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Abstract

Let G be a 3-connected planar graph and let U ⊆ V (G). It is shown
that G contains a K2,t minor such that t is large and each vertex of
degree 2 in K2,t corresponds to some vertex of U if and only if there is
no small face cover of U . This result cannot be extended to 2-connected
planar graphs.

1 Introduction

Let G be a graph and U ⊆ V (G). A subgraph H of G is called a K2,t-
preminor if it consists of pairwise disjoint trees Z1, Z2 and T1, . . . , Tt together
with edges zitj , where zi ∈ V (Zi) and tj ∈ V (Tj), 1 ≤ i ≤ 2, 1 ≤ j ≤ t.
After contracting the edges in each of these trees, H becomes the complete
bipartite graph K2,t. Clearly, K2,t is a minor of G if and only if G contains a
K2,t-preminor. If each Tj , 1 ≤ j ≤ t, contains a vertex of U , then H is said
to be U -labeled and we also say that G contains a U -labeled K2,t-minor .

Suppose now that G is a 3-connected planar graph. A set F of facial
cycles of G is a face cover of U if each vertex of U belongs to a member of
F . The aim of this paper is to show that G contains a labeled K2,t-minor,
where t is large, if and only if there is no small face cover of U . Our original
motivation for this problem came from the study of the genus of apex graphs
(cf. [3]).
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Bienstock and Dean [1] proved that nonexistence of small face covers is
closely related to the existence of large vertex packings, where by a vertex
packing of U we mean a subset W of U such that no two vertices of W lie
in a common facial cycle. Let ν(U) be the size of a largest packing of U ,
and let τ(U) be the size of the smallest face cover of U .

Theorem 1.1 (Bienstock and Dean [1]) Let G be a plane graph and
U ⊆ V (G). Then

ν(U) ≤ τ(U) ≤ 27 ν(U).

As noted in [1], the constant 27 in Theorem 1.1 can be improved, and
there are examples which show that it cannot be replaced by anything
smaller than 2.

The main result of this paper shows that the U -labeled K2,t-minors
present another obstruction for small face covers in case of 3-connected pla-
nar graphs.

Theorem 1.2 There is a nondecreasing integer function f : N → N such
that limn→∞ f(n) = ∞ and such that the following holds. Let G be a 3-
connected planar graph and let U ⊆ V (G). Then G contains a U -labeled
K2,t-minor where t ≥ f(τ(U)). Conversely, if G contains a U -labeled K2,t-
minor, then τ(U) ≥ t/2.

Theorem 1.2, whose proof is deferred to the end of Section 2, cannot be
extended to the 2-connected case as the following example shows. Let G be
the graph composed of n copies of the 4-cycle Qi = vi1v

i
2v
i
3v
i
4 linked cyclically

so that the vertex vi3 is adjacent to vi+1
1 , together with additional vertices

U = {u1, . . . , un} where ui is adjacent to all vertices of Qi, i = 1, . . . , n.
Then τ(U) = ν(U) = n for every embedding of G in the plane. However, G
does not contain a U -labeled K2,3-minor.

2 The proof of Theorem 1.2

We need the following definitions. Let G be a graph and let C be a cycle
of G. A C-bridge of G is either an edge e = xy ∈ E(G) \ E(C) such that
x, y ∈ V (C) or a connected component of G− V (C) together with all edges
from this component to C and all end vertices of these edges. If B is a C-
bridge, then the vertices of V (B)∩V (C) are called the vertices of attachment
of B.

By a plane graph we mean a planar graph G with a fixed embedding into
the Euclidean plane. If C is a cycle of a plane graph G, then Int(G) (resp.,
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Ext(G)) denotes the subgraph of G formed by C and all vertices and edges
inside (resp., outside) C.

It is well known that facial cycles of a 3-connected planar graph G are
(precisely) the induced nonseparating cycles of G. This implies:

Lemma 2.1 Let G be a 3-connected planar graph, let F be a facial cycle of
G, and let u, v be vertices of G that do not lie on C. Then G contains a
path from u to v which is disjoint from F .

Let G be a plane graph and C0, . . . , Ck a sequence of pairwise disjoint
cycles of G such that for all indices i, j, 0 ≤ i < j ≤ k, Ci ⊆ Int(Cj).
Then we say that C0, . . . , Ck is a sequence of nested cycles. Let Di =
Ext(Ci)∩ Int(Ci+1), 0 ≤ i < k. If each Di (1 ≤ i ≤ k− 2) contains a vertex
of U , then we say that C0, . . . , Ck are interlaced with vertices of U .

