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Abstract

A simple characterization of the 3, 4, or 5-colorable Eulerian triangulations of the
projective plane is given.
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A graph is Eulerian if all its vertices have even degree. It is well known that
Eulerian triangulations of the plane are 3-colorable. However, Eulerian trian-
gulations on other surfaces may have arbitrarily large chromatic number. It
is easy to find examples on the projective plane whose chromatic number is
equal to 3, 4, or 5, respectively, and it is easy to see that the chromatic number
of an Eulerian triangulation of the projective plane cannot be more than 5. In
this paper we give a simple characterization of when an Eulerian triangulation
of the projective plane is 3, 4, or 5-colorable.

The class of graphs embedded in some surface S such that all facial walks have
even length (called locally bipartite embeddings) is closely related to Eulerian
triangulations of S. Namely, if we insert a new vertex in each of the faces
of a locally bipartite embedded graph G, and join it to all vertices on the
corresponding facial walk, we obtain an Eulerian triangulation F (G) which
contains G as a subgraph. We say that F (G) is a face subdivision of G and
that the set of added vertices U = V (F (G)) \ V (G) is a color factor of F (G).
Since U is an independent set, χ(G) ≤ χ(F (G)) ≤ χ(G) + 1, where χ(·)
denotes the chromatic number of the corresponding graph.
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Youngs [7] proved that a quadrangulation Q of the projective plane which is
not 2-colorable is neither 3-colorable, and its chromatic number is 4. Youngs’
proof also implies that in any 4-coloring of a nonbipartite quadrangulation of
the projective plane, there is a 4-face with all four vertices of distinct colors.
This fact appears in a sligtly extended version (where 4-colorings are replaced
by k-colorings, k ≥ 3) in [5]. For our purpose, a strengthening of that result
will be important:

Theorem 1 Let G be a nonbipartite quadrangulation of the projective plane,
and k an integer. If G is k-colored, then there are at least 3 faces of G whose
vertices are colored with four distinct colors. In particular, k ≥ 4.

Proof. Suppose that G is not bipartite, that it is k-colored, that the set F1 of
multicolored faces (i.e. those whose vertices have distinct colors) contains at
most two elements, and that |V (G)| is minimum subject to these conditions.
Denote by F the set of all faces which are not in F1.

Suppose first that G has a facial walk xyzwx ∈ F such that x and z have the
same color. If x 6= z, then we delete the edges xy and xw, and identify x and z.
The resulting multigraph is a loopless nonbipartite k-colored quadrangulation
of the projective plane with ≤ 2 multicolored faces, a contradiction to the
minimality of G.

From now on we may assume that every facial walk in F has only three (or
two) distinct vertices. Again, let F = xyzwx ∈ F be a facial walk and assume
that x = z. Then there is a simple closed curve C in F which has precisely x in
common with G and which has y and w on distinct sides. If C is contractible,
then x is a cutvertex of G. We choose the notation such that y is in the
interior of C. The subgraph of G in the interior of C is bipartite. Now we
delete that part of the graph and also remove one of the edges between x and
w. The resulting nonbipartite graph contradicts the minimality of G. So, we
may assume that C is noncontractible. As no facial walk in F is a cycle, such
a curve C can be chosen in any other face of F as well. Since the projective
plane has no two disjoint noncontractible curves, it follows that any such curve
contains the same vertex x and that every edge on a face in F is incident with
x. If F1 = ∅, then every edge of G is incident with x, a contradiction to the
assumption that G is nonbipartite. Hence F1 6= ∅.

Let F = abcd be a face in F1, where b, c, d 6= x. As shown above, the edges
bc and cd cannot lie on faces of F . Since every edge is in two facial walks,
there is another face F ′ ∈ F1 containing bc and there is a face in F1 \ {F}
containing cd. Since |F1| ≤ 2, these two faces are the same. Since F ′ /∈ F , it
is a 4-cycle a′bcd. This implies that c has degree 2 in G and therefore G− c is
a nonbipartite quadrangulation of the projective plane. This contradicts the
minimality of G.
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Theorem 1 for a quadrangulation Q implies that the chromatic number of the
Eulerian triangulation F (Q) is equal to 5. Theorem 1 also implies that F (Q) is
not 5-critical since the removal of any two vertices of degree 4 in F (Q) leaves
a graph which is not 4-colorable.

