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DEPARTMENT OF MATHEMATICS

UNIVERSITY OF LJUBLJANA
JADRANSKA 19, 1111 LJUBLJANA

SLOVENIA

Received June 11, 1996; revised April 2, 1999

Abstract: It is shown that every simple graph with maximal degree 4 is 5-edge-
choosable. c© 1999 John Wiley & Sons, Inc. J Graph Theory 32: 250–264, 1999

Keywords: graph; edge coloring; list coloring

1. INTRODUCTION

Graphs in this article are undirected and finite. They have no loops and no multiple
edges, but may contain edges with only one end, called halfedges; other edges
are called proper edges. The maximal degree of G is denoted by ∆(G). A list
assignment ofG is a functionL that assigns to each edge e ∈ E(G) a listL(e) ⊆ N .
The elements of the list L(e) are called the admissible colors for the edge e. An
L-edge-coloring (also called list coloring) is a function λ: E(G) → N such that
λ(e) ∈ L(e) for e ∈ E(G) and such that, for any pair of adjacent edges e, f
in G,λ(e) 6= λ(f). If G admits an L-edge-coloring, it is L-edge-colorable. For
k ∈ N , the graph is k-edge-choosable, if it is L-edge-colorable for every list
assignment L with |L(e)| ≥ k for each e ∈ E(G).

List colorings were introduced by Vizing [15] and independently by Erdös, Ru-
bin, and Taylor [1]. In 1976, Vizing [15] conjectured that every (multi)graph G is
χ′(G)-edge-choosable, where χ′(G) is the usual chromatic index ofG (see also [4,
Problem 12.20]). In 1979, Dinitz posed a question about a generalization of Latin
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squares, which is equivalent to the assertion that every complete bipartite graph
Kn,n is n-edge-choosable. This problem became known as the Dinitz conjecture
and resisted proofs up to 1995, when Galvin [2] proved the conjecture in the affirma-
tive. More generally, Galvin established Vizing’s List Chromatic Index Conjecture
for bipartite graphs by showing that every bipartite (multi)graph G is ∆(G)-edge-
choosable. A short self-contained proof of this result can also be found in [12].
Kahn [6] was the first to prove that, for simple graphs, χ′l(G) = ∆(G) + o(∆(G)).
Häggkvist and Janssen [3] improved this result by showing that every graph with
maximal degree ∆ is (∆+O(∆2/3√log ∆))-edge-choosable, and recently Molloy
and Reed [9] improved the bound to ∆ +O(∆1/2 log6 ∆).

In [5] it is proved that subcubic graphs are ‘‘10
3 -edge-choosable.’’ The precise

meaning of this statement is that, no matter how we prescribe arbitrary lists of three
colors to edges of a subgraph H of G such that ∆(H) ≤ 2, and prescribe lists of
four colors onE(G)\E(H), the subcubic graphGwill have an edge-coloring with
the given colors.

In this article, the method of auxiliary graphs with halfedges from [5] is further
developed in order to prove that every (simple) graph with maximal degree 4 is
5-edge-choosable.

Results of a similar flavor have been obtained for the closely related notion of total
graph colorings. The total chromatic number of graphs of small maximal degree has
been studied by Rosenfeld [10] and Vijayaditya [14]. They independently proved
that total chromatic number for graphs of maximal degree 3 is 5. Kostochka in
[7, 8] proved that the total chromatic number of multigraphs of maximal degree 4
(respectively, 5) is 6 (respectively, 7).

2. CRITICAL CHAINS

A sequence of distinct edges P = e1e2 · · · ek (k ≥ 1) in a graph G is called
an (open) chain. If among e2, . . . , ek−1 there are p proper edges, then the chain
P is called a p-chain. In our coloring procedures, a special role will be played
by critical chains. Critical open chains are defined inductively as follows. Let L
be a list assignment of G. The chain P = e1e2 is critical with respect to L, if
L(e1) = L(e2) = {a, b} (for some colors a, b). The chain P = e1e2 · · · ek (k ≥ 3)
is critical with respect to L, if there exists an index i (1 < i < k) such that one of
the following holds:

(O1) ei, ei+1 are halfedges: Let P1 = e1 · · · ei and P2 = ei+1 · · · ek. There is a
color x ∈ L(ei)∩L(ei+1) such that, ifL′ is the list assignment that coincides
with L except that L′(ei) = L(ei)\{x} and L′(ei+1) = L(ei+1)\{x}, then
P1 and P2 are critical chains with respect to L′. We say that P is obtained
by combining the critical chains P1 and P2 using color x. (See Fig. 1 for an
example.)

(O2) ei is a proper edge, L(ei) consists of four distinct colors, and L(ei) can be
partitioned into L(ei) = {a, b} ∪ {c, d} such that the following holds: Let
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FIGURE 1. Combining critical chains using (O1).

P1 = e1 · · · ei and P2 = ei · · · ek. If L′ (and L′′) is the list assignment that
coincides with L except that L′(ei) = {a, b} (respectively, L′′(ei) = {c, d}),
then P1 and P2 are critical with respect to L′ and L′′, respectively. Again,
we say that P is obtained by combining P1 and P2 at ei. (See Fig. 2, where
proper edges are drawn horizontally.)

