University of LJubluana
Institute of Mathematics, Physics and Mechanics Department of Mathematics
Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 39 (2001), 731

GRAPH MINORS AND GRAPHS
ON SURFACES
Bojan Mohar

ISSN 1318-4865

January 3, 2001

Ljubljana, January 3, 2001

Graph minors and graphs on surfaces ${ }^{1}$

Bojan Mohar

Abstract

Graph minors and the theory of graphs embedded in surfaces are fundamentally interconnected. Robertson and Seymour used graph minors to prove a generalization of the Kuratowski Theorem to arbitrary surfaces [37], while they also need surface embeddings in their Excluded Minor Theorem [45]. Various recent results related to graph minors and graphs on surfaces are presented.

1 Introduction

A graph H is a minor of another graph G if H can be obtained from a subgraph of G by contracting edges.

Graph minors and the theory of graphs embedded in surfaces are fundamentally interconnected. The family of all graphs which are embeddable in a fixed surface \mathbb{S} is closed under taking minors. Therefore the graphs embeddable in \mathbb{S} can be characterized by specifying the list $\operatorname{Forb}_{0}(\mathbb{S})$ of minimal forbidden minors, i.e., minor minimal graphs which do not embed in \mathbb{S}. (Similarly, they can be characterized by excluding, as subgraphs, all subdivisions of graphs in the set $\operatorname{Forb}(\mathbb{S})$ which is defined as the set of graphs of minimum degree ≥ 3 which cannot be embedded in \mathbb{S} but all of whose proper subgraphs have embeddings in \mathbb{S}.) Robertson and Seymour used graph minors to prove that $\operatorname{Forb}_{0}(\mathbb{S})$ (and hence also $\operatorname{Forb}(\mathbb{S})$) is finite for every surface $\mathbb{S}[37]$. This result is a generalization of the Kuratowski Theorem to arbitrary surfaces. On the other hand, Robertson and Seymour needed surface embeddings in their Excluded Minor Theorem [45] where they determine a general structure of graphs which do not have a fixed graph H as a minor. This interplay between the two theories is visible in many other results, some of which are presented here.

The main purpose of this survey is to present up-to-date information on some of the most appealing results about graph minors and their relation to the study of graphs on surfaces.

Besides a stimulating survey article on minors and embeddings by Thomassen [59], there are numerous existing texts that cover this subject. A good introduction to graph minors is Diestel [14, Chapter 12], while excluded minor theorems are treated in Thomas [57]. Graph minors and tree-width are studied in Reed [28], for tree-width and algorithms we refer to [5] and [6]. Embeddings of graphs in surfaces are treated in Mohar and Thomassen [26]; minors and embeddings are also covered in Robertson and Vitray [54]. The proof of the

[^0]Graph Minor Theorem is sketched in Robertson and Seymour [29], and a more recent survey with focus on the related disjoint paths problem is [52].

2 Basic definitions

It is convenient to view minors as substructures. Then, a subgraph \bar{H} of G is said to be an H-minor in G if \bar{H} can be written as the union of $r=|V(H)|$ pairwise disjoint trees T_{1}, \ldots, T_{r} and $m=|E(H)|$ edges e_{1}, \ldots, e_{m} such that for $i=1, \ldots, m$, the edge e_{i} joins T_{j} and T_{l} if the i th edge of H connects the j th and l th vertex of H. In Figure 1, a graph G with subtrees T_{1}, \ldots, T_{5} (represented by thick lines) is exhibited to show that the graph K_{5} minus an edge is a minor of G.

Figure 1: K_{5} minus an edge as a minor
A family \mathcal{F} of graphs is minor closed if for every graph in \mathcal{F}, all its minors are also in \mathcal{F}. There are two basic classes of examples of minor closed families. The first class are families related to embeddings in various topological spaces. Such examples include graphs embeddable in a fixed surface, graphs embeddable in \mathbb{R}^{3} in some specific way, for instance, linklessly embeddable graphs [53, 57] (i.e., graphs which admit an embedding in \mathbb{R}^{3} such that no two disjoint cycles of the graph are linked in \mathbb{R}^{3}), knotlessly embeddable graphs (every cycle of the graph is embedded as an unknot), etc. The second important class of minor closed families is related to the tree-width. Classes of both types are discussed below.

Every closed surface is either homeomorphic to the orientable surface \mathbb{S}_{g} of genus $g \geq 0$, or to the nonorientable surface \mathbb{N}_{g} of nonorientable genus $g \geq 1$. Surfaces of the same orientability type can be distinguished by their Euler characteristic, and to unify the genus parameters for the surfaces \mathbb{S}_{g} and $\mathbb{N}_{2 g}$, which have the same Euler characteristic, it is convenient to introduce the Euler genus which is defined by $\operatorname{eg}\left(\mathbb{S}_{g}\right)=2 g$ and $\operatorname{eg}\left(\mathbb{N}_{g}\right)=g$. An embedding of a graph G in a surface \mathbb{S} is a 2-cell embedding if every face is homeomorphic to an open disk in the plane. In that case, the number of faces is equal to $|E(G)|-|V(G)|+2-\mathbf{e g}(\mathbb{S})$. This relation is known as Euler's formula.

Embeddings of graphs in surfaces, in particular the 2-cell embeddings, can be represented combinatorially. One such combinatorial description, known as
the Heffter-Edmonds-Ringel representation, can be taken as a definition, and then one can work with combinatorial embeddings without any reference to topology. We refer to Mohar and Thomassen [26] for a thorough combinatorial treatment of surface embeddings. Following [26], we define an embedding of a connected graph G as a pair $\Pi=(\pi, \lambda)$ where $\pi=\left\{\pi_{v} \mid v \in V(G)\right\}$ is a collection of local clockwise rotations, i.e., π_{v} is a cyclic permutation of the edges incident with $v(v \in V(G))$, and $\lambda: E(G) \rightarrow\{+1,-1\}$ is a signature. The local rotation π_{v} describes the cyclic clockwise order of edges incident with v on the surface, and the signature $\lambda(u v)$ of the edge $u v$ is positive if and only if the cyclic permutations π_{u} and π_{v} both correspond to the clockwise (or both to anticlockwise) cyclic order of edges incident with u and v as seen on the surface when traversing the edge $u v$. An embedding of the graph G is orientable if every cycle of G has an even number of edges with negative signature.

