Existence of polyhedral embeddings of graphs*

Bojan Mohar ${ }^{\dagger}$
Department of Mathematics, University of Ljubljana, 1111 Ljubljana, Slovenia bojan.mohar@uni-lj.si

Abstract

It is proved that the decision problem about the existence of an embedding of face-width 3 of a given graph is NP-complete. A similar result is proved for some related decision problems. This solves a problem raised by Neil Robertson.

1 Introduction

Let C and C^{\prime} be cycles in a graph G. We say that C and C^{\prime} meet properly if the intersection of C and C^{\prime} is either empty, a single vertex or an edge.

Let G be a 3 -connected graph. A 2 -cell embedding of G in some surface is polyhedral if every facial walk is a cycle and any two facial cycles meet properly. Equivalently, we require that the graph is 3 -connected and that the embedding has face-width at least three [8] (cf. also $[1,5,6]$). Let us recall that the face-width (also called the representativity) of a (2-cell) embedded graph G is the minimum integer r such that G has r facial walks whose union contains a cycle which is noncontractible on the surface. (In the case when there are no noncontractible cycles, we let the face-width be ∞.)

At the Seventh Vermont Summer Workshop on Combinatorics and Graph Theory in 1995, Neil Robertson asked how difficult it is to see whether a given 3 -connected graph admits a polyhedral embedding. In this note we answer his question by proving that the decision problem about the existence of polyhedral embeddings is NP-complete. The problem remains

[^0]NP-complete even if we ask about polyhedral embeddings in orientable surfaces and require that the given graph is 6 -connected. A similar problem where we ask about embeddings of face-width exactly 3 is also NP-complete. However, it is not known if existence of embeddings of face-width 4 or more is still NP-complete.

An indication that there is some nontriviality in polyhedral embeddings is that for a complete graph $K_{n}(n \geq 5)$, a polyhedral embedding is necessarily a triangulation, and a significant part of Ringel and Youngs' Map Color Theorem [7] was to determine which complete graphs have such embeddings. Our result is not that much of interest from the computational complexity point of view. Its main message is that any theory on polyhedral embeddings is rich and interesting.

It is worth mentioning that a similar problem concerning embeddings of face-width at least two may be polynomially solvable. This problem is easily reduced to 2 -connected graphs (cf. [6, 8]), and there are two long standing conjectures which are closely related to the Cycle Double Cover Conjecture (cf. $[4,10]$), and whose affirmative solution would give a trivial answer about existence of embeddings of face-width at least 2 .

Conjecture 1.1 (Haggard [3]) Every 2-connected graph has an embedding of face-width 2 or more.

Conjecture 1.2 (Jaeger [4]) Every 2-connected graph has an orientable embedding of face-width 2 or more.

2 Embeddings and compatible cycles

Our treatment of graph embeddings follows essentially [6]. All graphs are simple, so there are no loops or multiple edges. We only consider 2 -cell embeddings into closed surfaces which can be defined combinatorially as follows. An embedding of a connected graph G is a pair $\Pi=(\pi, \lambda)$ where $\pi=\left\{\pi_{v} \mid v \in V(G)\right\}$ is a collection of local clockwise rotations, i.e., π_{v} is a cyclic permutation of the edges incident with $v(v \in V(G))$, and λ : $E(G) \rightarrow\{+1,-1\}$ is a signature. The local rotation π_{v} describes the cyclic clockwise order of edges incident with v on the surface, and the signature $\lambda(u v)$ of the edge $u v$ is positive if and only if the local rotations π_{u} and π_{v} both correspond to the clockwise (or both to anticlockwise) rotations when traversing the edge $u v$ on the surface. An embedding of a graph G is nonorientable if G contains a cycle whose number of edges with negative signature is odd.

The embedding Π determines a set of Π-facial walks. If a Π-facial walk is a cycle, it is also called a Π-facial cycle. The underlying surface of the embedding Π is obtained by pasting discs along the Π-facial walks in G.

Let G be a graph. Two subgraphs H_{1}, H_{2} of G are said to be compatible if $E\left(H_{1}\right) \cap E\left(H_{2}\right)$ is a matching in G. Equivalently, no two edges of H_{1} incident with the same vertex are both contained in H_{2}.