If P = e1 · · · ek is a critical p-chain, then p ≡ k (mod 2). Moreover, |L(e1)| =
|L(ek)| = 2, and |L(ei)| = 3 or 4 (if ei is a halfedge or a proper edge, respectively),
i = 2, . . . , k − 1. Let 1 < j1 < j2 < · · · < jp < k be the indices such that eji is a
proper edge, i = 1, . . . , p. Then j1 is even, and ji+1− ji is odd for i = 1, . . . , p−1
(and k − jp is also odd). These properties are easy to prove by induction.

In the sequel, we need the following properties of critical chains. If ei (1 < i < k)
is any proper edge of the critical chain P = e1 · · · ek, then the subchains P1 with
respect toL′ andP2 with respect toL′′ defined as in (O2) are both critical. Similarly,
if ei and ei+1 are halfedges (1 < i < k), then the p1-chain P1 and the p2-chain P2
defined as in (O1) are critical chains if and only if p1 ≡ i (mod 2) (and p2 ≡ k− i
(mod 2)). The proof is left to the reader.

Lemma 2.1. LetP = e1 · · · ek be ap-chain, and letL1 andL2 be list assignments
for P such that P is critical with respect to L1 and with respect to L2.

(a) Suppose that there is an index i (1 ≤ i ≤ k) such that L1(ej) = L2(ej) for
each j 6= i. Then also L1(ei) = L2(ei).

(b) IfL1(ej) = L2(ej), j = 2, . . . , k−1, andL1(e1) = {a, b}, L2(e1) = {b, c},
where a 6= c, then either L1(ek) = {a, d} and L2(ek) = {c, d} (if p is even),
or L1(ek) = {c, d} and L2(ek) = {a, d} ( if p is odd), for some color d.

Proof. The proof of (a) is by induction on k using the remark above thatP can be
split into critical subchains P1, P2 using the same edge ei for both list assignments.
The details are left to the reader.

First we will prove (b) for 0-chains by induction on k, and afterwards for p-chains
by induction on p.

FIGURE 2. Combining critical chains using (O2).
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For 0-chains, the case k = 2 is obvious (with b = d). Since P is critical with
respect to L1 and L2, {a, b} ⊆ L1(e2) and {b, c} ⊆ L2(e2). Therefore, L1(e2) =
L2(e2) = {a, b, c}. By the above remark, both chains can be split into critical
subchains at e2, e3 as in (O1). In the case ofL1, x = c, and in the case ofL2, x = a.
Hence,{a, c} ⊆ L(e3). Clearly,P2 = e3 · · · ek is a critical chain for list assignments
L′1 and L′2 obtained from L1 and L2, respectively, as described in (O1). Note that
L′1(e3) = {a, f} and L′2(e3) = {c, f}, where f is the third color in L(e3). Now
the claim follows by induction.

Suppose now that P is a p-chain, where p > 0, and let ei be the first proper
edge in P . As before, we split P at ei into two critical subchains P1 and P2.
Let L′1, L

′′
1 and L′2, L

′′
2 be the list assignments for P1 and P2 obtained as in (O2)

from L1 and L2, respectively. Applying induction on P1 with list assignments
L′1 and L′2, we get that L′1(ei) = {a, f} and L′2(ei) = {c, f} for some color
f . Since L′1(ei) ∪ L′2(ei) ⊆ L1(ei) = L2(ei), we can assume that L1(ei) =
L2(ei) = {a, c, f, g}. Hence, L

′′
1(ei) = {c, g} and L

′′
2(ei) = {a, g}. Now, P2 is

a critical (p − 1)-chain with respect to L
′′
1 and L

′′
2 , and we complete the proof by

induction.
We will deal only with chains P = e1 · · · ek and list assignments L such that

|L(e1)| ≥ 2, |L(ek)| ≥ 2, |L(ei)| ≥ 3 (1 < i < k), and |L(ei)| ≥ 4 if ei is a proper
edge (1 < i < k). We say that such a list assignment L is colorful.

Lemma 2.2. Let P = e1 · · · ek be a chain that is not critical with respect to a
colorful list assignmentL.Choose an integer r (1 ≤ r < k) and a color c. Suppose
that e1, ek are halfedges and let K1 = L(er)\{c} and K2 = L(er+1)\{c}.

(a) If er and er+1 are halfedges, then there are distinct colors d1 ∈ K1 and
d2 ∈ K2 such that the chains P1 = e1 · · · er−1 and P2 = er+2 · · · ek (if
nonempty) are not critical with respect to the list assignment that agrees with
L except that L(er−1) is replaced by L(er−1)\{d1} and L(er+2) is replaced
by L(er+2)\{d2}.

(b) If er is a halfedge and er+1 is a proper edge, then there is a color d ∈ K1
such that the chains P1 = e1 · · · er−1 (if nonempty) and P2 = er+1 · · · ek
are not critical with respect to the list assignments that agree with L, ex-
cept that L(er−1) is replaced by L(er−1)\{d} and L(er+1) is replaced by
L(er+1)\{c, d}.

