=\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{N}$. Then C has no chords and, by cutting Π_{1} along C, we obtain a plane graph G_{C} with outer cycle $O_{C}=\left(v_{1}, \ldots, v_{k}, v_{1}^{\prime}, \ldots, v_{k}^{\prime}\right)$. The graph G_{C} can be considered as a representation of G on a closed disc where antipodal points on the boundary are identified. The plane graphs $G-V(C)$ and $G_{C}-V\left(O_{C}\right)$ are identical and, for $y \in V(G)-V(C), y v_{i} \in E(G)$ if and only if $y v_{i}$ or $y v_{i}^{\prime}$ belongs to $E\left(G_{C}\right), i \in\{1, \ldots, k\}$. Furthermore, a path $P=\left(v_{i}, x_{1}, \ldots, x_{m}, v_{i}^{\prime}\right)$ of G_{C} with $x_{1}, \ldots, x_{m} \in V(G)-V(C)$ corresponds to the noncontractible cycle $\left(v_{i}, x_{1}, \ldots, x_{m}\right)$ of G, implying that $m+1 \geq k$. In particular, for every $y \in V(G)-V(C)$, the edges $y v_{i}$ and $y v_{i}^{\prime}$ are not both in $E\left(G_{C}\right)$. Let W_{C} denote the set of all vertices of $G-V(C)$ that are in G adjacent to some vertex of C and, for $x \in W_{C}$, let $N_{C}(x)$ denote the set of all neighbors of x in G that belong to C.

First, assume $k=3$. Let φ be a Φ-coloring of some cycle $C=\left(v_{1}, v_{2}, v_{3}\right) \in$ \mathcal{N} and let φ^{\prime} be the Φ-coloring of $O_{C}=\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$ with $\varphi^{\prime}\left(v_{i}\right)=$ $\varphi^{\prime}\left(v_{i}^{\prime}\right)=\varphi\left(v_{i}\right)$ and $\Phi\left(v_{i}^{\prime}\right)=\Phi\left(v_{i}\right)$ for $i=1,2,3$. If φ^{\prime} can be extended to some Φ-coloring of G_{C}, then this coloring determines a Φ-coloring of G. Otherwise, we conclude from Theorem 7 that in the plane graph G_{C} there is a triangle D inside O_{C} such that each vertex of D is adjacent with three vertices that are consecutive on O_{C}. Therefore, in G each vertex of D is adjacent to all vertices of C and thus $G[V(C) \cup V(D)]$ is a complete graph on 6 vertices. Since every noncontractible triangle of G is a facial triangle of G, this implies that $V(G)=V(C) \cup V(D)$ and, therefore, $G=K_{6}$. From (b) it then follows that G is Φ-colorable.

Now, assume $k \geq 4$. Let $C=\left(v_{1}, \ldots, v_{k}\right) \in \mathcal{N}$. First, we claim that $\left|N_{C}(x)\right| \leq 3$ for each $x \in W_{C}$. If some vertex $x \in W_{C}$ is adjacent in G to v_{i} and v_{j} with $i<j$, then exactly one of the two cycles $\left(v_{i}, v_{i+1}, \ldots, v_{j}, x\right)$ and
$\left(v_{j}, v_{j+1}, \ldots, v_{i}, x\right)$ is noncontractible, where all indices are computed modulo k. It follows that the claim is true in case $k \geq 5$, since otherwise there would exists a noncontractible cycle of length at most $k-1$, a contradiction. If $k=4$ and some vertex x is adjacent to all vertices of C, then all four triangles $\left(x, v_{i}, v_{i+1}\right), i=1,2,3,4$, are contractible and hence facial triangles of G. Consequently, x is a vertex of degree four in G, a contradiction to (c). This proves the claim. Let T_{C} denote the set of all vertices $x \in W_{C}$ such that $\left|N_{C}(x)\right|=3$ and, for $v \in V(C)$, let T_{C}^{v} denote the set of all vertices $x \in T_{C}$ such that $x v \in E(G)$.

Next, since C is a shortest noncontractible cycle of G and (c) holds, we conclude that the following holds:
(d) For each vertex $x \in T_{C}, N_{C}(x)=\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$ for some i and the triangles $\left(x, v_{i}, v_{i+1}\right)$ and $\left(x, v_{i+1}, v_{i+2}\right)$ are contractible and hence facial (all indices are modulo k). Moreover, $N_{C}(y) \neq N_{C}(x)$ for all $y \in$ $T_{C}-\{x\}$ (since otherwise v_{i+1} would be a vertex of degree 4 in G, contradicting (c)).