Let G be a Π-embedded graph and let $v \in V(G)$. Let H be the subgraph of G consisting of all neighbors of v and all edges $u w$ such that $v u w$ is a Π-facial cycle. Then H is called the link of v, and is denoted by $\operatorname{link}(v, G, \Pi)$.

Lemma 2.1 Let G be a Π-embedded graph and let u, v be distinct vertices of G. If no vertex adjacent to v is of degree 4 in G, then $\operatorname{link}(u, G, \Pi)$ and $\operatorname{link}(v, G, \Pi)$ are compatible subgraphs of G whose maximum degree is at most 2.

Proof. Each edge $v w$ is contained in at most two facial triangles. Therefore, the maximum degree in the link of v does not exceed 2 . If $\operatorname{link}(u, G, \Pi)$ and $\operatorname{link}(v, G, \Pi)$ share two edges $a w, b w$ incident with the same vertex w, then the link of w is the cycle $a v b u$ and w is of degree 4 . This completes the proof.

Thomassen [9] proved:
Theorem 2.2 (Thomassen [9]) The decision problem whether a given cubic bipartite graph contains two compatible Hamilton cycles is NP-complete.

The cubic bipartite graphs G in Thomassen's proof of Theorem 2.2 in [9] are 2-connected and contain many edges which are contained in any Hamilton cycle of G. Such edges are easily discovered in G. This shows that the same problem is NP-complete also when the input graph is 2-connected and has three prescribed edges which are contained in every Hamilton cycle of G.

Let T be a tree of maximum degree d, and suppose that G_{0} is a graph and e_{1}, \ldots, e_{d} are edges of G_{0}. Take a distinct copy G_{t} of G_{0} for each vertex $t \in V(T)$. Label each oriented edge $t t^{\prime}$ of T by a number in $\{1, \ldots, d\}$ so that the edges emanating from the same vertex receive distinct labels. Now, for each edge $t t^{\prime} \in E(T)$, repeat the following operation. Let a and b be the labels of $t t^{\prime}$ and $t^{\prime} t$, respectively. Remove the edge $e_{a}=x y$ from G_{t}, remove $e_{b}=x^{\prime} y^{\prime}$ from $G_{t^{\prime}}$, and add the edges $x x^{\prime}$ and $y y^{\prime}$. Let G be any graph resulting from this operation.

Lemma 2.3 Let G_{0} be a graph and let T be a tree of maximum degree d. Let G be a graph constructed as described above, and let e_{1}, \ldots, e_{d} be the edges of G_{0} used in the construction. Then G contains two compatible Hamilton cycles if and only if G_{0} contains two compatible Hamilton cycles each of which contains all edges e_{1}, \ldots, e_{d}.

Proof. Suppose first that G contains two compatible Hamilton cycles H_{1}, H_{2}. We shall use the notation introduced in the definition of G. Suppose that t is a vertex of degree d in T. The removal of the edges $x x^{\prime}$ and $y y^{\prime}$ disconnects the graph G. Let G^{\prime} be the component of $G-x x^{\prime}-y y^{\prime}$ which contains $V\left(G_{t}\right)$. Clearly, $x x^{\prime}$ and $y y^{\prime}$ are both contained in H_{1} and in H_{2}. Therefore, $H_{1}^{\prime}=\left(H_{1} \cap G^{\prime}\right)+x y$ and $H_{2}^{\prime}=\left(H_{2} \cap G^{\prime}\right)+x y$ are compatible Hamilton cycles of $G^{\prime}+x y$. By repeating such a reduction for all edges incident with t in T, we obtain two compatible Hamilton cycles of G_{t} (and hence of G_{0}) which contain all edges e_{1}, \ldots, e_{d}.