(c) Suppose that er and er+1 are proper edges. Suppose also that, if |L(e1)| =
|L(ek)| = 2, then there is an even number of halfedges among e2, . . . , er−1.
Then the chain P (where we interpret er and er+1 as halfedges) is not critical
with respect to the list assignment that agrees with L except that L(er) is
replaced by K1 and L(er+1) is replaced by K2.

(d) Suppose that er and er+1 are proper edges with |L(er)| ≥ 5 and |L(er+1)| ≥
5. Then L(er) contains at least two colors x, y such that, if c ∈ {x, y}, then
P is not critical with respect to L1 (obtained from L by replacing L(er) and
L(er+1) by K1 and K2, respectively).
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Proof.

(a) By Lemma 2.1(a), there is at most one color d′1 ∈ K1 such that the chain
P1 is critical with respect to the new list assignment; similarly for P2 (for
the color d′2). Suppose that 2 ≤ r ≤ k − 2. If the color d′1 does not exist,
take d2 ∈ K2\{d′2} (or d2 ∈ K2 if d′2 does not exist) arbitrarily, and select
d1 ∈ K1\{d2}. So we assume that d′1 and d′2 exist. If (K1\{d′1})∪(K2\{d′2})
contains at least two colors, we can choose d1 and d2 to be distinct. Otherwise,
there exists a color d such that L(er) = {c, d, d′1} and L(er+1) = {c, d, d′2}.
But then P,L can be obtained by using (O1) twice: first by combining chains
P1 and erer+1 (with colors {c, d}) using x = d′1, and then by combining this
chain with P2 (where x = d′2). This is a contradiction. The remaining case
when r = 1 or r = k − 1 is handled similarly.

(b) By Lemma 2.1(a), there is a color d ∈ K1 such that P1 is not critical for
the new list assignment. If there is more than one such possibility for d, then
again by Lemma 2.1(a), we can choose d such that P1 and P2 are not critical.
So suppose that d is uniquely determined and that P2 is critical. In that case,
{c, d} ⊆ L(er) ∩ L(er+1). But then we can construct P,L from critical
chains as follows. By using (O2), we combine critical chains erer+1 (with
colors {c, d}) and P2. Let P3 = er · · · ek. If r 6= 1, let d′ be the third color in
L(er). Since P1 is critical when we use d′ instead of d, d′ ∈ L(er−1). Now
we get P by using (O1) to combine P1 and P3 (where x = d′). This shows
that P is critical, a contradiction.

(c) Suppose that the new chain P is critical. Then c ∈ L(er) ∩ L(er+1) and
|L(e1)| = |L(ek)| = 2. Therefore, there is an even number of halfedges
among e2, . . . , er−1 and, hence, by the remark before Lemma 2.1, we can
split P at er, by using (O1), into two subchains P1, P2, which are critical
with respect to the corresponding list assignment L′. Let x ∈ K1∩K2 be the
color used in (O1). Then we can obtain P,L from P1, P2, L

′ as follows: we
apply (O2) twice, first to combine P1 with erer+1 (with colors {x, c}), and
then to combine the resulting chain with P2. Hence, P is critical with respect
to L, a contradiction.

(d) Suppose that P is critical with respect to L1. Then P1 = e1 · · · er is critical
with respect to L′1 (defined as in (O2)). By Lemma 2.1(a), L′1(er) contains a
uniquely determined pair of colors, say x and y. Now, it is easy to check that
the chains obtained by taking c ∈ {x, y} are not critical.

A closed chain C = (e1 · · · ek) is a cyclic sequence of distinct edges. We regard
(e1e2 · · · ek), (e2 · · · eke1), etc., as the same closed chain. The closed chain C is
critical at er (1 ≤ r ≤ k) (with respect to the list assignment L) for the color x, if
one of the following holds:

(C1) er, er+1 are halfedges and P = er+2 · · · eke1 · · · er−1 is a critical open chain
for every L′ obtained from L such that L′(ei) = L(ei) (i 6= r − 1, r +
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2), L′(er−1) = L(er−1)\{d1}, and L′(er+2) = L(er+2)\{d2}, where d1 ∈
L(er)\{x}, d2 ∈ L(er+1)\{x}, and d1 6= d2.

(C2) er is a halfedge, er+1 is a proper edge, |L(er+1)| ≥ 4, and P = er+1 · · · ek
e1 · · · er−1 is a critical open chain for every L′ obtained from L such that
L′(ei) = L(ei) (i 6= r−1, r+1), L′(er−1) = L(er−1)\{d}, andL′(er+1) =
L(er+1)\{x, d}, where d ∈ L(er)\{x}.

(C3) Same as (C2) except that the roles of er−1 and er+1 interchange.

One can construct arbitrarily long critical closed chains for either of the above
cases.

We will deal only with colorful closed chains C = (e1 · · · ek) (with respect to
L) for which |L(ei)| ≥ 3 if ei is a halfedge and |L(ei)| ≥ 4 if ei is a proper edge,
i = 1, . . . , k. The following lemma describes some basic properties of colorful
critical closed chains.

