Coloring locally bipartite graphs on surfaces

Bojan Mohar *
Department of Mathematics
University of Ljubljana
1111 Ljubljana, Slovenia
and
Paul D. Seymour
Department of Mathematics
Princeton University
Princeton, NJ 08544-1000

Abstract

It is proved that there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the following holds. Let G be a graph embedded in a surface of Euler genus g with all faces of even size and with edge-width $\geq f(g)$. Then (i) If every contractible 4 -cycle of G is facial and there is a face of size >4, then G is 3-colorable. (ii) If G is a quadrangulation, then G is not 3 -colorable if and only if there exist disjoint surface separating cycles C_{1}, \ldots, C_{g} such that, after cutting along C_{1}, \ldots, C_{g}, we obtain a sphere with g holes and g Möbius strips, an odd number of which is nonbipartite.

1 Introduction

Hutchinson [3] proved that if G is embedded in an orientable surface with large edge-width such that all facial walks have even length, then G is 3 colorable. The condition on large width is necessary since there are quadrangulations of surfaces whose underlying graph is the complete graph K_{n} (and n can be arbitrarily large). See also Section 4 for examples with arbitrarily large edge-width. On the other hand, the result of Hutchinson does

[^0]not extend to nonorientable surfaces. For example, Youngs [7] proved that every nonbipartite quadrangulation of the projective plane has chromatic number 4. Similarly, Klavžar and Mohar [4, Theorem 2.4] proved that certain quadrangulations of the Klein bottle with arbitrarily large edge-width have chromatic number 4.

It is known [2] that graphs embedded in a surface with all faces of even size and with sufficiently large edge-width are 4 -colorable. In this paper we completely characterize those which are not 3 -colorable. It turns out that the only obstruction to 3 -colorability can be expressed by means of nonbipartite projective quadrangulations, cf. Theorem 4.1.

All embeddings of graphs in surfaces considered in this paper are 2-cell embeddings. Generally, we follow terminology in [5]. If G is embedded in a surface S with f faces, then the number $g=2-|V(G)|+|E(G)|-f$ is called the Euler genus of S. By $\chi(G)$ we denote the chromatic number of G.

23 -coloring and the winding number

Let c be a fixed 3 -coloring of the graph G. If $W=v_{1} v_{2} \ldots v_{k} v_{1}$ is a closed walk in G, then the coloring of $V(W)$ can be viewed as a mapping onto the 3cycle C_{3} and we may speak of the winding number $w_{c}(W)$, which is equal to the number of indices i such that $c\left(v_{i}\right)=1$ and $c\left(v_{i+1}\right)=2$ minus the number of indices i such that $c\left(v_{i}\right)=2$ and $c\left(v_{i+1}\right)=1, i=1, \ldots, k$. An obvious fact that we shall use in the sequel is that $w_{c}(W)$ is odd (and hence nonzero) if the length of W is odd. If $v_{i+1}=v_{i-1}$, then $W^{\prime}=v_{1} \ldots v_{i-1} v_{i+2} \ldots v_{k} v_{1}$ is a closed walk, and $w_{c}\left(W^{\prime}\right)=w_{c}(W)$. We say that W^{\prime} is obtained from W by an edge-reduction, and that W is obtained from W^{\prime} by an edge-expansion.

Suppose that W can be expressed as a concatenation of two closed walks W_{1}, W_{2}. Then, clearly,

$$
\begin{equation*}
w_{c}(W)=w_{c}\left(W_{1}\right)+w_{c}\left(W_{2}\right) . \tag{1}
\end{equation*}
$$

Suppose that G is embedded in some surface, $W_{1}=v_{1} \ldots v_{k} v_{1}$ is a closed walk in G, and $W_{2}=v_{1} v_{k} u_{1} \ldots u_{r} v_{1}$ is a facial walk which traverses the edge $v_{1} v_{k}$ in the opposite direction than W_{1}. Then $W=v_{1} \ldots v_{k} u_{1} \ldots u_{r} v_{1}$ is a closed walk which is obtained by a concatenation and an edge-reduction. We say that W has been obtained from W_{1} by a homotopic shift over a face. Note that W is homotopic to W_{1} on the surface. It is well known that every closed walk homotopic to W_{1} can be obtained from W_{1} by a sequence of edge-reductions, edge-expansions, and homotopic shifts over faces. Also,
observe that if W_{2} is of length 4 , then $w_{c}\left(W_{2}\right)=0$, so $w_{c}(W)=w_{c}\left(W_{1}\right)$ by (1). This implies:

Lemma 2.1 Let G be a quadrangulation of some surface and let c be a 3coloring of G. If W and W^{\prime} are homotopic closed walks of G, then $w_{c}(W)=$ $w_{c}\left(W^{\prime}\right)$.