Eulerian triangulations of the projective plane with chromatic number 5 may
have arbitrarily large face-width and they show that nonorientable surfaces
behave differently than the orientable ones. Namely, Hutchinson, Richter, and
Seymour [5] proved that Eulerian triangulations of orientable surfaces of suf-
ficiently large face-width are 4-colorable.

Gimbel and Thomassen [4] observed that Youngs’ result [7] implies:

Theorem 2 (Gimbel and Thomassen [4]) Let G be a graph embedded in
the projective plane such that no 3-cycle of G is contractible. Then G is 3-
colorable if and only if G does not contain a nonbipartite quadrangulation of
the projective plane.

Our main result will follow from

Proposition 3 (Fisk [3]) Let G be an Eulerian triangulation of the projec-
tive plane. Then G contains a color factor U . In particular, G is a face sub-
division of the locally bipartite projective planar graph G− U .

Proof. Choose a face T0 of G. Let R be the dual cubic graph of G, so
that T0 is one of its vertices. Every walk W = T0T1 . . . Tk in the graph R
determines a bijection σ(W ) : V (Tk)→ V (T0) (where we consider Ti as a face
in G and V (Ti) as a subset of V (G)). These bijections are defined recursively
(depending on k). If k = 0, then we set σ(W ) = id; for k > 0, σ(W ) coincides
with σ(T0T1 . . . Tk−1) on V (Tk−1) ∩ V (Tk).

For x ∈ V (T0), denote by U(x) the set of all vertices of G which are mapped
to x by some σ(W ) where W is a walk in R. The motivation for introducing
these bijections is the following obvious fact:

(1) A vertex set U ⊆ V (G) is a color factor in G if and only if U contains
precisely one vertex of T0, say x, and U = U(x). This is further equivalent
to the condition that for every closed walk W in R, σ(W ) fixes x.

Since G is 3-colorable if and only if V (G) can be partitioned into three color
factors, (1) implies

(2) G is 3-colorable if and only if σ(W ) = id for every closed walk W in R.

Suppose thatW = T0T1 . . . Tk and that Ti+1 = Ti−1 for some i, 1 ≤ i < k. Then
σ(W ) = σ(W ′) where W ′ = T0 . . . Ti−1Ti+2 . . . Tk. We say that W ′ is obtained
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from W by an elementary reduction. Suppose now that v ∈ V (G) and that
W = T0T1 . . . Ti . . . Tj . . . Tk is a walk in R such that the triangles Ti, . . . , Tj
contain the vertex v. Suppose that Ti, . . . , Tj, T

′
1, . . . , T

′
r are the triangles in

the local order around v. Let W ′ = T0 . . . TiT
′
rT
′
r−1 . . . T

′
1Tj . . . Tk be the walk

in R which “goes around v in the other direction” than W . We say that W ′

has been obtained from W by a homotopic shift over v. Since v is of even
degree, it is easy to see that σ(W ′) = σ(W ). It is well known that (on every
surface) any two homotopic closed walks (where walks in R are considered as
closed curves in the surface) can be obtained from each other by a sequence of
homotopic shifts and elementary reductions and their inverses (cf., e.g., [6]).
This shows that σ(W ) = σ(W ′) if W and W ′ are homotopic closed walks in
R.

The projective plane has only two homotopy classes of closed walks. One
of them contains contractible closed walks. Since they are homotopic to the
trivial walk W0 = T0, we have σ(W ) = σ(W0) = id for every contractible
closed walk W . The other homotopy class contains noncontractible closed
walks. Pick one of them, say W1. Let W2 be the square of W1. Then σ(W2) is
equal to σ(W0) since W2 is contractible. Therefore σ(W1) has a fixed vertex,
say x. This implies that x is a fixed point of σ(W ) for every closed walk W in
R. By (1), U(x) is a color factor in G.