Lemma 2.3. Let C = (e1 · · · ek) be a closed chain, which is critical at er
(1 ≤ r ≤ k) for the color x, and let L be the corresponding list assignment. If C
is colorful with respect to L, then the following holds:

(a) |L(e)| = 4 for each proper edge e in C, |L(e)| = 3 for each halfedge e in C,
and x ∈ L(er) ∩ L(er+1).

(b) If C is critical by (C1), then L(er) = L(er+1). If C is critical by (C2), then
L(er) ⊂ L(er+1). If C is critical by (C3), then L(er+1) ⊂ L(er).

(c) C contains an odd number of proper edges.
(d) If C is critical at er for a color y, then y = x.

Proof. Part (a) easily follows from Lemma 2.1 and the remarks preceding it. To
prove (b)–(d), suppose first that C is critical by (C1). Let K1 = L(er)\{x} and
K2 = L(er+1)\{x}. Suppose that there exists a color d1 ∈ K1 (say) such that
K2\{d1} contains at least two elements, d2, d

′
2. By taking d1, d2 and d1, d

′
2 in (C1),

we have two lists assignments for whichP is critical. Since they differ only on er+2,
we get a contradiction by Lemma 2.1(a). This proves thatK1 = K2 = {a, b}. Now
(a) implies that L(er) = L(er+1) = {a, b, x}. By (C1) for d1 = a, d2 = b and
d1 = b, d2 = a, respectively, we have two list assignments for which P is critical.
Then Lemma 2.1(b) shows that P is a p-chain, where p is odd. Finally, suppose
that C is critical at er also for the color y 6= x. We may assume that y = b. Taking
d1 = a, d2 = b (when critical for x) and d1 = a, d2 = x (when critical for y) we
get two list assignments for which P is critical. But these two assignments differ
only at er+2, a contradiction with Lemma 2.1(a).

The second case is when C is critical by (C2). The proof of (b) is similar as
above and is left to the reader. Let L(er) = {a, b, x}. By (C2) for d = a and d = b,
respectively, we have two list assignments for whichP is critical. By Lemma 2.1(b),
P contains an even number of proper edges. Together with er+1, this gives an odd
number of proper edges in C. It remains to check (d). We may assume that y = b.
By taking d = a (for both x and y) in (C2), we get two list assignments for which
P is critical. Since they differ only at er+1, this contradicts Lemma 2.1(a).
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When C is critical by (C3), the proof follows the same steps as above and is,
therefore, omitted.

3. EDGE-COLORINGS OF GRAPHS WITH ∆ ≤ 4

Let G be a graph with ∆(G) ≤ 4. Suppose that H is a 2-factor (i.e., a spanning
2-regular subgraph) of G. Let σ be an involution (i.e., σ2 = id) on the set E′ =
E(G)\E(H) such that σ(s) = s for each proper edge s ∈ E′. If σ(s) = s (s ∈ E′),
we say that s is σ-free. Otherwise, s is σ-constrained. For e, f ∈ E′, we write e ∼ f
if either e = f , or σ(e) = f , or e and f are incident with the same vertex of G.
Equivalence classes of the transitive closure of the relation ∼ on E′ are called σ-
components. Each σ-component determines a unique chain P or closed chain C
(up to its direction) in which any two consecutive edges are either incident with
the same vertex or σ-constrained with each other. The chain P (or C) is called a
σ-chain (either open or closed).

An example of chains is shown in Fig. 3, where H consists of two thick cycles
and action of σ on E′ is represented by dotted lines (e.g., σ(x1) = x1, σ(x2) =
x3, σ(x3) = x2, . . .). Then x1x2 · · ·x5 and y1y2 · · · y8 are σ-chains. There are three
other σ-chains with 1, 2, and 3 edges, respectively.

Theorem 3.1. Let G be a 4-regular graph with a 2-factor H. Let σ be an in-
volution on E′ as described above. Suppose that L is a list assignment of G such
that

|L(e)| ≥


2, e is a σ-free halfedge

3, e is a σ-constrained halfedge

5, e is a proper edge.

(1)

FIGURE 3. An example of σ-chains.
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If no σ-chain in G is critical with respect to L, then G admits an L-edge-coloring
λ such that, for each σ-constrained halfedge s, λ(s) 6= λ(σ(s)).

Proof. Since adjacent halfedges always receive distinct colors, we may assume
that, for each halfedge s, either s = σ(s), or s and σ(s) are not adjacent. By Lemma
2.1(a), we may also assume that we have equalities in (1). Observe that all σ-chains
are colorful with respect to L. By Lemma 2.3(a) and (c), there are no critical closed
chains. Let q be the number of cycles in H . The proof is by induction on q. It runs
as follows: (a) First, a general description is given how the proof will proceed.
(b) Then seven cases are given that explain how to choose a first vertex along the
cycle and an orientation along the cycle; in each case, it is shown that the lists of
admissible colors are modified only in what turns out to be acceptable ways for the
completion of (c), the general coloring step.