The embedding $\Pi=(\pi, \lambda)$ determines a set of Π-facial walks. They are determined by the following process, called the face traversal procedure. We start with an arbitrary vertex v and an edge $e=v u$ incident with v. Traverse the edge e from v to u. We continue the walk along the edge $e^{\prime}=\pi_{u}(e)$ which follows e in the π-clockwise ordering around u. If $\lambda(e)=-1$, the π anticlockwise rotation is used instead, i.e., $e^{\prime}=\pi_{u}^{-1}(e)$. We continue using the π-anticlockwise ordering until the next edge with signature -1 is traversed, and so forth. The walk is completed when the initial edge e is encountered in the same direction from v to u and we are in the same mode (the π-clockwise ordering) which we started with. The other Π-facial walks are determined in the same way by starting with other edges. Two facial walks are considered the same if a cyclic shift of the first one gives rise to the second one or to the reverse of the second walk.

If f is the number of Π-facial walks, then the number

$$
\operatorname{eg}(G, \Pi)=2-|V(G)|+|E(G)|-f
$$

is called the Euler genus of the embedding Π. The underlying surface of the embedding Π which is obtained by pasting discs along the facial walks in G has the same Euler genus.

A tree decomposition of a graph G is a pair (T, Y), where T is a tree and Y is a family $\left\{Y_{t} \mid t \in V(T)\right\}$ of vertex sets $Y_{t} \subseteq V(G)$ (called parts of the tree decomposition) such that the following two properties hold:
(T1) $\bigcup_{t \in V(T)} Y_{t}=V(G)$, and every edge of G has both ends in some Y_{t}.
(T2) If $t, t^{\prime}, t^{\prime \prime} \in V(T)$ and t^{\prime} lies on the path in T between t and $t^{\prime \prime}$, then $Y_{t} \cap Y_{t^{\prime \prime}} \subseteq Y_{t^{\prime}}$.

The pair (T, Y) is a path decomposition if T is a path. The width of the tree decomposition (T, Y) is $\max _{t \in V(T)}\left(\left|Y_{t}\right|-1\right)$.

Figure 2: A graph and its tree decomposition of width 3

Figure 2 shows a graph G, a tree decomposition of width 3, and the underlying tree T. Let us observe that the graph G is outerplanar and hence it also has a tree decomposition of width 2 .

It was shown in [27] that if a graph G has a tree decomposition of width at most w, then G has a tree decomposition of width at most w that further satisfies:
(T3) For every two vertices t, t^{\prime} of T and every positive integer k, either there are k disjoint paths in G between Y_{t} and $Y_{t^{\prime}}$, or there is a vertex $t^{\prime \prime}$ of T on the path between t and t^{\prime} such that $\left|Y_{t^{\prime \prime}}\right|<k$.
(T4) If t, t^{\prime} are distinct vertices of T, then $Y_{t} \neq Y_{t^{\prime}}$.
(T5) If $t_{0} \in V(T)$ and B is a component of $T-t_{0}$, then $\bigcup_{t \in V(B)} Y_{t} \backslash Y_{t_{0}} \neq \emptyset$.
The tree-width $\mathbf{t w}(G)$ (path-width) of a graph G is the smallest width of a tree decomposition (path decomposition) of G.

Let G_{1} and G_{2} be vertex disjoint graphs and let k be an integer. Suppose that V_{i} is a k-clique in G_{i}, and let G_{i}^{\prime} be a subgraph of G_{i} obtained by deleting some (possibly none) of the edges joining pairs of vertices in $V_{i}, i=1,2$. If a graph G is obtained from $G_{1}^{\prime} \cup G_{2}^{\prime}$ by pairwise identifying the vertices of V_{1} with the vertices of V_{2}, then we say that G is a k-sum of G_{1} and G_{2}, or that G is a clique sum of G_{1} and G_{2} of order k.

3 The Excluded Minor Theorem

Robertson and Seymour proved that in any infinite sequence $G_{1}, G_{2}, G_{3}, \ldots$ of graphs there are indices $i<j$ such that G_{i} is a minor of G_{j} [30]-[51].

This seminal result, which establishes the well-quasi-ordering ${ }^{2}$ of graphs with respect to the minor relation, is known as the Graph Minor Theorem. In the proof, one may assume (reductio ad absurdum) that none of the graphs G_{2}, G_{3}, \ldots contains G_{1} as a minor. Robertson and Seymour then prove that these graphs have a special structure. In particular, if G_{1} is a forest, then the graphs have bounded path-width [30]. If G_{1} is a planar graph, then the graphs have bounded tree-width [34]. It takes a lot of work to reach the Excluded Minor Theorem 3.1 [45] which describes the structure of the sequence when a more general graph is an excluded minor. To express this result, an additional definition is needed.

Let G be a graph, \mathbb{S} a surface, and k an integer. We say that G can be k-nearly embedded in \mathbb{S} if G has a set A of at most k vertices such that $G-A$ can be written as $G_{0} \cup G_{1} \cup \cdots \cup G_{k}$ where the graphs $G_{0}, G_{1}, \ldots, G_{k}$ satisfy the following conditions:
(i) G_{0} is embedded in \mathbb{S}.
(ii) The graphs G_{1}, \ldots, G_{k} are pairwise disjoint.
(iii) For $i=1, \ldots, k$, let $U_{i}=\left\{u_{1}^{(i)}, u_{2}^{(i)}, \ldots, u_{r_{i}}^{(i)}\right\}:=V\left(G_{0}\right) \cap V\left(G_{i}\right)$. Then G_{i} has a path decomposition $\left(P_{r_{i}}, Y^{(i)}\right)$ of width $\leq k$ such that for $t=$ $1, \ldots, r_{i}, Y_{t}^{(i)} \cap U_{i}=\left\{u_{t}^{(i)}\right\}$.
(iv) There are (not necessarily distinct) faces F_{1}, \ldots, F_{k} of G_{0} in \mathbb{S}, and there are pairwise disjoint disks D_{1}, \ldots, D_{k} in \mathbb{S}, such that for $i=1, \ldots, k$, $D_{i} \subset F_{i}, D_{i} \cap G_{0}=U_{i}$, and the cyclic order of vertices in U_{i} on the boundary of D_{i} is $u_{1}^{(i)}, u_{2}^{(i)}, \ldots, u_{r_{i}}^{(i)}$.

Theorem 3.1 (Robertson and Seymour [45]) For every graph H there exists an integer $k \geq 0$ such that every graph which does not contain H as a minor can be obtained by clique sums of order $\leq k$ from graphs that can be k-nearly embedded in some surface, in which H cannot be embedded.

The main application of this impressive result is the proof of the Graph Minor Theorem by Robertson and Seymour. As Theorem 3.1 is very general and has not appeared in print till very recently, not many other applications are known. Two such examples, Theorems 3.2 and 3.7 below, have been obtained recently.