Consequently, $\left|T_{C}^{v}\right| \leq 3$ for all $v \in V(C)$. Moreover, the three neighbors of x in G_{C} that belong to O_{C} are consecutive on O_{C}, since otherwise either $\left(x, v_{i}, v_{i+1}\right)$ or $\left(x, v_{i+1}, v_{i+2}\right)$ would be noncontractible in G, a contradiction.

Two vertices $z, u \in T_{C}$ are said to be C-conform if there is a vertex in O_{C} adjacent to z and u in G_{C}. If $k \geq 5$ and $\left|T_{C}^{v}\right|=3$ for some vertex $v \in V(C)$, then there are exactly two vertices $z, u \in T_{C}^{v}$ such that z, u are C-conform.

For a Φ-coloring φ of $C \in \mathcal{N}$ and a vertex $x \in W_{C}$, let $\varphi(C: x)=$ $\left\{\varphi(v) \mid v \in N_{C}(x)\right\}$. Suppose that $X \subseteq T_{C}$ such that $|X| \leq 1$ or $k \geq 5$, $X=\{z, u\}$, and z, u are C-conform. A Φ-coloring φ of C is called X-good if $|\Phi(x)-\varphi(C: x)| \geq 3$ for all $x \in T_{C}-X$.

We claim that, if there is a cycle $C \in \mathcal{N}$, an appropriate $X \subseteq T_{C}$, and a Φ-coloring φ of C that is X-good, then φ can be extended to a Φ coloring of G. For the proof of this claim, define a list Φ^{\prime} for the plane graph $G^{\prime}=G-V(C)=G_{C}-V\left(O_{C}\right)$ by $\Phi^{\prime}(x)=\Phi(x)-\varphi(C: x)$ if $x \in W_{C}$ and $\Phi^{\prime}(x)=\Phi(x)$ otherwise. We have to show that G^{\prime} is Φ^{\prime}-colorable. Since φ is X-good and each vertex of $W_{C}-T_{C}$ has in G at most two neighbors on C, we have $\left|\Phi^{\prime}(x)\right| \geq 3$ for all $x \in W_{C}-X,\left|\Phi^{\prime}(x)\right| \geq 5$ for all $x \in V\left(G^{\prime}\right)-W_{C}$ and, because of $X \subseteq T_{C},\left|\Phi^{\prime}(x)\right| \geq 2$ for all $x \in X$. Furthermore, each vertex of W_{C} belongs to the outer face of G^{\prime}. If $|X| \leq 1$, then Theorem 5
implies that G^{\prime} is Φ^{\prime}-colorable. Otherwise, $k \geq 5, X=\{z, u\}$, and z, u are C conform. Therefore, by (d), we conclude that the notation may be chosen so that $C=\left(v_{1}, \ldots, v_{k}\right), N_{C}(z)=\left\{v_{1}, v_{2}, v_{3}\right\}, N_{C}(u)=\left\{v_{3}, v_{4}, v_{5}\right\}$, and in G_{C} the neighbors of z and u on O_{C} are v_{1}, v_{2}, v_{3} and v_{3}, v_{4}, v_{5}, respectively. Let $z, x_{1}, \ldots, x_{m}, u$ be the neighbors of v_{3} in G_{C} in that clockwise order around v_{3}. Then, by adding certain edges, we may assume that $P=\left(z, x_{1}, \ldots, x_{m}, u\right)$ is a path on the boundary of the outer face of $G^{\prime}=G-V\left(O_{C}\right)$ where each vertex of W_{C} still belongs to the outer face of G^{\prime}. Since $k \geq 5$ and C is a shortest noncontractible cycle of G, we conclude that, for all $x \in V(P)-\{z, u\}$, $N_{C}(x)=\left\{v_{3}\right\}$ and, therefore, $\left|\Phi^{\prime}(x)\right| \geq 4$. Now, Theorem 6 implies that G^{\prime} is Φ^{\prime}-colorable. This proves the claim.