Lemma 2.1 does not hold if G is not a quadrangulation but its conclusion is correct if we consider homotopy in the surface after we remove a point from the interior of each face whose size is different from 4.

3 Edge-width and locally bipartite embeddings

An embedding of a graph G in some surface is locally bipartite if all facial walks are of even length. It is easy to see that, in a locally bipartite embedding, every surface separating cycle (or a closed walk) of G is also of even length and that the parity of the length of a closed walk is a homotopy invariant.

The edge-width $\mathbf{e w}(G)$ of a graph G embedded in a nonsimply connected surface is defined as the length of a shortest noncontractible cycle in G. Similarly, the face-width or representativeness, denoted by $\mathrm{fw}(G)$, is the minimum k such that every noncontractible simple closed curve on the surface intersects G in at least k points.

Lemma 3.1 Let G be a graph with a locally bipartite embedding in some surface. Then G can be extended to a locally bipartite graph $\tilde{G} \supseteq G$ embedded in the same surface such that
(a) $\mathbf{e w}(G)=\mathbf{e w}(\tilde{G})=\mathrm{fw}(\tilde{G})$, and
(b) $\chi(\tilde{G})=\chi(G)$.

Proof. If C is a facial walk in G of size $2 r$, then add into the face of C a $2 r$-cycle C^{\prime} and join the i th vertex on C with the i th vertex on C^{\prime}. Now, perform the same procedure with C^{\prime} instead of C, then with the new cycle, etc., all together $r-1$ times. After doing this for all facial walks of G, the resulting locally bipartite embedding \tilde{G} satisfies (a).

If c is a k-coloring of G, then the coloring of the facial walk C can be extended onto C^{\prime} (and from there to all subsequent cycles) as follows. If $c(v) \in\{1, \ldots, k\}$ is the color of the i th vertex on C, then color the i th vertex of C^{\prime} by $c(v)+1$ modulo k. This implies (b).

Suppose that G is locally bipartite. We say that G is 4 -reduced if every contractible 4 -cycle of G is facial. If G is not 4-reduced and C is a contractible nonfacial 4-cycle, let G^{\prime} be the graph obtained from G by deleting the edges and vertices in the interior of (the disk bounded by) C. Since the subgraph of G in the interior of C is bipartite, every k-coloring of G^{\prime} can be extended to a k-coloring of G. Therefore, $\chi\left(G^{\prime}\right)=\chi(G)$. Because of this fact, we may only consider 4-reduced embeddings.

4 Large edge-width and coloring with few colors

Let w_{0} and k be arbitrary integers. It is well known that there exists a connected graph G_{0} of girth $\geq w_{0}$ and with chromatic number $\geq k$. Take an embedding of G_{0} with only one facial walk. (Such embeddings, usually nonorientable, always exist, cf., e.g., [5].) Since every edge appears precisely twice on the facial walk, the embedding is locally bipartite. This example shows that the graph \tilde{G}_{0} (cf. Lemma 3.1) has edge- and face-width $\geq w_{0}$ and chromatic number $\geq k$. Therefore, no fixed lower bound on the width of locally bipartite graphs implies bounded chromatic number. However, a bound on the width depending on the genus of the embedding works. For instance, Fisk and Mohar [2] proved the following result. Let G be a graph of girth ≥ 4 embedded in a surface of Euler genus g. If $\mathbf{e w}(G) \geq c \log g$ (where c is some constant), then $\chi(G) \leq 4$. In this paper we show that for locally bipartite embeddings we may usually save another color, and we determine when this is not possible.

Theorem 4.1 There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that the following holds. Let G be a locally bipartite graph embedded in a surface of Euler genus g with edge-width $\geq f(g)$. Then
(a) G is 4-colorable.
(b) If the embedding is 4-reduced and there is face of size >4, then G is 3 -colorable.
(c) If G is a quadrangulation, then G is not 3-colorable if and only if there exist disjoint surface separating cycles C_{1}, \ldots, C_{g} such that, after cutting along C_{1}, \ldots, C_{g}, we obtain a sphere with g holes and g Möbius strips, an odd number of which is nonbipartite.

Proof. (a) follows from the aforementioned result of Fisk and Mohar [2]. Let us now prove (c). We assume that G is a quadrangulation, and we may
assume that it is 4 -reduced. By the result of Hutchinson [3], we may assume that the surface of the embedding is \mathbb{N}_{g}, the nonorientable surface of Euler genus g.