Theorem 3.2 (Böhme, Maharry, and Mohar [8, 9]) For every positive integer k there exists an integer $N=N(k)$ such that every 7 -connected graph of order at least N contains $K_{3, k}$ as a minor.

[^1]Theorem 3.2 is sharp in the sense that the 7 -connectivity condition cannot be relaxed. There are arbitrarily large 6 -connected graphs which can be embedded on the torus. Since $K_{3,7}$ cannot be embedded in the torus, none of these graphs contains $K_{3,7}$ as a minor. The following construction [8] gives arbitrarily large graphs of tree-width $3 a-1$ none of which contain a $K_{a, 2 a+1^{-}}$ minor. Let $m \geq 4$ and $a \geq 3$ be integers, and let $N_{m, a}$ be the graph with vertices $v_{x, y}$ where $1 \leq x \leq m$ and $1 \leq y \leq a$, in which the vertex $v_{x, y}$ is adjacent to another vertex $v_{w, z}$ if and only if $w \in\{x-1, x, x+1\}$ where $x \pm 1$ is considered modulo m.

Theorem 3.3 (Böhme, Maharry, and Mohar [8]) There is a function c : $\mathbb{N} \rightarrow \mathbb{N}$ such that for any $a \geq 3$ the following holds. For any positive integers k and w there exists a constant $N=N(k, w)$ such that every $c(a)$-connected graph of tree-width less than w and of order at least N contains $K_{a, k}$ as a minor.

Böhme, Maharry, and Mohar [8] conjectured the following extensions:
Conjecture 3.4 There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that any 9-connected graph on at least $f(k)$ vertices contains a $K_{4, k}$-minor.

Conjecture 3.5 There are functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $c: \mathbb{N} \rightarrow \mathbb{N}$ such that any $c(a)$-connected graph on at least $f(k)$ vertices contains a $K_{a, k}$-minor.

In [8] it is remarked that the sequence of graphs $K_{a, k}$, where a is fixed and k tends to infinity, is essentially the only family of graphs for which a result like Theorem 3.2 or 3.3 holds. More precisely:

Proposition 3.6 Let c and $w \geq c$ be positive integers, and let $H_{k}(k \geq 1)$ be a sequence of graphs such that $\lim _{k \rightarrow \infty}\left|V\left(H_{k}\right)\right|=\infty$. Suppose that for any positive integer k there exists an integer $N(k)$ such that every c-connected graph of tree-width $\leq w$ and of order at least $N(k)$ contains H_{k} as a minor. Then H_{k} is a minor of $K_{c, N(k)}$ for $k \geq 1$.

Proof Clearly, the graph $K_{c, N(k)}$ is c-connected and has tree-width $c \leq w$. By the assumption on the family $H_{k}, K_{c, N(k)}$ contains H_{k} as a minor.

Böhme, Mohar, and Reed [10] showed that Theorem 3.2 can be strengthened by modifying the connectivity assumptions. Recall that a connected graph G is t-tough if for every separating vertex set S, the subgraph $G-S$ of G has at most $|S| / t$ connected components.

If d and k are positive integers, then P_{k}^{d} denotes the d th power of the path on k vertices, i.e., distinct vertices v_{i} and v_{j} of P_{k}^{d} are adjacent if and only if $|j-i| \leq d$.

Theorem 3.7 (Böhme, Mohar, and Reed [10]) For any positive integers d and k there exist numbers $t=t(d)$ and $N=N(k, d)$ such that every t-tough graph of order at least N contains P_{k}^{d} as a minor.

4 Excluded minors for a fixed surface

One of the highlights in the Robertson-Seymour theory on graph minors is the proof of the finiteness (for each fixed surface \mathbb{S}) of the set $\operatorname{Forb}_{0}(\mathbb{S})$ of the minimal forbidden minors for \mathbb{S}.

Theorem 4.1 (Robertson and Seymour [37]) For each surface \mathbb{S}, the set Forb $_{0}(\mathbb{S})$ of minimal forbidden minors is finite.

Unfortunately, the complete list of graphs in $\operatorname{Forb}_{0}(\mathbb{S})$ is known only for the 2-sphere, where $\operatorname{Forb}_{0}\left(\mathbb{S}_{0}\right)=\left\{K_{5}, K_{3,3}\right\}$, and for the projective plane \mathbb{N}_{1}, where there are precisely 35 minimal forbidden minors $[18,1]$.

The original proof of Theorem 4.1 by Robertson and Seymour is nonconstructive in the sense that it does not provide a bound on the number or the size of graphs in $\operatorname{Forb}_{0}(\mathbb{S})$. A constructive proof for the case of nonorientable surfaces was obtained by Archdeacon and Huneke [4], while the first constructive proof for orientable surfaces appeared just recently (Mohar [25]). An independent constructive proof based on graph minors was also obtained by Seymour [55]. Seymour's bound on the size of graphs in $\operatorname{Forb}_{0}(\mathbb{S})$ is $2^{2^{(3 g+9)^{9}}}$, where g is the Euler genus of \mathbb{S}. This number is enormous already for the torus and the Klein bottle $(g=2)$. Even today, it remains a challenge to verify the following

Conjecture 4.2 Every minimal forbidden minor for the torus has less than 30 vertices.

In the late 90 's, Thomassen observed the possibility of obtaining a short proof of Theorem 4.1. He found a very short proof of the following result.

Theorem 4.3 (Thomassen [60]) Let $G \in \operatorname{Forb}\left(\mathbb{S}_{g}\right)$. Then G contains no $k \times k$ grid as a minor, where $k=\left\lceil 3300 g^{3 / 2}\right\rceil$.

Theorem 4.3 implies Theorem 4.1 when combined with two other important results in the Robertson-Seymour theory, that graphs of large tree-width contain large grid minors [34], and that graphs of bounded tree-width are well-quasi-ordered [33]. For the former of these two results, a short proof with constructive bounds was obtained by Diestel, Gorbunov, Jensen, and Thomassen.

Theorem 4.4 (Diestel, Gorbunov, Jensen, Thomassen [15]) Let r, m be positive integers, and let G be a graph of tree-width at least $r^{4 m^{2}(r+2)}$. Then G contains either K_{m} or the $r \times r$ grid as a minor.

The second result, the well-quasi-ordering of graphs of bounded tree-width, was proved by Robertson and Seymour in [33]. The proof is lengthy and technical as it provides general machinery for the graph minor theory. A
shorter direct proof of this result was recently obtained by Geelen, Gerards and Whittle [17]. In the sequel we give a new, much simpler proof of this result restricted to graphs in $\operatorname{Forb}_{0}(\mathbb{S})$.