The main result of this note is:

Theorem 4 Let G be an Eulerian triangulation of the projective plane. Then
χ(G) ≤ 5 and G has a color factor. Moreover, if U is any color factor of G,
then:

(a) χ(G) = 3 if and only if G− U is bipartite.
(b) χ(G) = 4 if and only if G − U is not bipartite and does not contain a

quadrangulation of the projective plane.
(c) χ(G) = 5 if and only if G − U is not bipartite and contains a quad-

rangulation of the projective plane. Such a quadrangulation is necessarily
nonbipartite.

Proof. The existence of U follows by Proposition 3. Observe that G − U is
3-degenerate, i.e., every subgraph of G − U contains a vertex of degree ≤ 3.
(This is an easy consequence of Euler’s formula.) Thus, it is 4-colorable, and
so χ(G) ≤ 5.

Now, (a) is obvious, so assume that G−U is not bipartite. If G−U does not
contain a quadrangulation of the projective plane, then G − U is 3-colorable
by Theorem 2. Hence, G is 4-colorable. So, suppose that Q ⊆ G − U is a
quadrangulation of the projective plane. We claim that Q is not bipartite. For
each face C of Q, the subgraph QC of G−U inside C is a locally bipartite plane
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graph since the degrees (in G) of removed vertices in U are even. Therefore, QC

is bipartite. Consequently, if Q were bipartite, then also G−U = Q∪ (∪CQC)
would be bipartite.

To show that G is not 4-colorable, assume (reductio ad absurdum) that there
is a 4-coloring c of G. Consider the restriction of c to Q. By Theorem 1, Q has
a face C = v1v2v3v4 on which all four colors are used. Let GC be the subgraph
of G inside C. Since GC is obtained from QC by face subdivision (except for
the face C), the degrees of v1, . . . , v4 in GC are all odd. The degrees of other
vertices of GC are even. We may assume that v1v3 6∈ E(GC). Now, adding the
edge v1v3 to GC gives rise to a 4-colored triangulation of the plane in which
precisely two vertices v2 and v4 are of odd degree. It is well known (cf., e.g.,
[2]) that the colors of v2 and v4 must be the same in any 4-coloring. This
contradiction to our assumption that c(v2) 6= c(v4) completes the proof.

Corollary 5 There is a polynomial time algorithm to compute the chromatic
number of Eulerian triangulations of the projective plane.

Proof. By the proof of Proposition 3, it suffices to take an arbitrary non-
contractible walk W1 in the dual graph R and compute σ = σ(W1). If σ = id,
then G is 3-colorable. Otherwise, let U = U(x) be a color factor, where x is
(the unique) vertex of T0 which is fixed by σ.

All it remains to do, is to check if H := G − U contains a quadrangulation.
This can be done in polynomial time as follows. For v ∈ V (H), repeat the
breadth-first-search starting at v (up to distance 2 from v). This way, all 4-
cycles containing v are discovered. For each such 4-cycle C, one can check (in
constant time, after an overall O(n) preprocessing) if it is contractible and if
it is nonfacial. If this happens, remove from H all vertices and edges inside
the disk bounded by C. After repeating this procedure for all vertices of H,
the resulting graph Q is a quadrangulation if and only if G − U contains a
quadrangulation. The overall time spent in this algorithm is easily seen to
be O(n3), where n = |V (G)|, and it is not hard to improve it to an O(n2)
algorithm. The details are left to the reader.

At the end we would like to mention list colorings. Let G be an Eulerian tri-
angulation of the projective plane. Denote by χl(G) the list chromatic number
of G. By Theorem 4, G does not contain K6 as a subgraph. As proved in [1],
this implies that χl(G) ≤ 5. Therefore, χl(G) = χ(G) if χ(G) = 5. This raises
the following

Question: Let G be an Eulerian triangulation of the projective plane. Is it
possible that χl(G) > χ(G)?
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