Figure 1: The graph H_{6} in \mathbb{N}_{6}
Let H_{g} be the graph embedded in \mathbb{N}_{g} as shown in Figure 1. More precisely, H_{g} is composed of 8 "outer" cycles Q_{1}, \ldots, Q_{8} and the "inner" cycle Q_{0}. These cycles are contractible in \mathbb{N}_{g} and joined by $2 g$ paths R_{i}, R_{i}^{\prime}, $i=1, \ldots, g$. Between $R_{i}, R_{i}^{\prime}, Q_{0}$, and Q_{1}, there is a copy of the graph $K_{3,3}$ embedded so that its 6 -cycle C_{i} bounds a Möbius strip. The cycle C_{i} is joined to the paths Q_{5}, Q_{6}, and Q_{7} by six disjoint paths as shown in Figure $1(i=1, \ldots, g)$. Robertson and Seymour [6] proved that, if the face-width of G in \mathbb{N}_{g} is sufficiently large (which we may assume by choosing $f(g)$ large enough), then one can obtain the graph H_{g} embedded in \mathbb{N}_{g} as a surface minor of G.

Let $1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq g$ be the indices i for which C_{i} bounds a nonbipartite Möbius strip. Suppose first that q is odd. Suppose that G has a 3-coloring c. If $i \in\left\{i_{1}, i_{2}, \ldots, i_{q}\right\}$, then the projective plane R determined by C_{i} is nonbipartite. Let C be an odd cycle in R. Then the concatenation $C+C$ is homotopic to C_{i} in \mathbb{N}_{g}. By the results of Section 2, $w_{c}(C)$ is odd (since C is of odd length) and $w_{c}\left(C_{i}\right)=2 w_{c}(C)$ is congruent to 2 modulo 4. Similarly we see that $w_{c}\left(C_{i}\right) \equiv 0(\bmod 4)$ for $i \notin\left\{i_{1}, i_{2}, \ldots, i_{q}\right\}$. Now, consider the 3 -coloring of the sphere D obtained after cutting the surface \mathbb{N}_{g} along C_{1}, \ldots, C_{g}. Clearly, the cycles Q_{0} and Q_{1} are contractible and hence homotopic in \mathbb{N}_{g}. However, in D, Q_{1} can be obtained from Q_{0} by a sequence of homotopic shifts over faces (plus some edge-reductions). All of the faces used in homotopic shifts, except C_{1}, \ldots, C_{g}, are 4 -cycles. Therefore, (1) implies

$$
\begin{equation*}
w_{c}\left(Q_{1}\right)=w_{c}\left(Q_{0}\right)+\sum_{i=1}^{g} w_{c}\left(C_{i}\right) . \tag{2}
\end{equation*}
$$

Consequently, $\sum_{i=1}^{g} w_{c}\left(C_{i}\right)=0$. On the other hand, the above discussion shows that $\sum_{i=1}^{g} w_{c}\left(C_{i}\right) \equiv 2(\bmod 4)$. This contradiction proves that c does not exist.

Suppose now that q is even. Let $D(1,2)$ be the cycle in G which separates $C_{i_{1}} \cup C_{i_{2}}$ from the rest of the surface and which corresponds to the following cycle in H_{g} : First, follow $R_{i_{1}}$ from Q_{0} to Q_{8}, continue clockwise on Q_{8} until reaching the path $R_{i_{2}}^{\prime}$, follow $R_{i_{2}}^{\prime}$ to Q_{0}, go anticlockwise on Q_{0} until $R_{i_{2}}$, descend on $R_{i_{2}}$ to Q_{1}, use Q_{1} anticlockwise back to $R_{i_{1}}^{\prime}$, return on $R_{i_{1}}^{\prime}$ to Q_{0}, and close up on Q_{0} in the anticlockwise direction. Similarly we define $D(3,4), \ldots, D(q-1, q)$. After cutting along the cycles $D(1,2), \ldots, D(q-1, q)$, we obtain a surface S of Euler genus $g-q$ and $q / 2$ surfaces homeomorphic to the Klein bottle in which the face corresponding to $D(j, j+1)$ is special. The subgraph G^{\prime} of G on S is bipartite. Fix a 2 -coloring (using colors 1 and 2) of G^{\prime}. This 2 -coloring induces a 2 -coloring on each of the special faces in $q / 2$ Klein bottles. It suffices to see that, in each case, the 2-coloring of the special face D can be extended to the whole subgraph $G^{\prime \prime}$ of G in the corresponding Klein bottle K.

Observe that H_{g} and hence also $G^{\prime \prime}$ contains three pairwise disjoint cycles B_{1}, B_{2}, B_{3} which are twosided noncontractible in K and are disjoint from D. Each of them passes through both crosscaps bounded by $C_{i_{j}}$ and $C_{i_{j+1}}$ in K, and B_{r} "closes up" along the cycles Q_{r} and $Q_{r+3}(r=2,3)$, while B_{1} uses Q_{4} and Q_{7}. The cycles B_{1}, B_{2}, B_{3} are homotopic in K and partition K into three cylinders B_{12}, B_{23}, and B_{31}, where $B_{i j}$ is bounded by B_{i} and B_{j}. The cylinder B_{12} contains D. It is easy to see that B_{1}, B_{2}, B_{3} are all
of even length, so each $B_{i j}$ has a locally bipartite embedding in the plane. Consequently, $B_{i j}$ is a bipartite graph.