Theorem 4.5 Let g and w be positive integers and let \mathbb{S} be a surface of Euler genus g. Then there is an integer N such that every graph in $\operatorname{Forb}_{0}(\mathbb{S})$ with tree-width $<w$ has at most N vertices.

Theorem 4.5 combined with Theorems 4.3 and 4.4 clearly implies Theorem 4.1. Theorem 4.3 is stated for orientable surfaces only but it is not difficult to extend its proof to include the nonorientable case as well.

Proof Suppose that $S \subseteq V(G)$. An S-bridge in G is a subgraph of G which is either an edge with both ends in S or a connected component C of $G-S$ together with all edges joining C with S. We start the proof by establishing some facts about bridges of embedded graphs.

Suppose that x, y is a separating pair of vertices of a graph G. An $\{x, y\}$ bridge B is said to be nonplanar if $B+x y$ is a nonplanar graph.
(1) If $G \in \operatorname{Forb}_{0}(\mathbb{S})$, then every $\{x, y\}$-bridge containing at least two edges is nonplanar.

This is easy to argue since the replacement of a nontrivial planar $\{x, y\}-$ bridge by the edge $x y$ would give a proper minor of G but would not decrease the genus of the graph.

Suppose that S is a vertex separating set of a connected graph G which is Π-embedded in \mathbb{S}. Let $W=v_{1} e_{1} v_{2} e_{2} \ldots v_{k} e_{k} v_{1}$ be a Π-facial walk. A triple $e_{i-1} v_{i} e_{i}$ in W (including the triple $e_{k} v_{1} e_{1}$) is called a mixed angle if the edges e_{i-1} and e_{i} belong to distinct S-bridges in G. Let R be the multigraph embedded in \mathbb{S} obtained by joining vertices of consecutive mixed angles in the Π-facial walks. Then $G \cup R$ has an embedding $\tilde{\Pi}$ in \mathbb{S} which extends the embedding Π. Consider the induced embedding Π^{R} of R in \mathbb{S}. Let us observe that this embedding is not always 2-cell.
(2) The faces of Π^{R} in \mathbb{S} can be partitioned into two classes, \mathcal{F}_{A} and \mathcal{F}_{B}, such that every edge of R is incident with a face in \mathcal{F}_{A} and a face in \mathcal{F}_{B}. The faces in \mathcal{F}_{A} are 2-cells and correspond to the faces of G with mixed angles. The faces in \mathcal{F}_{B} and the S-bridges in G which are $\tilde{\Pi}$-embedded in these faces are in bijective correspondence.

The existence of the partition $\mathcal{F}_{A} \cup \mathcal{F}_{B}$ is obvious. Let $F \in \mathcal{F}_{B}$. The boundary of F in \mathbb{S} is composed of one or more closed walks in R. Let e be an edge on one of them, joining vertices v_{i} and $v_{j}(i<j)$ of the Π-facial walk W. Since $e_{i-1} v_{i} e_{i}$ and $e_{j-1} v_{j} e_{j}$ are consecutive mixed angles on W, all edges $e_{i}, e_{i+1}, \ldots, e_{j-1}$ belong to the same S-bridge B. Consider the local clockwise
rotation of $\tilde{\Pi}$ around v_{j}. We may assume that e is followed by e_{j-1}. Then e_{j-1} is followed by some other edges of B (possibly none) until a mixed angle in some face is reached, in which case an edge e^{\prime} of R would follow the edges of B. Clearly, e^{\prime} follows e on the boundary of F. By using the same argument at e^{\prime}, etc., we see that the edges of G entering the face F at the considered component of the boundary of F all belong to the same S-bridge B. If the face F has another boundary component, it must be incident with the same bridge; otherwise the embedding of G would not be 2-cell. Clearly, every S-bridge lies in a single face of R. This completes the proof of (2).
(3) Let G be a connected graph and $S \subseteq V(G)$ a separating set such that no vertex of S is a cutvertex and for any two vertices $x, y \in S$, every $\{x, y\}$ bridge containing at least two edges is nonplanar. If G is embedded in \mathbb{S}, and $s=|S|$ then

$$
\begin{equation*}
|E(R)| \leq 6 g+s^{2}+5 s-12 \tag{4.1}
\end{equation*}
$$

Let $q=|E(R)|$. Since S contains no cutvertices, no facial walk of R has length 1. If a facial walk corresponding to a 2-cell face in \mathcal{F}_{B} has length 2 , then the corresponding S-bridge in that face is planar, hence just an edge joining two vertices of S. The number of such faces is $\leq\binom{ s}{2}$. By (2), the sum of the lengths of faces in \mathcal{F}_{B} is q. This implies that $2\binom{s}{2}+3\left(\left|\mathcal{F}_{B}\right|-\binom{s}{2}\right) \leq q$, hence $3\left|\mathcal{F}_{B}\right| \leq q+\binom{s}{2}$. Similarly, the sum of the lengths of faces in \mathcal{F}_{A} is q. Therefore, $\left|\mathcal{F}_{A}\right| \leq q / 2$. Now, Euler's formula implies:

$$
2-g \leq s-q+\left|\mathcal{F}_{A}\right|+\left|\mathcal{F}_{B}\right| \leq s-\frac{q}{6}+\frac{1}{3}\binom{s}{2}
$$

which yields (4.1).
After these preliminary results, we are ready for the proof of Theorem 4.5. Suppose that $G \in \operatorname{Forb}_{0}(\mathbb{S})$ and that $\operatorname{tw}(G)<w$. By the additivity of the genus (and using induction on g), we may assume that G is 2 -connected. Let (T, Y) be a tree decomposition of G of width $<w$ such that (T4)-(T5) hold. Let $S=Y_{t}$ be a vertex separating set in G. By contracting an edge in one of the S-bridges, a graph embeddable in \mathbb{S} is obtained. Claims (1)-(3) and the upper bound on $\left|\mathcal{F}_{B}\right|$ in the proof of (3) show that there are $\leq d:=2 g+2 w+\binom{w}{2}-4$ S-bridges in G. (T2) and (T5) imply that every vertex of the tree T has degree $\leq d$. By (T1), $|V(T)| \geq \frac{|V(G)|}{w}$. So, assuming G may have as many vertices as we like, T contains a path which is as long as we like. Applying Menger's theorem and the pigeonhole principle to the longest path in T and its subpaths one or more (but at most w) times, one can conclude that there exists an integer $s \leq w$ and there exist separating sets S_{0}, \ldots, S_{r} (where r is as large as we want) such that the following hold:
(i) $\left|S_{i}\right|=s, i=0, \ldots, r$.
(ii) There exist disjoint paths P_{1}, \ldots, P_{s} from S_{0} to S_{r} which intersect $S_{0}, S_{1}, \ldots, S_{r}$ in that order.
(iii) The path P_{1} is everywhere nontrivial [8], i.e., P_{1} has an edge e_{i} strictly between its intersection with S_{i-1} and $S_{i}, i=1, \ldots, r$.