Suppose now that G_{0} contains two compatible Hamilton cycles H_{1}° and H_{2}° each of which contains all edges e_{1}, \ldots, e_{d}. We shall prove by induction on $|V(T)|$ that G admits two compatible Hamilton cycles H_{1}, H_{2} such that all edges e_{1}, \ldots, e_{d} in each copy $G_{t}(t \in V(T))$ which remain in G are contained in H_{1} and in H_{2}. (Here we allow that d is larger than the maximum degree in T.) This is clear if $|V(T)|=1$. Otherwise, let t be a leaf of T, and let t^{\prime} be the neighbor of t in T. Let $G^{\prime}=\left(G-V\left(G_{t}\right)\right)+x^{\prime} y^{\prime}$. Then G^{\prime} is obtained from G_{0} and $T-t$ in the same way as described before the lemma. By the induction hypothesis, G^{\prime} has two compatible Hamilton cycles $H_{1}^{\prime}, H_{2}^{\prime}$ which contain $e_{b}=x^{\prime} y^{\prime}$ (and all other edges e_{1}, \ldots, e_{d} in each copy G_{s}, $s \in V(T-t)$, which remain in $\left.G^{\prime}\right)$. Let $H_{j}=\left(H_{j}^{\prime}-x^{\prime} y^{\prime}\right) \cup\left(H_{j}^{\circ}-x y\right)+x x^{\prime}+y y^{\prime}$, $j=1,2$. Then H_{1} and H_{2} are compatible Hamilton cycles in G with the desired property.

Lemma 2.4 Let G_{0}, T, and G be as in Lemma 2.3. Suppose that T has more than $4 k$ leaves where k is a positive integer. If G contains two compatible spanning subgraphs H_{1}, H_{2} such that for $i=1,2$, the maximum degree in H_{i} is at most two and such that the number of connected components of H_{i} is $\leq k$, then G_{0} contains two compatible Hamilton cycles.

Proof. Note that both H_{1} and H_{2} are disjoint unions of isolated vertices, paths, and cycles. Let U be the vertex set of G containing all vertices of degree less than 2 in H_{1} or in H_{2}, and containing one vertex of each cycle in H_{1} or in H_{2}. Then $|U| \leq 4 k$, and hence there is a leaf t of T such that
$U \cap V\left(G_{t}\right)=\emptyset$. Then $H_{1} \cap G_{t}$ and $H_{2} \cap G_{t}$ give rise to two compatible Hamilton cycles in G_{0}.

3 Reduction

Theorem 3.1 The decision problem" Does a given graph G have a polyhedral embedding" is NP-complete. The problem remains NP-complete also if we ask about polyhedral embeddings in orientable surfaces and require that G is 6 -connected.

Proof. Let G_{0} be an arbitrary 2-connected cubic bipartite graph, and let $e_{1}, e_{2}, e_{3} \in E\left(G_{0}\right)$ be distinct edges of G_{0} such that every Hamilton cycle of G_{0} contains each of them. By Theorem 2.2 (and the remark following it), it is NP-complete to decide if G_{0} has two compatible Hamilton cycles. Thus, Theorem 3.1 will follow if we prove that one can construct in polynomial time a 6-connected graph G_{1} which has a polyhedral embedding if and only if G_{0} has two compatible Hamilton cycles and, moreover, if G_{1} has a polyhedral embedding, then it also has an orientable polyhedral embedding.

Let T be a cubic tree (i.e., each vertex of T is of degree 3 or 1) of order 104, so that T has 53 leaves. Construct the graph G as described before Lemma 2.3. Clearly, G is cubic, bipartite and 2-connected. Let $V(G)=V_{1} \cup V_{2}$ be the bipartition of G. Now, define the graph G_{1} which is obtained from G as follows. First, replace each vertex $v \in V_{2}$ by two mutually adjacent vertices $v^{\prime}, v^{\prime \prime}$ which are both adjacent to the same three vertices in V_{1} as v. Let $V^{\prime}=\left\{v^{\prime} \mid v \in V_{2}\right\}$ and $V^{\prime \prime}=\left\{v^{\prime \prime} \mid v \in V_{2}\right\}$. Finally, add four new vertices $a^{\prime}, b^{\prime}, a^{\prime \prime}, b^{\prime \prime}$ where a^{\prime} and b^{\prime} are adjacent to all vertices in $V_{1} \cup V^{\prime}$, and $a^{\prime \prime}, b^{\prime \prime}$ are adjacent to all vertices in $V_{1} \cup V^{\prime \prime}$.