A. Outline of the Proof

We shall construct a coloringλofG as follows. First, we choose a vertexv1 ∈ V (G).
If C is the cycle of H that contains v1, we also select an orientation of C. This
selection determines the order v1, v2, . . . , vn of vertices on C. Denote by si and
s′i the edges of E′ incident with vi. We shall color edges incident with C in the
following order. First we color the edge e1 = v1v2 ∈ E(C). For i = 2, . . . , n,
having colored ei−1 = vi−1vi, we color si and s′i if they are halfedges. If si (or s′i)
is a proper edge whose other end v has not yet been considered, we change si (or
s′i) into a halfedge incident with v and color it when the vertex v is encountered. Of
course, we remove the colors used on ei−1 and ei from its list. Hence, if one of si, s′i
is a halfedge and the other is a proper edge, the halfedge is colored and the proper
edge is changed into a halfedge incident with its other end v. If si and s′i are both
changed into halfedges, then we also change σ so that σ(si) = s′i to assure that they
will get distinct colors. After each such change, the lists of admissible colors satisfy
(1) (except possibly the lists of s1 and s′1). Hence, all σ-chains (except possibly the
one containing s1 and s′1) are colorful. Finally, we color the edge ei = vivi+1, and
then determine the admissible colors for si or s′i if they have become halfedges.
When i = n, the color of en should be distinct from λ(e1). After all these steps, we
also color s1 and s′1 if they are halfedges. Otherwise, we change them into halfedges
as in general steps. We prove that no critical (open) σ-chains arise, and this enables
us to color the rest of the graph by applying induction.

There are several things that we have to take care of during the coloring pro-
cedure. First of all, we have to avoid critical open σ-chains. This is achieved by
an appropriate choice of v1 and C at the beginning, and by a careful coloring at a
general step. Additionally, we make sure by an appropriate selection of the orien-
tation of C that, at the general step, we never encounter a vertex that is incident
with two proper edges that are contained in an open σ-chain P such that one has
4 and the other has 5 admissible colors left. If this happened, in general it would
not be possible to achieve that the new σ-chain is not critical. Exceptions to this
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rule are the cases when we know for sure that there is another proper edge in P
that still has 5 admissible colors. Another important situation is when a (critical)
closed σ-chain R turns into an open σ-chain P . Suppose that this happens at vi+1.
Again, we have to assure that P is not critical. Usually, this is achieved by assuring
that there are two possible colors for the edge ei. In such a case, by Lemma 2.3(d)
R is critical for at most one of the colors. Situations when this approach does not
apply are treated separately. That there are two admissible colors to color ei is also
needed when i = n. In that case, the color of en must be distinct from the color
of e1, and, if there are two colors available, this is an easy task. Additionally, two
colors are also needed in case (6) below. The details for how to achieve that there
are two available colors (and the exceptions to this) are explained at the particu-
lar steps of the coloring procedure. Let us remark that two colors are not needed
for e1.

B. How to Start

The selection of the vertex v1, the orientation of C, and the choice of the color
x = λ(e1) need special care. They are chosen according to the following cases,
where each new case assumes that the assumptions of previous cases cannot be met
at any of the vertices of G. If not stated otherwise, the orientation of C is arbitrary.
A proper edge will be called a chord (of H) if it does not belong to E(H). We
denote by R the σ-chain containing s1 and s′1. Let us recall that, after choosing
a partial L-edge-coloring and changing some proper edges into halfedges, R and
other σ-chains may change. Now, in order to avoid that R becomes critical, we
distinguish the following cases:

(1) There is a vertex v1 such that L(e1)\(L(s1) ∪ L(s′1)) 6= ∅. Then we choose
x ∈ L(e1)\(L(s1) ∪ L(s′1)). This choice does not restrict admissible colors
on s1 and s′1 and does not introduce critical σ-chains.

(2) There is a vertex v1 such that s1 and s′1 are chords with their other ends out
of C. If R is a closed chain, we select x ∈ L(e1) arbitrarily. By Lemma 2.3,
R does not become critical, since either s1 or s′1 has 5 admissible colors, or
exactly these two edges onR have precisely 4 admissible colors. IfR is open,
then R may become critical. However, by Lemma 2.2(d), x can be selected
such that this is not the case.

(3) There is a vertex v1 such that s′1 is a halfedge and s1 is a chord with the other
end not in C. We distinguish two subcases:

(3.1) If s′1 is σ-constrained and σ(s′1) is incident with s1, we select x ∈ L(e1)
so that L(s′1)\{x} ∪ L(σ(s′1)) 6⊆ L(s1)\{x} and set λ(e1) = x. It is
easy to see that excluding (1) such an x always exists. Note that it may
happen that s1 retains only 2 and s1 only 4 admissible colors, but, since
R consists only of s1, s

′
1, and σ(s′1), this does not introduce any troubles

in the general step.
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(3.2) Otherwise, we choose x ∈ L(e1)\L(s′1). Observe that there are at least
two such choices. If R is open, Lemma 2.1(a) implies that at least one
choice is such that R does not become critical after removing x from
L(s1).