Lemma 2.2 Let G be a 3-connected plane graph and U ⊆ V (G). Suppose
that C0, . . . , Ck is a nested sequence of cycles that are interlaced with U .
Then G contains a U -labeled K2,t-minor where t = b(k − 3)/18c.

Proof. Since G is 3-connected, there exist pairwise disjoint (C0, Ck)-paths
P1, P2, P3. Select these paths so that the number of connected components
of Pi∩(C0∪· · ·∪Ck), i = 1, 2, 3, is minimum. Let H = C0∪P1∪P2∪P3∪Ck.

Suppose that v ∈ V (Ci) \ V (H) (1 ≤ i < k). Since the cycles C0, . . . , Ck
are nested, each of P1, P2, P3 intersects Ci. Starting at v, we traverse Ci to
the left and to the right until we reach one of the paths. Our choice of the
paths guarantees that the path reached on the left is not the same as the
one reached on the right.

Suppose that u ∈ V (Di), where 1 ≤ i ≤ k − 2. Let Q be a path from u
to a vertex in H such that only the end vertex of Q is in H. (In particular,
if u ∈ V (H), then Q is just the trivial path.) Then we say that Q joins
u and H. We say that u is local on H if every path which joins u and H
ends on the same path Pj , j ∈ {1, 2, 3}. If Q ends on C0 or Ck, then it
intersects Ci or Ci+1. This implies (by the previous paragraph) that every
nonlocal vertex u ∈ V (Di)\V (H) can be joined to two distinct paths among
P1, P2, P3 by using paths contained in Di.

Let ui ∈ V (Di), i = 1, . . . , k − 2, be vertices of U which interlace with
the nested cycles. If 6t of the vertices ui are nonlocal on H, then 2t of them
can be joined to the same pair of the paths, say P1 and P2. Since ui can be
joined to P1 and P2 inside Di, there is a subset of t of the vertices ui whose
paths joining ui with P1 and P2 are pairwise disjoint for distinct indices
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i. Then there is a U -labeled K2,t-preminor using P1, P2, the corresponding
vertices ui and the paths joining ui to P1 and P2 inside Di. Therefore we
may assume that at most 6t − 1 vertices ui (1 ≤ i ≤ k − 2) are not local
on H. Therefore, we may assume that at least k/3 − 2t − 1 ≥ (2k − 6)/9
vertices ui (2 ≤ i ≤ k − 3) are local on P3, say.

Suppose now that ui ∈ V (Di) is local on P3, where 2 ≤ i ≤ k−3. Take a
path Q1 joining ui with a vertex v on P3. Since ui is local, Q1 ⊆ Di. Let Q2

be the maximal segment of P3 which contains v such that Q2 is contained in
Di−1 ∪Di ∪Di+1. Then the following holds either for j = i or for j = i+ 1:
Q2 ∩ Cj contains a connected component S such that one of the edges of
P3 incident with an end of S is in Dj−1 and the edge of P3 incident with
the other end of S is in Dj . Going left and right on Cj from S, we reach a
path Pc on the left and Pd on the right where c, d 6= 3 by our choice of the
paths. If c = d, then the traversed segment of Cj has connected intersection
S with P3. Therefore it does not cross P3. This implies that P3 reaches
and leaves S from the same side (either from the inside of Dj−1 or from the
inside of Dj), a contradiction. This shows that ui can be linked to both
paths P1 and P2 using paths inside Di−1 ∪Di ∪Di+1. Therefore, the paths
for every fourth index ui (where ui is local on P3) are pairwise disjoint. The
number of such indices i is at least (2k − 6)/36 ≥ t. Consequently, there is
a U -labeled K2,t-minor which can be obtained in the same way as above.

Lemma 2.3 Let G be a 2-connected graph, U ⊆ V (G), and let p, q be ad-
jacent vertices of G. Let t =

⌈√
|U |

⌉
. Then either there is a cycle through

the edge pq which contains t vertices of U , or G contains a U -labeled K2,t-
minor.

Proof. Each ear decomposition of G starting with a cycle containing
the edge pq determines an st-numbering s : V (G) → {1, . . . , |V (G)|} with
s(p) = 1 and s(q) = |V (G)| (cf. [2]). In that numbering, every vertex
distinct from p and q has a neighbor with a smaller number and a vertex
with larger number. This gives rise to a partial order � on V (G) where
v � u if there is an s-monotone increasing path in G whose initial vertex is
v and terminal vertex is u. Consider the induced partial order on U . By
the Dilworth Theorem, the size of a maximal antichain in this partial order
is equal to the minimum number of chains covering U . This implies that
there is either an antichain of cardinality t, or there is a chain containing
at least t elements of U . In the first case, the set of s-monotone paths from
the vertices in the antichain to q together with the set of s-monotone paths
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from p to these vertices contain a U -labeled K2,t-minor. In the latter case,
the chain gives rise to a (p, q)-path containing the chain. Together with the
edge pq we have the required cycle.