For $i=1, \ldots, r$, let G_{i} be the graph obtained from G by contracting the edge e_{i} of P_{1}. Let Π_{i} be an embedding of G_{i} in \mathbb{S}, and let R_{i} be the corresponding graph on vertices of the mixed angles in Π_{i} with respect to the separator S_{i} of G_{i}. Since every vertex of S_{i} is incident with at least two S_{i}-bridges, $V\left(R_{i}\right)=S_{i}=:\left\{u_{1}^{i}, \ldots, u_{s}^{i}\right\}$, where $u_{l}^{i} \in V\left(P_{l}\right), l=1, \ldots, s$.

For $i=1, \ldots, r-1$, let $B^{(i)}$ be the S_{i}-bridge in G_{i} which contains the segment of P_{1} from S_{0} to S_{i}. Note that $B^{(i)}$ is obtained from the S_{i}-bridge $B_{0}^{(i)}$ in G_{i} containing the same segment of P_{1} by contracting the edge e_{i}.

Let Π_{i}^{R} be the embedding of R_{i} in \mathbb{S}. We say that $\left(R_{i}, \Pi_{i}^{R}\right)$ is strongly homeomorphic to $\left(R_{j}, \Pi_{j}^{R}\right)$ if there is a homeomorphism $\mathbb{S} \rightarrow \mathbb{S}$ whose restriction to R_{i} induces an isomorphism of the Π_{i}^{R}-embedded graph R_{i} onto the Π_{j}^{R}-embedded graph R_{j} such that $u_{l}^{i} \mapsto u_{l}^{j}, l=1, \ldots, s$, and such that the face of R_{i} corresponding to the bridge $B^{(i)}$ is mapped onto the face of R_{j} corresponding to $B^{(j)}$.

Claim (3) combined with the surface classification theorem implies that the number of strong homeomorphism types of pairs $\left(R_{i}, \Pi_{i}^{R}\right)$ is bounded in terms of g and w. As r can be arbitrarily large, there are indices i and $j>i$ such that $\left(R_{i}, \Pi_{i}^{R}\right)$ and $\left(R_{j}, \Pi_{j}^{R}\right)$ are strongly homeomorphic.

Take the embedding Π_{i} and delete the S_{i}-bridge $B^{(i)}$. Let F denote the resulting face in \mathbb{S}. Since $\left(R_{i}, \Pi_{i}^{R}\right)$ and $\left(R_{j}, \Pi_{j}^{R}\right)$ are strongly homeomorphic, the S_{j}-bridge $B^{(j)}$ can be embedded in F so that any vertex u_{l}^{j} of $B^{(j)}$ is identified with $u_{l}^{i}(l=1, \ldots, s)$ on the boundary of F. This gives rise to an embedding in \mathbb{S} of the graph G^{\prime} which is obtained from $G_{i} \backslash B^{(i)}$ by adding a disjoint copy of $B^{(j)}$ and identifying each $u_{l}^{i} \in V\left(G_{i} \backslash B^{(i)}\right)$ with the vertex $u_{l}^{j} \in V\left(B^{(j)}\right), l=1, \ldots, s$. Although $B^{(j)}$ is a bridge in G_{j} but not a bridge in G, it contains as a minor a copy of the S_{i}-bridge $B_{0}^{(i)}$ of G. In order to get $B_{0}^{(i)}$ as a minor, we contract all edges of the paths $P_{l}(l=1, \ldots, s)$ between S_{i} and S_{j} in the copy of $B^{(j)}$ in G^{\prime}. Now it is clear that the graph G^{\prime} contains G as a minor. Since G^{\prime} is embedded in \mathbb{S}, also its minor G admits an embedding in \mathbb{S}. This contradiction completes the proof.

The above proof crystallized as a side result in the search of an efficient algorithm for determining the genus of graphs of bounded tree-width. It turned out that some of the main ingredients in this proof can also be found in the aforementioned work of Seymour [55].

It is well-known that testing planarity [20], constructing embeddings in the sphere $\mathbb{S}_{0}[12]$, or finding subgraphs that are subdivisions of Kuratowski graphs [62] can be performed by algorithms whose worst case running time is linear. Although the construction of minimum genus embeddings is NP-hard (by

Thomassen [58]), Filotti, Miller, and Reif [16] proved that for every fixed surface \mathbb{S}, there is a polynomial time algorithm for embedding graphs in \mathbb{S}. For every fixed surface \mathbb{S}, Robertson and Seymour's theory gives an $O\left(n^{3}\right)$ algorithm for testing embeddability in \mathbb{S} using graph minors [37, 52]. Robertson and Seymour recently improved their $O\left(n^{3}\right)$ algorithms to $O\left(n^{2} \log n\right)$ [42, 50, 51]. An embeddability testing algorithm can be extended to an algorithm which also constructs an embedding in polynomial time (with estimated complexity $O\left(n^{6}\right)$; see Archdeacon [2]). Mohar [25] (and the papers cited therein) improved these results by showing:

Theorem 4.6 (Mohar [25]) Let \mathbb{S} be a fixed surface. There is a linear time algorithm that for an arbitrary graph G either:
(a) finds an embedding of G in \mathbb{S}, or
(b) finds a subgraph $K \subseteq G$ which is a subdivision of some graph in $\operatorname{Forb}(S)$.

A simpler linear time algorithm for embedding graphs in the projective plane is described by Mohar [23], while a simpler algorithm for the torus was developed recently by Juvan and Mohar [21].

5 Surface minors and the face-width

Given a Π-embedded graph G, every minor H of G can be considered as being obtained by deleting edges and contracting edges on the surface, so that the embedding of G determines an embedding Π^{\prime} of H. In that case we say that the pair $\left(H, \Pi^{\prime}\right)$ is a surface minor of (G, Π). If the embeddings Π and Π^{\prime} are clear from the context, then we also say that H is a surface minor of G.

The grid graphs $P_{k} \square P_{k}$ can serve as a generic class for planar graphs in the following sense:

Theorem 5.1 (Robertson and Seymour [34]) Let G_{0} be a plane graph. Then there is an integer k such that G_{0} is a surface minor of the $k \times k$ grid $P_{k} \square P_{k}$.

Proof There is a plane graph G_{1} with maximum degree 3 such that G_{0} is a surface minor of G_{1}. It is well-known that every planar graph, hence also G_{1} has a straight line embedding in the plane. Now, every edge can be modified so that it becomes a polygonal arc whose segments are all vertical or horizontal. Then it is easy to see that, for some large k, the $k \times k$ grid contains a subdivision of G_{1}. This completes the proof.