The resulting graph G_{1} is 6 -connected. To see this, one considers each pair x, y of vertices and shows that there are 6 internally disjoint paths joining x and y. The details are rather straightforward and are left to the reader.

We claim that G_{0} contains two compatible Hamilton cycles if and only if G_{1} has a polyhedral embedding. First, assume that G_{0} admits two compatible Hamilton cycles. Since every Hamilton cycle of G_{0} contains e_{1}, e_{2}, and e_{3}, Lemma 2.3 shows that G has two compatible Hamilton cycles, say H_{1} and H_{2}. For $i=1,2$, let H_{i}^{\prime} (resp. $H_{i}^{\prime \prime}$) be the cycle in G_{1} obtained from H_{i} by replacing each vertex $v \in V_{2}$ by the vertex $v^{\prime} \in V^{\prime}$ (resp. $v^{\prime \prime} \in V^{\prime \prime}$). It is easy to see that G_{1} has (a unique) embedding in which all facial cycles are triangles such that the link of a^{\prime} (resp. $b^{\prime}, a^{\prime \prime}, b^{\prime \prime}$) is H_{1}^{\prime} (resp. $H_{2}^{\prime}, H_{1}^{\prime \prime}, H_{2}^{\prime \prime}$).

This embedding is clearly polyhedral. It is also orientable. To see this, orient the facial triangles as follows: $a^{\prime} v^{\prime} v_{1}$ (if $v^{\prime} v_{1} \in E\left(H_{1}^{\prime}\right) \backslash E\left(H_{2}^{\prime}\right)$), $a^{\prime} v_{1} v^{\prime}$ (if $v^{\prime} v_{1} \in E\left(H_{1}^{\prime}\right) \cap E\left(H_{2}^{\prime}\right)$), similarly around $b^{\prime}, v_{1} v^{\prime} v^{\prime \prime}$ (if $v^{\prime} v_{1} \in E\left(H_{1}^{\prime}\right)$), $v_{1} v^{\prime \prime} v^{\prime}$ (if $v^{\prime} v_{1} \in E\left(H_{2}^{\prime}\right)$), where $v_{1} \in V_{1}, v^{\prime} \in V^{\prime}$, and $v^{\prime \prime} \in V^{\prime \prime}$. Similarly we orient the triangles containing the edges of $H_{1}^{\prime \prime}$ and $H_{2}^{\prime \prime}$. The details are left to the reader.

Conversely, let Π be a polyhedral embedding of G_{1}. Let us consider the Π-facial cycles containing a^{\prime}. Each such facial cycle $C=a^{\prime} v_{1} v_{2} \ldots v_{k}$ is an induced cycle in G_{1}. (If C had a chord e, then a facial cycle containing e would meet improperly with C.) We say that C is exceptional if $k>2$. It is strongly exceptional if $V(C)$ contains at least one of the vertices $b^{\prime}, a^{\prime \prime}, b^{\prime \prime}$, and weakly exceptional otherwise. There are at most three strongly exceptional faces containing a^{\prime} since no two strongly exceptional faces contain the same pair of (nonconsecutive) vertices $\left\{a^{\prime}, x\right\}, x \in\left\{b^{\prime}, a^{\prime \prime}, b^{\prime \prime}\right\}$.

An exceptional face $C=a^{\prime} v_{1} \ldots v_{k}$ is induced. Therefore, $v_{1}, v_{k} \in V_{1} \cup V^{\prime}$ and $v_{2}, \ldots, v_{k-1} \notin V_{1} \cup V^{\prime}$. Similar conclusions hold for the exceptional faces at the vertices $b^{\prime}, a^{\prime \prime}$, and $b^{\prime \prime}$. This implies that at most 10 vertices of $V^{\prime \prime}$ belong to strongly exceptional faces at the vertices $a^{\prime}, b^{\prime}, a^{\prime \prime}, b^{\prime \prime}$.