Therefore, to complete the proof of Theorem 1, it suffices to prove that, for some cycle $C \in \mathcal{N}$ and an appropriate $X \subseteq T_{C}$, there is an X-good Φ-coloring of C. For the proof of this statement, we consider the following procedure for a given cycle $C \in \mathcal{N}$. First, we choose a vertex $v_{1}=v$ of C and a color $\alpha_{1} \in \Phi\left(v_{1}\right)$. Next, we choose an orientation of C such that $C=\left(v_{1}, \ldots, v_{k}\right)$. Now, we choose a set $X \subseteq T_{C}^{v_{k}}$ such that $\left|T_{C}^{v_{k}}-X\right| \leq 1$. Recall that $\left|T_{C}^{v}\right| \leq 3$ for all $v \in V(C)$. Eventually, we define a mapping $\varphi=\varphi\left(C, v_{1}, \alpha_{1}, v_{k}, X\right)$ from $V(C)$ into the color set as follows. First, we set $\varphi\left(v_{1}\right)=\alpha_{1}$. Now, assume that $\varphi\left(v_{1}\right), \ldots, \varphi\left(v_{i-1}\right)$ are already defined where $2 \leq i \leq k$. Because of (d) and $\left|T_{C}^{v_{k}}-X\right| \leq 1$, there is at most one vertex $x \in T_{C}^{v_{i}}-X$ such that $N=N_{C}(x)-\left\{v_{i}\right\}$ is a subset of $\left\{v_{1}, \ldots, v_{i-1}\right\}$. Then, because of (a) and $|N|=2, M=\Phi(x)-\{\varphi(v) \mid v \in N\}$ is a set of at least three colors and, therefore, there is a color $\alpha \in \Phi\left(v_{i}\right)-\left\{\varphi\left(v_{i-1}\right)\right\}$ such that $|M-\{\alpha\}| \geq 3$. We define $\varphi\left(v_{i}\right)=\alpha$. Clearly, φ is a Φ-coloring of $C-v_{1} v_{k}$ and $|\Phi(x)-\varphi(C: x)| \geq 3$ for all $x \in T_{C}-X$. Therefore, φ is an X-good Φ-coloring of C provided that $\varphi\left(v_{k}\right) \neq \alpha_{1}$ and $|X| \leq 1$ or $k \geq 5, X=\{z, u\}$, and z, u are C-conform. If $\left|T_{C}^{v_{k}}\right| \leq 1$ or $k \geq 5, T_{C}^{v_{k}}=\{z, u\}$ and z, u are C-conform, then we choose $X=T_{C}^{v_{k}}$ and, in the last step of our procedure, we choose a color $\alpha \in \Phi\left(v_{k}\right)-\left\{\varphi\left(v_{1}\right), \varphi\left(v_{k-1}\right)\right\}$ and define $\varphi\left(v_{k}\right)=\alpha$. This leads to an X-good Φ-coloring φ of C. Therefore, we assume henceforth that for every cycle $C \in \mathcal{N}$ the following two conditions hold.
(1) $\left|T_{C}^{v}\right| \geq 2$ for every $v \in V(C)$.
(2) If $T_{C}^{v}=\{z, u\}$ for some $v \in V(C)$, then $k=4$ or $k \geq 5$ and z, u are not C-conform.

Now we distinguish two cases. First, we consider the case that there is a cycle $C \in \mathcal{N}$ such that two vertices of C have distinct lists. Then there is also an edge $v w$ of C such that $\Phi(v) \neq \Phi(w)$. Because of (a), this implies that there are two colors $\alpha_{w} \in \Phi(w)-\Phi(v)$ and $\alpha_{v} \in \Phi(v)-\Phi(w)$. If for one of the two vertices v, w, say v, we have $T_{C}^{v}=\{x, y\}$, then $\varphi=\varphi\left(C, v_{1}, \alpha_{1}, v_{k}, X\right)$ with $v_{1}=w, \alpha_{1}=\alpha_{w}, v_{k}=v$ and $X=\{x\}$ is an X-good Φ-coloring of C. Otherwise, because of (1) and (d), we have $\left|T_{C}^{v}\right|=\left|T_{C}^{w}\right|=3$ and, therefore, $k \geq 5$ and there are two vertices $u, z \in T_{C}^{v}$ such that u, z are C-conform. Then $\varphi=\varphi\left(C, v_{1}, \alpha_{1}, v_{k}, X\right)$ with $v_{1}=w, \alpha_{1}=\alpha_{w}, v_{k}=v$ and $X=\{u, z\}$ is an X-good Φ-coloring of C.

Finally, we consider the case when for every cycle $C \in \mathcal{N}$ there is a set F of five colors such that $\Phi(v)=F$ for all $v \in V(C)$. If k is even, then we choose an arbitrary cycle $C \in \mathcal{N}$. By the assumption of this case, there is a Φ-coloring φ of C such that φ uses only two colors. Then, for $X=\emptyset, \varphi$ is an X-good Φ-coloring of C. Now assume that k is odd. In particular, $k \geq 5$. For a cycle $C \in \mathcal{N}$, let $t(C)$ denote the number of all vertices $v \in V(C)$ such that $\left|T_{C}^{v}\right|=3$. Consider a cycle $C \in \mathcal{N}$ such that $t(C)$ is minimum.