The proof of Theorem 5.1 does not give an explicit bound on the size of the grid. However, it is not difficult to show that the $O(n) \times O(n)$ grid suffices where n is the number of vertices of G_{0}; see Di Battista, Eades, Tamassia, and Tollis [7] for references.

Let G be a Π-embedded graph. If $\operatorname{eg}(G, \Pi) \geq 1$, the face-width $\mathbf{f w}(G, \Pi)$ of Π is the smallest integer r such that G has a Π-noncontractible cycle which is the union of r paths each of which is contained in a single Π-facial walk. If $g(G, \Pi)=0$, we let $\mathrm{fw}(G, \Pi)=\infty$.

Theorem 5.1 has the following analogue for general surfaces.
Theorem 5.2 (Robertson and Seymour [36]) Let G_{0} be a graph that is Π_{0}-embedded in a surface $\mathbb{S} \neq \mathbb{S}_{0}$. Then there is a constant k such that for any graph G which is Π-embedded in \mathbb{S} with face-width at least k, $\left(G_{0}, \Pi_{0}\right)$ is a surface minor of (G, Π).

Theorem 5.2 does not give explicit bounds on the face-width k that guarantees the presence of $\left(G_{0}, \Pi_{0}\right)$ as a surface minor. Quantitative versions for many special cases are known, cf. [26]. Let us consider some of them.
D. Barnette and X. Zha (private communication) proposed the following conjectures.

Conjecture 5.3 (Barnette, 1982) Every triangulation of a surface of genus $g \geq 2$ contains a noncontractible surface separating cycle.

Ellingham and Zha (private communication) proved Conjecture 5.3 for triangulations of the double torus.

Conjecture 5.4 (Zha, 1991) Every graph embedded in a surface of genus $g \geq 2$ with face-width at least 3 contains a noncontractible surface separating cycle.

It follows from Theorem 5.2 that large face-width forces the existence of noncontractible surface separating cycles (where "large" may depend on the surface). Zha and Zhao [63] and Brunet, Mohar, and Richter [11] proved that face-width 6 (even 5 for nonorientable surfaces) is sufficient.

If Conjecture 5.3 is true, also the following may hold as suggested in Mohar and Thomassen [26].

Conjecture 5.5 Let T be a triangulation of an orientable surface of genus g, and let h be an integer such that $1 \leq h<g$. Then T contains a surface separating cycle C such that the two surfaces separated by C have genera h and $g-h$, respectively.

It is even possible that Conjecture 5.5 extends to all embeddings of facewidth at least 3 .

Suppose that the embedding of the graph G_{0} in Theorem 5.2 is a minimum genus embedding. If G_{0} is a surface minor of another embedded graph G (in the same surface), then also the embedding of G is a minimum genus embedding. Therefore, a consequence of Theorem 5.2 is that large face-width of an embedding implies that this is a minimum genus embedding.

Suppose now that G_{0} is uniquely embeddable in \mathbb{S} and that its embedding has face-width at least three. (Such graphs are easy to find.) If G is a 3connected graph embedded in \mathbb{S} such that G_{0} is a surface minor of G, then also the embedding of G in \mathbb{S} is unique. Consequently, sufficiently large facewidth of a 3-connected graph implies uniqueness of the embedding. Both of theses results are treated in Seymour and Thomas [56] and Mohar [24] who proved that face-width of order $O(g \log g)(g=\operatorname{eg}(G, \Pi))$ is sufficient, and this is essentially best possible (Archdeacon [3]).

There are numerous other results where Theorem 5.2 is used. However, the most surprising seems to be the flow-coloring duality on general surfaces discovered recently by Devos, Goddyn, Mohar, Vertigan, and Zhu [13]. The requirement is that the edge-width (which is defined as the length of a shortest noncontractible cycle on the surface) is large enough.

Let G be a 2-connected multigraph. The circular flow number $\phi_{c}(G)$ of G is the minimum real number r such that some orientation of G admits a real-valued flow whose absolute values all lie between 1 and $r-1$. It is easy to see that $\left\lceil\phi_{c}(G)\right\rceil$ is the usual flow number, i.e., the smallest integer k such that G admits a nowhere-zero k-flow.

Let G be a loopless multigraph. The circular chromatic number $\chi_{c}(G)$ is the smallest real number r such that there exists a real-valued function $c: V(G) \rightarrow[0, r)$ such that for every edge $u v$ of $G, 1 \leq|c(u)-c(v)| \leq r-1$. We refer to the recent survey article by Zhu [64] for additional details on circular colorings and flows.

Theorem 5.6 (Devos, Goddyn, Mohar, Vertigan, Zhu [13]) There exists a function $w: \mathbb{R}^{+} \times \mathbb{N} \rightarrow \mathbb{N}$ such that the following holds. If $\varepsilon>0$ is a real number and G is a graph embedded in the orientable surface of genus g with edge-width $\geq w(\varepsilon, g)$, then

$$
\chi_{c}(G)-\varepsilon \leq \phi_{c}\left(G^{*}\right) \leq \chi_{c}(G),
$$

where G^{*} is the geometric dual graph of G in \mathbb{S}.
Proof (sketch). The second inequality can be proved in the same way as the well-known flow-coloring duality result of Tutte [61], and so we sketch only the proof of the first inequality.

Suppose that G is a graph embedded in \mathbb{S}_{g} and that its dual graph G^{*} admits a circular r-flow. If the edge-width of G is w, there is a graph \tilde{G} in \mathbb{S}_{g} which contains G as an induced subgraph such that $\operatorname{fw}(\tilde{G})=w$. Moreover, \tilde{G} can be chosen in such a way that the circular r-flow of G^{*} extends to a circular r-flow φ of \tilde{G}^{*}. If w is large enough, then by Theorem $5.2, \tilde{G}$ contains cycles C_{1}, \ldots, C_{g} such that after cutting the surface along these cycles (and pasting discs on the resulting holes), one obtains $g+1$ surfaces, one homeomorphic to the sphere, all others homeomorphic to the torus such that each C_{i} corresponds to a face in the sphere and to a face in the i th torus. Moreover, we may assume that the face-width of all the torus embeddings is as large as we may need in
the sequel. Let $G_{0}, G_{1}, \ldots, G_{g}$ be the corresponding graphs (where G_{0} is the planar one), and let $G_{0}^{*}, G_{1}^{*}, \ldots, G_{g}^{*}$ be their dual graphs.