Suppose now that C is weakly exceptional. Then $k=3$ since $v_{2} \in V^{\prime \prime}$, and hence v_{3} is a neighbor of a^{\prime}. Let $v \in V_{2}$ be the vertex such that $v_{2}=v^{\prime \prime}$. If $v_{1} \in V^{\prime}$, then $v_{1}=v^{\prime}$ and thus $v_{1} v_{3} \in E\left(G_{1}\right)$, a contradiction. Hence $v_{1}, v_{3} \in V_{1}$. As mentioned above, there are at most 10 vertices in $V^{\prime \prime}$ contained in a strongly exceptional face. Therefore, there are at most 10 weakly exceptional facial cycles containing a^{\prime} such that v_{2} is contained in some strongly exceptional facial cycle.

Suppose now that C is not such a face. Consider the Π-clockwise ordering around $v^{\prime \prime}$. If the edges $v^{\prime \prime} a^{\prime \prime}$ and $v^{\prime \prime} v^{\prime}$ are consecutive in that ordering, the facial cycle containing these two edges is not induced (as we just proved above when considering the possibility that $\left.v_{1} \in V^{\prime}\right)$. Similarly, $v^{\prime \prime} b^{\prime \prime}$ and $v^{\prime \prime} v^{\prime}$ are not consecutive around $v^{\prime \prime}$. In particular, $v_{2}=v^{\prime \prime}$ belongs to a strongly exceptional face containing $a^{\prime \prime}$ and $b^{\prime \prime}$, a contradiction. This implies that there are at most 10 weakly exceptional and at most 3 strongly exceptional faces containing a^{\prime}. This shows that $\operatorname{link}\left(a^{\prime}, G_{1}, \Pi\right)$ is a subgraph of G_{1} of maximum degree at most 2 and with at most 13 connected components. The same holds for $\operatorname{link}\left(b^{\prime}, G_{1}, \Pi\right)$. By Lemma 2.1, these links are compatible subgraphs of G_{1}. Clearly, they give rise to compatible subgraphs in G. Since T has 53 leaves, Lemma 2.4 implies that G_{0} (and hence also G by Lemma 2.3) contains two compatible Hamilton cycles. Additionally, as the previous paragraph shows, G_{1} admits an orientable polyhedral embedding determined by two compatible Hamilton cycles of G.

We reduced, in polynomial time, the NP-complete problem of Theorem 2.2 to the existence of polyhedral embeddings of 6 -connected graphs. Since the embedding of G_{1} obtained from two compatible Hamilton cycles in G_{0} (and in G) is orientable, this completes the proof.

The proof of Theorem 3.1 shows that in every embedding Π of G_{1} of face-width at least 3, the link of a^{\prime} determines a Hamilton path in one of the subgraphs G_{t} of G where t is some leaf of T. This can be used to show that G_{1} has no embeddings of face-width 4 or more. Hence, the same proof also shows:

Corollary 3.2 The decision problem "Does a given 6-connected graph G have an (orientable) embedding of face-width exactly 3 " is NP-complete.

References

[1] D. Barnette, Polyhedral maps on 2-manifolds, in "Convexity and Related Combinatorial Geometry (Norman, Okla., 1980)," Dekker, New York, 1982, pp. 7-19.
[2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, NorthHolland, New York, 1981.
[3] G. Haggard, Edmonds' characterization of disc embeddings, Congr. Numer. 19 (1977) 291-302.
[4] F. Jaeger, A survey of the cycle double cover conjecture, in "Cycles in Graphs" (B. Alspach and C. Godsil, Eds.), Ann. Discrete Math. 27 (1985) 1-12.
[5] B. Mohar, Face-width of embedded graphs, Math. Slovaca 47 (1997) 35-63.
[6] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, to appear.
[7] G. Ringel, Map Color Theorem, Springer-Verlag, Berlin, 1974.
[8] N. Robertson, R. P. Vitray, Representativity of surface embeddings, in: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds.), Springer-Verlag, Berlin, 1990, pp. 293-328.
[9] C. Thomassen, Triangulating a surface with a prescribed graph, J. Combin. Theory Ser. B 57 (1993) 196-206.
[10] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker, New York, 1996.

[^0]: *To appear in Combinatorica (2001)
 ${ }^{\dagger}$ Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-0502-0101-98.