Let C be a cycle of a graph G, and let B be a C-bridge. Two vertices
x, y ∈ V (C) are separated by B if there are vertices a, b ∈ V (B) ∩ (V (C) \
{x, y}) such that they appear on C in the cyclic order a, x, b, y. Two distinct
C-bridges B1, B2 are separated by a C-bridge B3 if B3 6= B1, B2 and there
are vertices x ∈ V (B1)∩V (C) and y ∈ V (B2)∩V (C) such that B3 separates
x and y on C.

Lemma 2.4 There is a nondecreasing integer function g : N→ N such that
limn→∞ g(n) = ∞ and such that the following holds. Let C be a cycle of
a 2-connected plane graph G and let U = {u1, ..., uk} be a subset of V (C)
such that the vertices in U appear on C in the cyclic order u1, ..., uk and no
facial cycle of Int(C) except C contains more than one vertex in U . Then
there is a subsequence 1 ≤ i1 < i2 < · · · < is ≤ k, where s = g(k), for which
one of the following holds:

(a) Let vj = uij , 1 ≤ j ≤ s. Denote by Sj the open segment of C from vj
to vj+1, 1 ≤ j ≤ s. Then there is a C-bridge B in Int(C) which has a
vertex of attachment in each Sj, 1 ≤ j ≤ s.

(b) There is an index i0 ∈ {1, ..., s} and s − 1 distinct C-bridges Bi, i ∈
{1, ..., s}\{i0} such that each Bi has a vertex of attachment in Si0 and
in Si.

(c) There is a facial cycle F in Int(C) which has a vertex in each segment
Sj, 1 ≤ j ≤ s, and does not contain any of the vertices vj, 1 ≤ j ≤ s.

Proof. A C-bridge B is called U -essential if it separates two vertices in
U . Let Ti denote the open segment of C from ui to ui+1, 1 ≤ i ≤ k. If B
is a C-bridge, I(B) denotes the set of all indices i such that Ti contains a
vertex of attachment of B. Obviously, a C-bridge B is essential if and only
if |I(B)| > 1. A C-bridge B1 covers a C-bridge B2 if I(B1) ⊇ I(B2). Let
B denote a minimal set of U -essential C-bridges such that every U -essential
C-bridge is covered by one in B, and let d = max{|I(B)| |B ∈ B}. Since no
two vertices in U belong to the same facial cycle of Int(C) distinct from C,
each Ti, 1 ≤ i ≤ k, contains a vertex of attachment of some C-bridge in B.
Consequently, d|B| ≥ k.

Let A ⊆ B be a largest set of C-bridges such that no two C-bridges
in A are separated by a C-bridge in B and let l = |A|. Then it is not
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hard to see, that no two C-bridges in A are separated by any C-bridge of
Int(C). Consequently, there is a facial cycle F of Int(C) such that F 6= C
and F contains at least two vertices of attachment of each C-bridge in A.
Since any C-bridge in A separates two vertices in U there is a subsequence
1 ≤ i1 < · · · < il ≤ k such that F has a vertex in each segment of C from
uij to uij+1 and F does not contain any vertex uij , 1 ≤ j ≤ l.

Let B1 denote the set of all C-bridges B ∈ B such that B does not
separate any two C-bridges in B, and for i ≥ 2, let Bi be the set of all
C-bridges B ∈ B\

⋃i−1
j=1 Bj such that B does not separate any two C-bridges

in B ∈ B \
⋃i−1
j=1 Bj . Let e denote the largest integer such that Be 6= ∅. A

simple induction on e shows that, after possibly changing the indices, there
is a subsequence 1 ≤ i1 < · · · < ie+1 ≤ k and a subset {B1, . . . , Bs−1} of
B such that Bj ∈ Bj and each Bj has a vertex of attachment in the open
segment of C from uij to uij+1 and one in the open segment of C from ue
to ue+1.