Fix an $i \in\{1, \ldots, g\}$. Since C_{i} is a surface separating cycle of \tilde{G}, the edges of \tilde{G}^{*} dual to $E\left(C_{i}\right)$ form a cut in \tilde{G}^{*}. Therefore, their φ-sum is equal to 0 . This implies that the restriction φ_{i} of φ in G_{i}^{*} is a circular r-flow in G_{i}^{*}.

Similarly, the restriction φ_{0} of φ to G_{0}^{*} is a circular r-flow. Since G_{0} is a plane embedding, the circular flow-coloring duality [64] shows that there is a circular $(r+\varepsilon)$-coloring c_{0} of G_{0} which is dual to the circular $(r+\varepsilon)$-flow $\frac{r+\varepsilon}{r} \varphi_{0}$.

As the face-width of G_{i} is large enough, Theorem 5.2 can be used to show that the toroidal $q \times q$ grid R_{q} is a surface minor in G_{i}, where $q=\left\lceil 2 r^{2} / \varepsilon\right\rceil$. (As proved by Graaf and Schrijver [19], it is sufficient that the face-width is $\geq \frac{3}{2} q+3$.) The toroidal grid consists of pairwise disjoint "vertical" cycles A_{1}, \ldots, A_{q} and pairwise disjoint "horizontal" cycles B_{1}, \ldots, B_{q}. Let $D_{k l}$ be the disk between A_{k}, A_{k+1}, B_{l}, and B_{l+1} (indices modulo q). By taking a slightly larger grid and omitting its part intersecting C_{i}, we may assume that C_{i} is disjoint from the grid.

Let D be the plane graph obtained by cutting G_{i} along A_{1} and B_{1}. The flow φ gives rise to a circular r-flow in the planar dual of D. By the circular flow-coloring duality in the plane [64], there is a circular r-coloring c of D which is dual to φ.

Denote by α the φ-sum $(\bmod r)$ of the edges dual to $E\left(A_{1}\right)$ (all considered to be oriented so that they cross A_{1} from "left" to "right"). By choosing the direction of A_{1}, we may assume that $\alpha<r / 2$. Similarly, we may assume that $\beta<r / 2$, where β is the φ-sum $(\bmod r)$ corresponding to B_{1} (or to any B_{l}). It is not difficult to see that the following assignment defines a circular $(r+\varepsilon)$-coloring c_{i} of G_{i} :

$$
c_{i}(v):=\frac{r+\varepsilon}{r}\left(\left(c(v)-\frac{(k-1) \beta}{q}-\frac{(l-1) \alpha}{q}\right) \bmod r\right)
$$

if v is a vertex of $D_{k l}$ which is not in $A_{k+1} \cup B_{l+1}$. (Recall that $x \bmod r$ is defined as $x-\left\lfloor\frac{x}{r}\right\rfloor r$ and that $0 \leq x \bmod r<r$.)

Observe that the coloring c_{i} is dual to the circular $(r+\varepsilon)$-flow $\varphi^{\prime}:=\frac{r+\varepsilon}{r} \varphi$ on all edges which are not part of the $q \times q$ grid in G_{i}. In particular, this is satisfied on the edges of C_{i}. Therefore, we may assume that c_{i} coincides on C_{i} with c_{0} (by possibly replacing c_{i} with its cyclic shift). Then, the combination of circular $(r+\varepsilon)$-colorings $c_{0}, c_{1}, \ldots, c_{g}$ gives rise to a circular $(r+\varepsilon)$-coloring of G.