(4) There is a vertex v1 such that s1 is a chord of C and s′1 = v1u is a chord with
u 6∈ V (C). Notice that the edge s of R, incident with u and distinct from
s′1 is a chord (since (3) is excluded) that is not incident with C (since (2) is
excluded). Therefore, we choose x ∈ L(e1) arbitrarily and observe that R
will not be critical, since swith |L(s)| = 5 remains unchanged when coloring
the edges incident with C.

(5) There is a vertex v1 such that s1 is a chord of C and s′1 is a halfedge. Let
vi ∈ V (C) be the other end of s1 = s′i. If si is a chord, then its other end is
also a vertex of C, say vj . In this case, by choosing the orientation of C, we
can assure that j < i. Now, we take x ∈ L(e1)\L(s′1). IfR is open, one of the
choices for x is such that R does not become critical. The chosen orientation
ofC assures that we do not encounter a vertex incident with two proper edges
having 4 and 5 admissible colors left, respectively.

(6) There is a vertex v1 such that s1 and s′1 are halfedges. Let R = f1f2 · · · fk
(possibly closed). Since |L(s1) ∪ L(s′1)| ≥ 5 and σ-free halfedges have ex-
actly two admissible colors, we have k ≥ 4 and we may assume that s′1 is
σ-constrained. Moreover, f1, . . . , fk are halfedges, because, after excluding
(3) and (5), no vertex ofG is incident with both a halfedge and a proper edge.
Additionally, exclusion of (1) gives |L(fi) ∪ L(fi+1)| ≥ 5, i = 1, 3, 5, . . . .
The last property implies that no σ-chain emerging from R during the col-
oring procedure is critical. On the other hand, after coloring e1 by a color
x ∈ (L(s′1)\L(s1)) ∩ L(e1), the edge s′1 will be left with only two admis-
sible colors. We have to assure that, when coloring σ(s′1), these two col-
ors still remain admissible, i.e., σ(s′1) should be colored by a color from
L(σ(s′1))\(L(s′1)\{x}). There is nothing to take care of if σ(s′1) is not inci-
dent with V (C). So, suppose that σ(s′1) = si, where i > 2. Then L(si) ∩
L(s′i) is either empty or contains one color, say z. In the latter case, x can
be selected such that L(s′1)\{x} 6= L(si)\{z}. This assures that we will be
able to color si by a color distinct from z. Additionally, in the general step,
this case has to be treated separately when coloring si and s′i. The remaining
possibility is when i > 2 cannot be achieved. In that case, R is closed and
σ(s′j) = sj+1, j = 1, 2, . . . , n. The set (L(s′1)\L(s1)) ∩ L(e1) contains at
least two colors, say a and b. Put λ(e1) = a, λ(s′1) = b. This selection does
not restrict available colors for s1. We continue with the general step until
reaching the edge en. Note that s1 has become a σ-free halfedge and that
we have two colors available for en. Any coloring of en leaves an available
color for s1. If we cannot color en, the available colors for en are precisely a
and b. If λ(s2) 6∈ L(s′1), then we can recolor s′1 by a color distinct from a, b,
and this partial coloring can be extended to a coloring of en and s1. When
coloring the edges incident with v2, we can select λ(s2) ∈ L(s2)\L(s′1)
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unless L(s2) = L(s′1), which we assume henceforth. If λ(s2) ∈ L(e1), we
can swap the colors of e1 and s2 and extend the resulting partial coloring to
a coloring of en and s1. Otherwise, e1 can be recolored by the color from
L(e1)\{λ(e2), λ(s′2), a, b}, and again the resulting coloring has an extension
to en and s1:

(7) In the remaining possibility, all σ-chains are closed and composed of chords
of C only. In particular, C is a Hamilton cycle of a connected component of
G. We distinguish three subcases:

(7.1) There exist an orientation of C and a vertex v1 ∈ V (C), where s1 =
si, s

′
i = sk, and s′1 = sj , s

′
j = sl such that k < i and l < j. Then

we select x ∈ L(e1) arbitrarily. The assumptions guarantee that at the
general step we never encounter a vertex incident with two proper edges
having 4 and 5 admissible colors left, respectively.

(7.2) There is a vertex v1 ∈ V (C) such that L(s1) 6= L(s′1). Let s1 = si
and s′1 = sj . We may assume that L(s′1) 6= L(e1). Then we choose
x ∈ L(e1)\L(s′1) arbitrarily. This selection introduces only one edge,
namely s1, with 4 admissible colors. If i < j, then, when coloring the
edges incident with vi, R will not be critical, since it will contain the
proper edge s′1 with 5 admissible colors. Suppose now that i > j. Let
s′i = sk and s′j = sl. If k > i and l < j, then R will not be critical when
reaching vi, since it will contain the proper edge s′k with 5 admissible
colors (s′k will still be a proper edge, since we have excluded (7.1)).
Since we have already checked for (7.1), the only remaining possibility
is that k < i and l > j. In that case, when considering vi, sk is already a
halfedge.

(7.3) For every pair of incident chords s, s′ of C, we have L(s) = L(s′). Ex-
cluding (1), all chords have the same list of colors. Therefore, the chords
of C can be colored by using only three colors altogether. Moreover, we
may achieve that there is an edge e ∈ E(C) such that only two distinct
colors are used on the chords incident with e. Hence, each edge of C
contains at least 2 admissible colors that are not used on the adjacent
chords and e contains at least 3 such colors. This guarantees that E(C)
can also be colored.