Now we wish to prove that |B| is bounded by a function of d, l and e.
Obviously, |B| = |B1|+ · · ·+ |Be|. Since no two C-bridges in Be are separated
by any other C-bridge, |Be| ≤ l. Let 1 ≤ i < e, and call two C-bridges in Bi
similar if they are not separated by any C-bridge in Bi+1∪· · ·∪Be. It is not
hard to see, that similarity is an equivalence relation on Bi. It follows from
the definition of Bi, that no two similar C-bridges in Bi are separated by any
other C-bridge of Int(C). Consequently, an equivalence class with respect to
similarity consists of at most l C-bridges. There are at most d

∑e
j=i+1 |Bj |

pairwise nonsimilar C-bridges in Bi (if i < e). A simple inductive proof
shows that

|Bi| ≤ l(ld+ 1)e−i.

This implies

|B| ≤
e∑
i=1

l(ld+ 1)e−i ≤ 1
d

(ld+ 1)e.

Let s be an integer such that for every subsequence 1 ≤ i1 < i2 <
· · · < is ≤ k, none of (a), (b) and (c) holds. Then s > max{d, l, e} and,
consequently,

k ≤ s|B| ≤ z(s) = s2s. (1)

Since z(s) is an increasing function this proves the lemma.

Let us observe that (1) shows that the function g(k) in Lemma 2.4 is of
order log(k)/ log log(k).
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Lemma 2.5 There is a nondecreasing integer function h : N→ N such that
limn→∞ h(n) = ∞ and such that the following holds. Let C be a cycle of
an arbitrary 3-connected plane graph G and let u1, . . . , uk be vertices which
appear on C in that order such that no two of them belong to the same facial
cycle. Then G contains a {u1, . . . , uk}-labeled K2,t-minor, where t = h(k).

Proof. By Lemma 2.4, there is a subsequence v1, . . . , vg(k) of u1, . . . , uk sat-
isfying one of the cases (a)–(c) of that lemma. Repeating the same in Ext(C)
with vertices v1, . . . , vg(k), we get a subsequence z1, . . . , zr, r = g(g(k)), such
that in each of Int(C) and Ext(C), one of the cases (a)–(c) occurs. Con-
sidering Int(C), we denote by wj a vertex of attachment of B (or a vertex
of Bj , or a vertex of F in cases (b) and (c), respectively) which belongs
to the segment Sj , j = 1, . . . , r. For Ext(C), we denote the corresponding
bridge(s) or face by B′ or B′j , or F ′ (respectively), and define corresponding
vertices w′j on Sj . If case (b) occurs in Int(C) (resp., Ext(C)) we denote
by i0 (resp., i′0) the index i0 from Lemma 2.4. Because of symmetry, we
distinguish 6 cases. We will use the notation (b|c) to denote the case where
(b) occurs in Int(C) and (c) in Ext(C), and similarly for the other cases.

Case (a|a): Let Z1 be a spanning tree in B−V (C) together with an edge
joining this tree with wj for each odd index j. Similarly, let Z2 be a spanning
tree in B′ − V (C) together with an edge joining this tree with w′j for each
even index j. Now we get a U -labeled K2,t-preminor in G, where t = br/2c,
by adding segments of C joining vertices wj and w′j+1, j = 1, 3, 5, . . ..

Case (a|b): This case is similar to the above, except that the tree Z2 is
obtained as follows. We may assume that i0 = r. Now, start with spanning
trees in interiors of bridges B′j − V (C) together with edges from these trees
to w′j , j = 2, 4, 6, . . .. Finally, add the segment Sr and edges from these trees
to Sr. Then we get a U -labeled K2,t-minor in G, where t = b(r − 1)/2c.

Case (a|c): For i ∈ {1, . . . , r}, let α′ be the vertex of F ′ ∩ Si−1 which is
closest to ui on C. Similarly, let β′ be the vertex of F ′∩Si as close as possible
to ui on C. Then the segment A′ of F ′ from α′ to β′ is internally disjoint
from C. Let α and β be attachments of B on Si−1 and Si, respectively,
chosen as close as possible to ui. Then there is a facial cycle R in Int(C)
which contains an edge e of B incident with α and contains an edge f of B
incident with β. Let RB ⊆ B be the segment of R from e to f .

By Lemma 2.1, there is a path joining ui and B−V (C) which is disjoint
from F ′. It is easy to see that such a path Pi can be chosen so that it is
contained in the disk bounded by A′, RB, and the segments of C joining α, α′

and β, β′. In particular, the paths Pi, Pj are internally disjoint if |i− j| ≥ 2.
Let Ri be the union of Pi and the segment of C from α′ to β′. Let Ti be
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a spanning tree in Ri− (V (B)∪{α′, β′}), let ei be the edge of Pi connecting
Ti with B − V (C), and let fi be an edge of C joining Ti and F ′ −w′r. Now,
we get a U -labeled K2,t-preminor in G, t = br/2c, by taking a spanning tree
Z1 in B − V (C), the path Z2 = C − w′r, the trees Ti and the connecting
edges ei, fi, i = 1, 3, 5, . . ..