If $t(C) \geq 1$, then there is a vertex $v \in V(C)$ such that T_{C}^{v} is a set of three vertices, say y, z, u and, since $k \geq 5$, two of these three vertices, say z, u, are C-conform. Therefore, because of (d), the notation may be chosen so that $C=\left(v_{1}, \ldots, v_{k}\right)$, where $v_{1}=v, N_{C}(z)=\left\{v_{k-1}, v_{k}, v_{1}\right\}, N_{C}(u)=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $N_{C}(y)=\left\{v_{k}, v_{1}, v_{2}\right\}$ where all indices are computed modulo k. Furthermore, there is a vertex $x \in W_{C}$ such that $N_{C}(x)=\left\{v_{k-2}, v_{k-1}, v_{k}\right\}$, since otherwise $C^{\prime}=\left(v_{1}, u, v_{3}, \ldots, v_{k}\right)$ would be a noncontractible cycle of length k in G such that $T_{C^{\prime}}^{v_{k}}=\{z\}$, a contradiction to (1). By symmetry, there is also a vertex $x^{\prime} \in W_{C}$ such that $N_{C}\left(x^{\prime}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$. But then $\tilde{C}=\left(y, v_{2}, \ldots, v_{k}\right)$ is a noncontractible cycle of length k in G and, because of (d), $T_{\tilde{C}}^{y}=\left\{v_{1}\right\}$, a contradiction to (1).

Now assume $t(C)=0$ where $C=\left(v_{1}, \ldots, v_{k}\right)$. Then we conclude from (1), (2) and (d) that, for $i=1, \ldots, k,\left|T_{C}^{v_{i}}\right|=2$ and, since $k \geq 5$, the two vertices of $T_{C}^{v_{i}}$ are not C-conform. This implies that in the plane graph G_{C} every vertex of the outer cycle $O_{C}=\left(v_{1}, \ldots, v_{k}, v_{k+1}=v_{1}^{\prime}, \ldots, v_{2 k}=v_{k}^{\prime}\right)$ has exactly one neighbor in T_{C}. Consequently, $2 k \equiv 0(\bmod 3)$ and, therefore, $k \equiv 0(\bmod 3)$. Furthermore, for every vertex $x \in T_{C}$, the three neighbors of x that belong to O_{C} are consecutive on O_{C}. Since $k \equiv 0(\bmod 3)$, we now see that if the vertices v_{i}, v_{i+1}, v_{i+2} have a common neighbor in G_{C}, then
the vertices $v_{i+k}, v_{i+k+1}, v_{i+k+2}$ (indices modulo $2 k$) have a common neighbor in G_{C}, too. Consequently, in G there are two vertices $x, y \in T_{C}$ such that $N_{C}(x)=N_{C}(y)$, a contradiction to (d).

This shows that, for some cycle $C \in \mathcal{N}$ and some subset X of T_{C}, there is an X-good Φ-coloring of C. Theorem 1 is proved.

References

[1] M. O. Albertson and J. P. Hutchinson, The three excluded cases of Dirac's map-color theorem, Ann. New York Acad. Sci. 319 (1979), 7-17.
[2] O. V. Borodin, Criterion of chromaticity of a degree prescription (in Russian), in: Abstracts of IV All-Union Conf. on Theoretical Cybernetics (Novosibirsk) 1977, 127-128.
[3] G. A. Dirac, Map colour theorems related to the Heawood colour formula, J. London Math. Soc. 31 (1956), 460-471.
[4] G. A. Dirac, A theorem of R. L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc. 17 (1957), 161-195.
[5] G. A. Dirac, Short proof of a map-colour theorem, Canad. J. Math. 9 (1957), 225-226.
[6] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI (1979), 125-157.
[7] P. Franklin, A six-color problem, J. Math. Phys. 13 (1934), 363-369.
[8] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 165-192.
[9] P. J. Heawood, Map colour theorem, Quart. J. Pure Appl. Math. 24 (1890), 332-338.
[10] A. V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996), 299-303.
[11] A. V. Kostochka and M. Stiebitz, A new lower bound on the number of edges in colour-critical graphs, Preprint No. 48, IMADA Odense University, 1997.
[12] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, to appear.
[13] G. Ringel, Bestimmung der Maximalzahl der Nachbargebiete von nichtorientierbaren Flächen, Math. Ann. 127 (1954), 181-214.
[14] G. Ringel and J. W. T. Youngs, Solution of the Heawood map-coloring problem, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 438-445.
[15] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994), 180-181.
[16] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70 (1994), 67-100.
[17] M. Voigt, List colorings of planar graphs, Discrete Math. 120 (1993), 215-219.