C. General Coloring Step

LetR1 = R be the σ-chain that contains s1 and s′1. During the coloring procedure,
thisσ-chain changes. LetRi be theσ-chain containing s1, s

′
1 after coloring ei−1, i =

2, . . . , n+ 1. By Lemma 2.3, every critical closed σ-chain contains a proper edge
with 4 admissible colors. In our case, the only proper edges with 4 colors may be
s1 and s′1. Hence, the only possible critical closed σ-chain is R1 (and Ri later in
the general step).

Let us now explain how the general step proceeds. Having colored edges up
to ei−1 (2 ≤ i ≤ n), we select colors for si, s′i, and ei as follows. Suppose first
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that si and s′i are both chords. We shall color ei by a color from L(ei)\{λ(ei−1)},
and then consider si, s′i as σ-constrained halfedges with a triple of colors from
L1 = L(si)\{λ(ei−1), λ(ei)}, and L2 = L(s′i)\{λ(ei−1), λ(ei)}, respectively.
Suppose that |L(si)| = |L(s′i)| = 5. If si and s′i are contained in a closed σ-
chain, we color ei arbitrarily. Let us observe that there are 4 candidates for λ(ei).
Otherwise, suppose that after coloring ei by y, the new chain becomes critical. Then,
by (O1), there is a color x such that both subchains P1 and P2 (as defined in (O1))
are also critical. By Lemma 2.1(a), the colors L1\{x} and L2\{x} are uniquely
determined. Therefore, by taking λ(ei) to be a color distinct from x, y, λ(ei−1), the
new chain is not critical. Note that, in each case, there are at least two appropriate
colors for λ(ei). Suppose now that one of si, s′i, say si, has only 4 admissible colors.
The initial choice of v1 and of the orientation of C was made in such a way that
we meet the pair of edges with 5 and 4 admissible colors only in cases (4) or (7.2).
In those cases, 3 ≤ i < n. Moreover, Ri+1 will not be critical, irrespective of the
choice of λ(ei). Now, if λ(ei−1) 6∈ L(si), then we choose a color for ei as above.
Otherwise, there is a color y 6= λ(ei−1) contained in L(ei)\L(si). By choosing y
for λ(ei), we get new colorful lists of admissible colors. Let us remark that, in this
case, we do not need two candidates for λ(ei).

Suppose now that si and s′i are both halfedges. If si and s′i are contained in an
open σ-chain, say Q = f1 · · · fk, where si = fr, s

′
i = fr+1, then we choose colors

d1 ∈ L(si)\{λ(ei−1)} and d2 ∈ L(s′i)\{λ(ei−1)} by using Lemma 2.2(a). We
change σ so that σ(si) = si and σ(s′i) = s′i, σ(fr−1) = fr−1 and σ(fr+2) = fr+2
(if r ≥ 2 and r ≤ k − 2, respectively), and remove d1 and d2 from L(fr−1) and
L(fr+2), respectively. Lemma 2.2(a) guarantees that, after these changes, no critical
σ-chains arise. Finally, we color ei with a color from L(ei)\{λ(ei−1), d1, d2}. Let
us observe that there are at least two candidates for λ(ei). The same procedure is
used if si and s′i are contained in a noncritical closed σ-chain Q, except that (C1)
is used instead of Lemma 2.2. Suppose now that Q is a closed σ-chain, which is
critical at vi. By Lemma 2.3(b),L(si) = L(s′i). SinceQ = Ri contains an edge with
four admissible colors, the vertex v1 was not chosen according to (1). Therefore,
i ≥ 3 and, hence, there are two candidates for λ(ei−1). By Lemma 2.3(d), Q may
be critical for each of them only when the admissible colors on Q depend on the
choice of λ(ei−1). In that case, si−1 and s′i−1 were chords with 5 admissible colors,
and there were 4 candidates that may have been used for λ(ei−1). One of them is
not contained in L(si). By Lemma 2.3(a), its selection gives the chain Q, which is
not critical for λ(ei−1).

A special treatment is needed if si and s′i are the halfedges from (6). Recall that
i > 2 and si = σ(s′1). In that case, s′1 has only two admissible colors, say a and
b, and we do not want to use them to color si. The choice of x in (6) guarantees
that there is a color c ∈ L(si)\(L(s′i) ∪ {a, b}). Since i > 1, there are two choices
for λ(ei−1). Hence, we may assume that λ(ei−1) 6= c. Now, we set λ(si) = c
and choose λ(s′i) from L(s′i)\{λ(ei−1)}. Finally, we color ei by a color from
L(ei)\{λ(ei−1), λ(si), λ(s′i)}.
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The last case is when si is a halfedge and s′i is a proper edge. If si and s′i = viu
are contained in an open σ-chain Q = f1 · · · fk, where si = fr and (without
loss of generality) s′i = fr+1, then we can choose a color d ∈ L(si)\{λ(ei−1)}
by applying Lemma 2.2(b), where c equals λ(ei−1). Now we set λ(si) = d and
change s′i into a σ-free halfedge incident with u and with admissible colors L′ =
L(s′i)\{λ(ei−1), d}. If r > 1 (i.e., si isσ-constrained), then we also replaceL(fr−1)
by L(fr−1)\{d} and change σ so that σ(fr−1) = fr−1. Lemma 2.2(b) guarantees
that, after these changes, no critical σ-chains arise. Next, we select a color b ∈
L(ei)\{λ(ei−1), d} such that the σ-chain containing s′i is not critical with respect
to the remaining admissible colors (i.e., the colors of s′i are L′\{b}). If |L′| > 2,
then Lemma 2.1(a) shows that there are at least two candidates for b. In particular,
this is the case when i = n. If |L′| = 2, thenL(s′i) contains only 4 colors. Therefore,
s′i ∈ {s1, s