Case (b|c): This case is similar to the case (a|c) above except that we
consider the union of Sr and the bridges B1, . . . , Br−1 to play the role of the
bridge B.

Case (b|b): We assume that i0 = r. If i0 6= i′0, we can proceed similarly
to the case (a|b) above except that we consider the union of Si′0 and the
bridges B′i, i ∈ {1, ..., r} \ {i′0} to play the role of the bridge B′. Thus we
may assume that i0 = i′0 = r.

Let q = b(r − 1)1/3c. Let zj (z′j) be a vertex of Bj (resp. B′j) in Sr.
If x, y ∈ V (Sr), we write x � y if x is closer to u1 on Sr than y. Clearly,
z1 � z2 � · · · � zr−1 and z′1 � z′2 � · · · � z′r−1. We distinguish three
subcases.

(i) There is an index i such that zi = z′i = · · · = zi+q = z′i+q: In this
case we remove all edges of B′i+1, . . . , B

′
i+q−1 incident with zi. The

resulting graph G′ is 2-connected (since G− zi is 2-connected). Let F ′

be the new facial cycle of G′. Now, a proof similar to the case (a|c)
shows that there is a U -labeled K2,t-minor, where t = b(q − 3)/2c.

(ii) There is an index i such that zi+q ≺ z′i: This case is similar to the case
(a|a) where the union of the segment of Sr from zi to zi+q and bridges
Bi, . . . , Bi+q play the role of B, while the union of the segment of Sr
from z′i to z′i+q and bridges B′i, . . . , B

′
i+q play the role of B′.

A similar proof works if z′i+q ≺ zi.

(iii) Otherwise: In this case, there are indices 1 ≤ i1 < i2 < · · · < iq ≤ r
such that for j = 1, . . . , q we have zij ≺ z′ij+2

≺ zij+4 ≺ z′ij+6
. Let Qj

be a cycle contained in Bij ∪B′ij ∪ Sj and the segment of Sr from zij
to z′ij . The cycles for j = 1, 5, 9, . . . are pairwise disjoint and nested
and are interlaced with U . Now, Lemma 2.2 applies.

Case (c|c): Since G is 3-connected, F ∩ F ′ is connected. Therefore, we
may assume that F ∩ F ′ ⊆ Sr. Suppose that 3 ≤ i ≤ r − 2. By Lemma
2.1, there is a path Pi joining ui and F which is disjoint from F ′. Let A′

be the segment of F ′ defined as in case (a|c), and let A be the segment of
F defined in the same way. It is easy to see that we may assume that Pi is

8



contained in the disk bounded by A∪A′ and the two segments of C joining
the ends of A and A′.

We define similarly P ′i , a path joining ui and F ′ which is contained in
the same disk as Pi and is disjoint from F . Now, we have a U -labeled K2,t-
minor, t = b(r−4)/2c, in the similar way as in previous cases, where we take
Z1 = F − Sr, Z2 = F ′ − Sr, and Ti a spanning tree in (Pi ∪ P ′i )− (F ∪ F ′),
i = 3, 5, 7, . . ..

Proof. (of Theorem 1.2). Let U ′ be a subset of U such that |U ′| = τ(U)
and no two vertices in U ′ belong to the same facial cycle of G. Furthermore,
let t = d

√
τ(U) e. By Lemma 2.3 either G contains a U -labeled K2,t-minor

or there is a cycle C of G which contains t vertices of U ′. In the latter case
it follows from Lemma 2.5 that G contains a U -labeled K2,h(t)-minor. This
proves the first part of Theorem 1.2.

To prove the second part, let H be a plane embedding of a K2,t and let
A,B denote the color classes of H such that |A| = t and |B| = 2. For an
arbitrary embedding of H in the plane, every facial cycle of H has length
four and contains precisely two vertices in each color class. Consequently,
each face cover of A in H contains at least t/2 facial cycles. It follows that
if G contains a U -labeled K2,t-minor, then τ(U) ≥ t/2.

It is worth mentioning that the proof of Theorem 1.2 is constructive and
yields a polynomial time algorithm such that, given a 3-connected planar
graph G and vertex set U ⊆ V (G), no two vertices of which are in the same
facial cycle, finds a U -labeled K2,f(|U |)-preminor in G.
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