References

[1] D. Archdeacon, A Kuratowski theorem for the projective plane, J. Graph Theory 5 (1981) 243-246.
[2] D. Archdeacon, The complexity of the graph embedding problem, in "Topics in Combinatorics and Graph Theory," R. Bodendiek and R. Henn (Eds.), Physica-Verlag, Heidelberg, 1990, pp. 59-64.
[3] D. Archdeacon, Densely embedded graphs, J. Combin. Theory Ser. B 54 (1992) 13-36.
[4] D. Archdeacon, P. Huneke, A Kuratowski theorem for nonorientable surfaces, J. Combin. Theory Ser. B 46 (1989) 173-231.
[5] Efficient algorithms and partial k-trees, Edited by S. Arnborg, S. Hedetniemi and A. Proskurowski, Discrete Appl. Math. 54 (1994), pp. i-ii and 97-280.
[6] S. Arnborg, A. Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1989) 11-24.
[7] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis, Algorithms for drawing graphs: An annotated bibliography, Comput. Geom. 4 (1994) 235-282.
[8] T. Böhme, J. Maharry, and B. Mohar, $K_{a, k}$ minors in graphs of bounded tree-width, submitted.
[9] T. Böhme, J. Maharry, and B. Mohar, Unavoidable minors in large 7connected graphs, in preparation.
[10] T. Böhme, B. Mohar, and B. Reed, Unavoidable minors in large t-tough graphs, in preparation.
[11] R. Brunet, B. Mohar, R. B. Richter, Separating and nonseparating disjoint homotopic cycles in graph embeddings, J. Combin. Theory Ser. B 66 (1996) 201-231.
[12] N. Chiba, T. Nishizeki, S. Abe, T. Ozawa, A linear algorithm for embedding planar graphs using $P Q$-trees, J. Comput. System Sci. 30 (1985) 54-76.
[13] M. Devos, L. Goddyn, B. Mohar, D. Vertigan, and X. Zhu, Duality of circular colorings and flows in orientable surfaces, in preparation.
[14] R. Diestel, Graph theory, Second edition, Springer-Verlag, New York, 2000.
[15] R. Diestel, T. R. Jensen, K. Y. Gorbunov, and C. Thomassen, Highly connected sets and the excluded grid theorem, J. Combin. Theory, Ser. B 75 (1999) 61-73.
[16] I. S. Filotti, G. L. Miller, J. Reif, On determining the genus of a graph in $O\left(v^{O(g)}\right)$ steps, in "Proc. 11th Ann. ACM STOC," Atlanta, Georgia (1979) pp. 27-37.
[17] J. F. Geelen, A. M. H. Gerards, and G. Whittle, Branch width and well-quasi-ordering in matroids, manuscript, 2000.
[18] H. H. Glover, J. P. Huneke, C.-S. Wang, 103 graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B 27 (1979) 332-370.
[19] M. de Graaf, A. Schrijver, Grid minors of graphs on the torus, J. Combin. Theory Ser. B 61 (1994) 57-62.
[20] J. E. Hopcroft, R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach. 21 (1974) 549-568.
[21] M. Juvan, B. Mohar, A simplified algorithm for embedding graphs in the torus, preprint.
[22] A. Malnič, B. Mohar, Generating locally cyclic triangulations of surfaces, J. Combin. Theory Ser. B 56 (1992) 147-164.
[23] B. Mohar, Projective planarity in linear time, J. Algorithms 15 (1993) 482-502.
[24] B. Mohar, Uniqueness and minimality of large face-width embeddings of graphs, Combinatorica 15 (1995) 541-556.
[25] B. Mohar, A linear time algorithm for embedding graphs in an arbitrary surface, SIAM J. Discrete Math. 12 (1999) 6-26.
[26] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, 2001.
[27] B. Oporowski, J. Oxley, R. Thomas, Typical subgraphs of 3- and 4connected graphs, J. Combin. Theory Ser. B 57 (1993) 239-257.
[28] B. A. Reed, Tree width and tangles: a new connectivity measure and some applications, in: "Surveys in Combinatorics 1997," Ed. R. A. Bailey, Cambridge Univ. Press, Cambridge, 1997, pp. 87-162.
[29] N. Robertson, P. D. Seymour, Graph minors - a survey, in "Surveys in Combinatorics 1985," Ed. I. Anderson, Cambridge Univ. Press, Cambridge, 1985, pp. 153-171.
[30] N. Robertson, P. D. Seymour, Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983) 39-61.
[31] N. Robertson, P. D. Seymour, Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms 7 (1986) 309-322.
[32] N. Robertson, P. D. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36 (1984) 49-64.
[33] N. Robertson, P. D. Seymour, Graph minors. IV. Tree-width and well-quasi-ordering, J. Combin. Theory Ser. B 48 (1990) 227-254.
[34] N. Robertson, P. D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory Ser. B 41 (1986) 92-114.
[35] N. Robertson, P. D. Seymour, Graph minors. VI. Disjoint paths across a disc, J. Combin. Theory Ser. B 41 (1986) 115-138.
[36] N. Robertson, P. D. Seymour, Graph minors. VII. Disjoint paths on a surface, J. Combin. Theory Ser. B 45 (1988) 212-254.
[37] N. Robertson, P. D. Seymour, Graph minors. VIII. A Kuratowski theorem for general surfaces, J. Combin. Theory Ser. B 48 (1990) 255-288.
[38] N. Robertson, P. D. Seymour, Graph minors. IX. Disjoint crossed paths, J. Combin. Theory Ser. B 49 (1990) 40-77.
[39] N. Robertson, P. D. Seymour, Graph minors. X. Obstructions to treedecomposition, J. Combin. Theory Ser. B 52 (1991) 153-190.
[40] N. Robertson, P. D. Seymour, Graph minors. XI. Circuits on a surface, J. Combin. Theory Ser. B 60 (1994) 72-106.
[41] N. Robertson, P. D. Seymour, Graph minors. XII. Distance on a surface, J. Combin. Theory Ser. B 64 (1995) 240-272.
[42] N. Robertson, P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995) 65-110.
[43] N. Robertson, P. D. Seymour, Graph minors. XIV. Extending an embedding, J. Combin. Theory Ser. B 65 (1995) 23-50.
[44] N. Robertson, P. D. Seymour, Graph minors. XV. Giant steps, J. Combin. Theory Ser. B 68 (1996) 112-148.
[45] N. Robertson, P. D. Seymour, Graph minors. XVI. Excluding a non-planar graph, preprint, 1986.
[46] N. Robertson, P. D. Seymour, Graph minors. XVII. Taming a vortex, J. Combin. Theory Ser. B 77 (1999) 162-210.
[47] N. Robertson, P. D. Seymour, Graph minors. XVIII. Tree-decompositions and well-quasi-ordering, preprint, 1988.
[48] N. Robertson, P. D. Seymour, Graph minors. XIX. Well-quasi-ordering on a surface, preprint, 1989.
[49] N. Robertson, P. D. Seymour, Graph minors. XX. Wagner's conjecture, preprint,1988.
[50] N. Robertson, P. D. Seymour, Graph minors. XXI. Graphs with unique linkages, preprint, 1992.
[51] N. Robertson, P. D. Seymour, Graph minors. XXII. Irrelevant vertices in linkage problems, preprint, 1992.
[52] N. Robertson, P. D. Seymour, An outline of a disjoint paths algorithm, in: "Paths, Flows, and VLSI-Layout," B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds., Springer-Verlag, Berlin, 1990, pp. 267-292.
[53] N. Robertson, P. D. Seymour, R. Thomas, A survey of linkless embeddings, in "Graph Structure Theory (Seattle, WA, 1991)", N. Robertson and P. Seymour Eds., Contemp. Math. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 125-136.
[54] N. Robertson, R. P. Vitray, Representativity of surface embeddings, in: "Paths, Flows, and VLSI-Layout," B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds., Springer-Verlag, Berlin, 1990, pp. 293-328.
[55] P. D. Seymour, A bound on the excluded minors for a surface, submitted.
[56] P. D. Seymour, R. Thomas, Uniqueness of highly representative surface embeddings, J. Graph Theory 23 (1996) 337-349.
[57] R. Thomas, Recent excluded minor theorems for graphs, in "Surveys in Combinatorics 1999," J. D. Lamb and D. A. Preece Eds., Cambridge Univ. Press, Cambridge, 1999, pp. 201-222.
[58] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) 568-576.
[59] C. Thomassen, Embeddings and minors, Handbook of Combinatorics, Vol. 1, 2, 301-349, Elsevier, Amsterdam, 1995.
[60] C. Thomassen, A simpler proof of the excluded minor theorem for higher surfaces, J. Combin. Theory Ser. B 70 (1997) 306-311.
[61] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canadian J. Math. 6 (1954) 80-91.
[62] S. G. Williamson, Depth-first search and Kuratowski subgraphs, J. Assoc. Comput. Mach. 31 (1984) 681-693.
[63] X. Zha, Y. Zhao, On nonnull separating circuits in embedded graphs, in "Graph Structure Theory (Seattle, WA, 1991)", N. Robertson and P. Seymour Eds., Contemp. Math. 147, Amer. Math. Soc., Providence, RI, 1993, pp. 349-362.
[64] X. Zhu, Circular chromatic number, a survey, Discrete Math., to appear.

Department of Mathematics
University of Ljubljana
Ljubljana, Slovenia
bojan.mohar@uni-lj.si

[^0]: ${ }^{1}$ Invited talk at the 18th British Combinatorial Conference, Sussex, UK, July 2001

[^1]: ${ }^{2} \mathrm{~A}$ well-quasi-ordering of a set X is a reflexive and transitive relation \preceq such that, for every infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$ of elements of X, there are indices i and j such that $i<j$ and $x_{i} \preceq x_{j}$.