′
1}, and, hence, i < n. Moreover, the σ-chain Ri+1 is open and we are

not in the case of the previous paragraph. Therefore, we do not need two distinct
colors for ei.

Let us now consider the case when the σ-chain Q containing si and s′i is closed.
If Q is not critical at vi for the color λ(ei−1), then we color si and transform s′i
into a halfedge by applying (C2) or (C3). The color λ(ei) is then determined as
above. If Q is critical, then |L(s′i)| = 4. In particular, i > 2. The previous steps of
the coloring procedure assure that there are two candidates for λ(ei−1). By Lemma
2.3(d), Q is not critical at vi for both of them. So we may assume the above case.
However, it is possible that the admissible colors on Q depend on the choice of
λ(ei−1). This can happen only when si−1 and s′i−1 were chords. The choice of
v1 and the orientation of C guarantee that si−1 and s′i−1 contained 5 colors each.
In that case, however, one of the four possible colors in L(ei−1)\{λ(ei−2)} for
λ(ei−1) is not contained in L(si), and we choose that color as λ(ei−1). By Lemma
2.3(a), this guarantees that Q is not critical for λ(ei−1).

The coloring procedure starts by coloring e1 and then proceeds for i = 2, 3, . . . , n
as described above. In the case when i = n, there are two available admissible colors
for ei = en. One of them is distinct from λ(e1), and it can be used to color en.

It remains to explain how to color s1 and s′1. Let Q = Rn+1 be the σ-chain
containing s1, s

′
1 after all edges of C have been colored. If Q is open, then it is not

critical, and we apply Lemma 2.2(a)–(c) depending on whether s1, s
′
1 are halfedges

or proper edges.
If Q is closed, we distinguish two cases. If Q is not critical at v1 for λ(en), then

we apply one of (C1), (C2), or (C3). Otherwise, the coloring procedure started in
case (3), one of s1, s

′
1, say s1, is a chord with 4 admissible colors, and the other is a

σ-constrained halfedge with 3 colors. The selection ofλ(e1) in (3.1) also guarantees
that σ(s′1) is not incident with s1. Let s be the edge of Q incident with σ(s′1). If s
was a halfedge at the beginning, then Q cannot be critical, since we have excluded
(1). On the other hand, if s was a chord, then it is not incident with C, since we
have excluded (2) and Q is still closed. Therefore, s still has 5 admissible colors,
a contradiction. This shows that Q cannot be critical at v1 for λ(en) and, thus,
completes the proof.
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The result mentioned in the title of this article immediately follows from Theo-
rem 3.1.

Corollary 3.1. Every graph G with ∆(G) ≤ 4 is 5-edge-choosable.

Proof. We may assume that G has no halfedges. Then G is a subgraph of a
4-regular graph without halfedges. Therefore, we may assume that G is 4-regular.
By Petersen’s Theorem,G has a 2-factorH . Let L be a list assignment ofG with 5
admissible colors for each edge. By Theorem 3.1, G has an L-edge-coloring. This
completes the proof.

Corollary 3.1 in particular verifies Vizing’s List Chromatic Index Conjecture for
graphs of class 2 of maximum degree 4. The proof of Theorem 3.1 also shows that
there is a polynomial time algorithm for list edge-coloring graphs with maximum
degree 4, if the lists contain at least 5 colors each.

4. APPLICATION TO SIMULTANEOUS

EDGE-FACE COLORING OF PLANE GRAPHS

Corollary 3.1 implies that edges and faces of a 2-edge-connected plane graph of
maximum degree ∆ ≤ 4 can be simultaneously list-colored (so that incident or
adjacent elements receive distinct colors), if each list contains at least ∆+3 colors.
To see this, we first list-color the faces (by [13], lists of size 5 suffice). This leaves
at least ∆ + 1 colors on each of the edges. In case ∆ = 4, Corollary 3.1 applies,
while for ∆ ∈ {2, 3}, the proof is straightforward.

Proposition 4.1. Let G be a 2-edge-connected plane graph of maximum degree
∆ ≤ 4. Then the choice number for simultaneous edge and face coloring of G is
at most ∆ + 3.

A general result of this kind was recently proved (for usual colorings only) by
Sanders and Zhao [11]. See also Waller [16].
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