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Abstract

It is proved that computing the maximum diameter ratio �also

known as the local density� of a graph is APX�complete� The related
problem of �nding a maximum subgraph of a �xed diameter d � � is

proved to be even harder to approximate�

� Introduction

The maximum diameter ratio of a graph G is de�ned as a

dr�G� � max
H�G

jV �H�j � �

diam�H�
���

where H runs over all connected subgraphs of G with at least two vertices�
This parameter is sometimes called the local density of G� however	 the same
name has been used before with a di
erent meaning �see	 e�g�	 ���� The
importance of the maximum diameter ratio lies in the fact that it gives a
lower bound on the bandwidth of the given graph �cf� ��	 ���
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Let c � � be a constant� Having a maximization problem �	 we say
that � is approximable within factor c if there exists a polynomial time
algorithm such that for every input I for �	 the algorithm returns a solution
whose ��value is at least �

c
opt�I�	 where opt�I� denotes a ��optimal solution

for I ��� A similar de�nition applies for minimization problems� If � is an
NP optimization problem �i�e�	 its decision version is in NP�	 then � is in the
class APX �approximable NP optimization problems� if it is approximable
within some constant factor c � �� A problem � � APX is APX�complete if
every problem in APX is polynomially reducible to ��

In this note we show that the problem of determining the maximum
diameter ratio for an arbitrary graph is APX�complete� More precisely	 there
is a polynomial time approximation algorithm which approximates dr�G�
within factor � but there is a constant c � � such that �nding approximations
within factor c from the optimum is NP�hard� �Let us remark that the best
known polynomial time approximation algorithm for the related bandwidth
problem gives solutions only within a polylogarithmic factor ����

We also show that for every �xed integer d � �	 �nding a subgraph H of
G with maximum number of vertices whose diameter is � d is polynomially
equivalent to the MAX CLIQUE problem �where the equivalence preserves
approximations within the same factor��

The bandwidth problem is NP�hard even for trees �of maximum degree ��
��	 �� We show	 however	 that in the case of trees	 computing the maximum
diameter ratio can be implemented in time O�dn� where n is the number of
vertices and d is the diameter of the given tree�

� The maximum diameter ratio

Lemma ��� The maximum diameter ratio of a graph is approximable within
factor ��

Proof� Choose an arbitrary vertex v � V �G�� Let Hd�v� be the sub�
graph of G induced on the vertices fw � V �G� j dist�v� w� � dg� Clearly	
diam�Hd�v�� � �d� In particular	

jV �Hd�v��j � �

�d
�
jV �Hd�v��j � �

diam�Hd�v��
� dr�G�� ���

�



Let

M � max

�
jV �Hd�v��j � �

diam�Hd�v��
j v � V �G�� � � d � diam�G�

�
�

Consider a subgraph H of G such that dr�G� � �jV �H�j � ��� diam�H��
Suppose that diam�H� � k and let u � V �H�� Then H � Hk�u�� Also	
diam�Hk�u�� � �k� Therefore	

M � dr�G� �
jV �H�j � �

k
�
jV �Hk�u��j � �

k
� �M� ���

The value M can be computed in polynomial time by starting a breadth�
�rst search from every vertex of G� Therefore we have a polynomial time
approximation algorithm which is within factor � from the optimum�

Next	 we prove that arbitrarily good approximations to the maximum
diameter ratio are �di�cult� to �nd�

Theorem ��� The computation of the maximum diameter ratio of graphs is
APX�complete�

Proof� Clearly	 computing the maximum diameter ratio is an NP maxi�
mization problem� By Lemma ���	 the maximum diameter ratio is in APX�

To prove its completeness	 we shall make a polynomial time reduction
of a restricted version of MAX CLIQUE to the problem of determining the
maximum diameter ratio of a graph� Let us denote by MAX CLIQUE��� the
problem of determining the maximum clique in the class G� of all graphs G
whose complement is a cubic graph� Berman and Fujito �� proved that MAX
CLIQUE is APX�complete for graphs whose complement has only vertices
of degree � �� Alimonti and Kann �� gave a simpler proof of the same
result� They also observed that a simple further reduction shows that MAX
CLIQUE��� is APX�complete as well� This means that there are constants
� � c� � c� such that �nding an approximation to the maximum clique in
G� within the factor c� is polynomially solvable	 while �nding it within the
factor c� is NP�hard�

Our reduction is based on the fact that a graph G contains a clique
of size s � n�� � � if and only if its maximum diameter ratio is � s �
�� Obviously	 if Ks � G	 then dr�G� � s��

�
�this holds for any positive

integer s�� On the other hand	 let H � G be a subgraph of G such that

jV �H�j � �

diam�H�
� dr�G� �

n

�
� ���
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Then

diam�H� �
�jV �H�j � �

n
� � ���

so we have diam�H� � �� It follows that the subgraph H is a clique on
jV �H�j � s vertices�

Suppose now that we have an instance G � G� for the MAX CLIQUE���
problem� Let �G denote the complement of G and let n � jV �G�j� Since �G
is cubic �and has more than � vertices�	 it has a ��coloring by the Brooks
theorem� The largest color class determines a clique Q in G of size � n���

Let G� be the graph obtained from G by adding the complete graph K
on n�� vertices and joining every vertex of K with every vertex G� �Observe
that n is even since �G is a cubic graph�� Let n� � �n�� be the number of
vertices of G�� Then K �Q induces a clique Q� in G� whose order is at least
n���n�� � �n���� This implies �as shown above� that dr�G�� � ��G���� �
��G� � n�� � �� Suppose that we �nd an approximation for the maximum
diameter ratio of G� within factor c �where � � c � ������ Then we have
a subgraph H � of G� such that

jV �H ��j � �

diam�H ��
�

�

c
dr�G�� �

�

c
���G�� � �� �

�n�

�c
�

�

c
�

n�

�
� ��

In the last inequality we used n � �����c�
���	c

	 which we may assume� Then
diam�H �� � � and H � is a clique� Let H � H � �G� Then

jV �H�j � jV �H ��j �
n

�

�
�

c
���G�� � �� � � �

n

�

�
�

c
��G�� �

n

�
� �����

�

c
�

�
��

c
�

�

�
�� �

�

c
�
�
��G� � � �

�

c
���

In the last inequality we used the fact that n � ���G�� If c � � � ��c����
���c�

�where c� is the inapproximability constant for MAX CLIQUE���� and n is
large enough	 then ��� implies that H is a clique of size � �

c�
��G�� Thus c � �

is an inapproximability constant for the maximum diameter ratio problem�
This completes the proof�
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� Maximizing subgraphs of a �xed diameter

Let G be a connected graph� To compute its maximum diameter ratio dr�G�	
it would be su�cient to �nd	 for any given diameter d � diam�G�	 a maximal
�in the number of vertices� subgraph Hd � G with diam�Hd� � d� Then	
dr�G� can be determined as

dr�G� � max

�
jV �Hd�j � �

d
j � � d � diam�G�

�
�

Unfortunately	 Theorem ��� below shows that this task	 even for a �xed
value of d	 is not easier than the original problem of computing the maxi�
mum diameter ratio of a graph� In fact	 approximating jHdj is as hard as
approximating the size of a maximum clique	 for which H�astad ��	 � proved
that it is very hard to approximate� More precisely	 under the assumption
that NP 	� ZPP �problems that can be solved in expected polynomial time�	
MAX CLIQUE cannot be approximated in polynomial time within factor
n��� �for any � � ��� Our result shows that the same hardness of approx�
imation result �with di
erent inapproximability factors� holds for maximal
subgraphs of any �xed diameter�

Theorem ��� Let d be a �xed positive integer� The problem of �nding
a maximum �in the number of vertices� subgraph H of a given connected
graph G with diam�H� � d is APX�equivalent to the MAX CLIQUE prob�
lem� In particular� if NP 	� ZPP� then for any � � � the size of a maximum
subgraph of diameter � d is not approximable within factor n��� �if d � ���
or factor n����� �if d � ��� where n is the order of the input graph�

Proof� Given a graph G	 form a graph G� with V �G�� � V �G� in which
two vertices are adjacent if and only if they are at distance at most d in G�
Clearly	 maximum cliques in G� correspond precisely to maximal subgraphs
of G of diameter � d	 and this correspondence preserves approximations
within the same factor�

To prove the converse	 let G be a given connected graph �an instance
for MAX CLIQUE�	 and let n � jV �G�j� We shall construct �in polynomial
time� a graph G� such that G has a large clique if and only if G� has a large
subgraph H of diameter � d�

Obviously	 for d � �	 the maximum subgraph of diameter � is exactly the
maximum clique�

�



The second case is d � �� Let G� be the graph obtained from the graph G
by subdividing every edge e of G by inserting a new vertex we	 and then
replacing every vertex v of G by a set U�v� of m � jE�G�j independent
vertices joined to all vertices we	 where e is an edge of G incident with v�
Then G� has m�jV �G�j � �� vertices� Let UE � fwe j e � E�G�g� Finally	
let G� be the graph obtained from G� by adding an edge between any two
vertices in UE� For any vertices v� w � V �G� and �v � U�v�	 �w � U�w�	
�v 	� �w	

dG���v� �w� �
�

� v � w	 or v and w are adjacent in G	
� otherwise�

���

Any other pair of vertices in G� is at distance � �� Now consider a maximum
subgraph H �

� of G� of diameter �� If V �H �
�� � U�v� 	� 
 for some v � V �G�	

then U�v� � V �H �
��� It is also easy to see that UE � V �H �

��� Equation ���
now implies that

jV �H �
��j � m��G� � jUEj � m���G� � ���

Suppose now that we can approximate jV �H �
��j within factor c � �� Then

we could �nd	 in polynomial time	 a subgraph H of G� of diameter � � with
� �

c
m���G� � �� vertices� Let A � fv � V �G� j U�v� � V �H� 	� 
g� By ���	

A is a clique in G� Its order is jAj � �
m

�jV �H�j � jUEj� �
�
c
���G� � �� � ��

This would give approximations for the maximum clique in G within factor
c � 	 for any 	 � �� Since jV �G��j � m�jV �G�j � �� � O�jV �G�j��	 the
aforementioned result of H�astad �� implies that jV �H �

��j is not approximable
within jV �G��j����� if NP 	� ZPP�

Next	 consider the case when d � � is odd� Let d� �� d��
�

and let n �
jV �G�j� Denote by St a star on t� � � vertices �i�e�	 the graph consisting of
a single vertex c of degree t� and of t� vertices of degree � adjacent to c��
Call c � c�St� the center of the star� We shall construct a graph G� � G
as follows� For every vertex v � V �G�	 take a star Sn�v� and connect its
center c�Sn�v�� to the vertex v by a path of length d��

Take a pair of distinct vertices v� w � V �G�� Let av be a vertex of Sn�v�
of degree � and let aw be a pendant vertex of Sn�w�� Then

dG��av� aw� � � � �d� � dG�v� w� � d� � � dG�v� w�� ���

Any maximum subgraph H �
d of G� of diameter d contains at least one

of the pendant vertices of the stars Sn�v� �v � V �G��	 since there are

�



only �d� � �� �n � n� other vertices in the graph G�� Clearly	 if the maximum
subgraph of diameter d contains a pendant vertex of a star Sn�v�	 then it
contains the whole star Sn�v�� By ���	 H �

d can only contain stars whose cor�
responding vertices in G are pairwise at distance � in G� It follows that if H �

d

contains stars Sn�v��� � � � � Sn�vk�	 then the vertices v�	� � � 	 vk form a clique
in G� Moreover	 H �

d has at most k�n� � d�� � �n � k�d� � �k � ���n� � d��
vertices� Conversely	 if fv�� � � � � vkg is a clique in G	 then the subgraph
of G� consisting of v�� � � � � vk	 the stars Sn�v��� � � � � Sn�vk� and the connect�
ing paths has k�n� � d�� vertices and has diameter equal to d� This im�
plies that G has a k�clique if and only if jV �H �

d�j � k�n� � d��� Therefore	
��G� � bjV �H �

d�j��n� �d��c� Suppose that H � � G� approximates H �
d within

factor c� Then

jV �H ��j

n� � d�
�

�

c
�
jV �H �

d�j

n� � d�
�

�

c
���G� � ���

so we get an approximation for ��G� within factor c � 	 �where 	 � � is
arbitrarily small�� Since jV �G��j � O�jV �G�j��	 H�astad s result �� again
implies inapproximability within jV �G��j����� if NP 	� ZPP�

Finally	 suppose that d � � is even� Let d� � d�

�

and form the graph G�

as above� Subdivide every edge in E�G�� � E�G�	 changing it into a path of
length � �and denote the resulting graph by G���� The equation ��� changes
into

dG���av� bw� � d� � � �dG�v� w�� ���

Again	 a maximum subgraph of G�� of diameter d will contain as many stars
as possible	 and the corresponding vertices in G will again form a maximum
clique such that approximations to jV �H �

d�j give comparably good approxi�
mations to ��G�� The details are left to the reader�

� The maximum diameter ratio of a tree

At the end we present a polynomial time algorithm for computing the max�
imum diameter ratio of trees� Let T be a tree� For a vertex v � V �T � and
an integer r	 denote by Hv�r the subtree of T induced on vertices w � V �T �
such that dist�v� w� � r� Similarly	 for an edge e � E�T �	 He�r is the subtree
of T induced on vertices that are at distance � r from the ends of e�

�



The following lemma shows that it is su�cient to examine only subgraphs
of T of the form H � Hv�r and H � He�r to compute the maximum diameter
ratio of T �

Lemma ��� Let H � T be a subtree such that dr�T � � �jV �H�j � ���d�
where d � diam�H�� Let r � bd��c�

�a� If d is even� there exists a vertex v � V �T � such that H � Hv�r�

�b� If d is odd� there exists an edge e � E�T � such that H � He�r�

Proof� The key observation is the fact that since H is a �connected� subtree
of T 	 the distances between vertices in H are the same as in T � Suppose that
d is even� Then there exists a path P � H of length d� Let a and b be
the endvertices of P 	 and let v be the midpoint of P � Consider a vertex
x � V �H�� Both dist�a� x� and dist�b� x� are at most d� Moreover	 at least
one of the shortest paths from x to a and from x to b must contain the
vertex v� It follows that x � Hv�r and therefore H � Hv�r� Since diam�H� �
diam�Hv�r� � d and H is a maximal subgraph of T of diameter d	 it follows
that H � Hv�r�

The case when d is odd is handled similarly�

Let uv � E�T � be an edge of T � Denote by du�v�i� the number of vertices of
T at distance i from u that are in the same component of T�u as the vertex v�
In particular	 du�v��� � � for all uv � E�T �� Collect the values du�v�i�
�� � i � diam�T �� into a vector du�v � �du�v���� � � � � du�v�diam�T ����

The number of vertices of Hv�r is

jV �Hv�r�j � � �
rX

i��

X
vw�E�T �

dv�w�i�� ����

It is easy to check if the diameter of Hv�r equals �r� �The subgraphs that do
not ful�ll this condition need not to be considered� In particular	 this rules
out all the cases where v is a leaf of T ��

Similarly	 we have for an edge e � uv of T �

jV �Huv�r�j �
�

�� r � �
jV �Hu�r�j� jV �Hv�r�j � jV �Huv�r���j� r � �

� ����
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Let d � diam�T �� Having all the values dv�w�i� �vw � E�T �	 � �
i � d�	 one needs only O�nd� operations to compute the values jV �Hv�r�j
and jV �He�r�j for v � V 	 e � E	 and � � r � d�

The values dv�w�i� can be obtained by computing the distance between
any two vertices of T and then counting the number of the matching entries
in the obtained distance matrix� However	 the all�pairs distance algorithm
has time complexity worse than !�n��� Below we present an algorithm whose
running time is proportional to nd � n�	 where d � diam�T ��

Consider the edge uv � E�T �� Suppose that for every neighbor w of v
distinct from u and for every � � i � diam�T �	 the value dv�w�i� is known�
Then du�v�i� is given by the following equation�

du�v�i� �

��
�

�� i � �	P
vw�E�T �
w ��u

dv�w�i� ��� i � �� ����

Recursion ���� yields a simple and e�cient procedure for calculating
du�v�i� for every uv � E�T � and every � � i � diam�T �� Initially	 all pendant
edges uv �where deg�v� � �� have du�v�i� � �	 for all i � �� Every vertex v
collects the vectors dv�w from its neighbors w	 as these vectors become avail�
able� When all but one neighbor	 say u	 send this information to the vertex v	
this vertex computes du�v using equation ���� and sends it over to u� �Note
that such a vertex v always exists�� As eventually the vertex u sends back
to v the vector dv�u	 all other vectors dw�v �vw � E�T �� can be computed
�again using equation ����� and sent to the corresponding neighbors�

During this process	 a vector of length d is sent along each edge of the
graph twice �once in each direction�� The number of vector additions that
take place at any vertex is proportional to the degree of the vertex� Therefore	
taken over the whole tree T 	 one has O�jEj� vector operations	 and the
algorithm has time complexity of O�jEj � d� � O�nd��
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