Let c_{12} be the 2 -coloring of B_{12} with colors 1 and 2 which extends the coloring of D. Let c_{23} be the 2-coloring of B_{23} with colors 2 and 3 which coincides on B_{2} with c_{12} on vertices of color 2. Let c_{31} be the 2-coloring of B_{31} with colors 3 and 1 which coincides on B_{3} with c_{23} on vertices of color 3 . Since K contains two nonbipartite projective planes, it is not bipartite. This implies that c_{31} coincides on B_{1} with c_{12} on vertices of color 1 . Consequently, by setting $c(v)=c_{i j}(v)$, if $v \in V\left(B_{i j}-B_{j}\right)(i j \in\{12,23,31\})$, we get the required 3-coloring of $G^{\prime \prime}$. This completes the proof of (c).

It remains to prove (b). After filling up the faces of size ≥ 6 in the same way as in the proof of Lemma 3.1 and then adding edges, we can produce a 4-reduced graph which contains G, is embedded in the same surface and has face-width $\geq \frac{1}{2} \mathbf{e w}(G)$. Moreover, by adding some additional edges if necessary, we may assume that all faces except one of the resulting graph $G^{\prime} \supseteq G$ are 4-cycles, and that the exceptional face F_{0} is a 6-cycle. Define the graph H_{g}^{\prime} in the similar way as H_{g} except that now we replace each of the cycles $Q_{0}, \ldots, Q_{8}, C_{1}, \ldots, C_{g}$, the paths $R_{1}, R_{1}^{\prime}, \ldots, R_{g}, R_{g}^{\prime}$, and the paths connecting the crosscaps with the Q_{j} 's by 5 disjoint homotopic copies of that cycle or path. (We shall use the same notation as before for any of the five disjoint copies of each of these cycles or paths.) Now, we take the same steps as in the proof of (c), working in G^{\prime} and assuming the face-width is large enough so that H_{g}^{\prime} is a surface minor of G^{\prime}.

We may assume that q is odd. Denote by M_{i} the Möbius strip bounded by a cycle composed of R_{i}, R_{i}^{\prime} and the appropriate segments of Q_{0} and Q_{1}, $i=1, \ldots, g$. We may assume that $i_{1}=1$ and that if the 6 -face F_{0} is in some $M_{i}(1 \leq i \leq g)$, then $i_{q} \leq i \leq g$. Then the cycles $D(1,2), \ldots, D(q-2, q-1)$ can be selected so that F_{0} is not contained in any of the Klein bottles bounded by these cycles. Let K be the Klein bottle bounded by $D(j, j+1)$. Since the cycles and paths of H_{g} are replaced by five disjoint homotopic copies in H_{g}^{\prime}, the cycles B_{1}, B_{2}, B_{3} in K can be chosen so that they are disjoint from and not adjacent to $D(j, j+1)$. We say that a 3 -coloring of an even cycle C is almost a 2-coloring (and that C is almost 2-colored) if one of the color classes is equal to one of the bipartite classes of C. The proof of (b) shows that any almost 2 -coloring of $D(j, j+1)$ can be extended to a 3-coloring of K.

Now we cut out the Klein bottles bounded by the cycles $D(1,2), \ldots, D(q-$ $2, q-1)$ and cut out all projective planes $M_{i}, i \notin\left\{i_{1}, i_{2}, \ldots, i_{q}\right\}$, so that F_{0} does not intersect any of the $r=(g-1)-(q-1) / 2$ cycles F_{1}, \ldots, F_{r} used in the cutting. The resulting surface S is the projective plane (since $C_{i_{q}}$ is in
$S)$ with special faces F_{1}, \ldots, F_{r}. Since all cycles of H_{g} have been replaced in H_{g}^{\prime} by five disjoint homotopic copies, we can choose the cycles F_{1}, \ldots, F_{r} such that for every $i, 1 \leq i \leq r$, there are disjoint cycles $F_{i}^{\prime}, F_{i}^{\prime \prime}$ which are disjoint from F_{i} such that each of them bounds a disk in S with F_{i} in the interior but with all other cycles $F_{j}(j \in\{0,1, \ldots, r\} \backslash\{i\})$ in its exterior.

Figure 2: The cycle C^{\prime} in M_{i}
Suppose that F_{0} is not in S. Then it is in some $M_{i}, i_{q}<i \leq g$. In such a case we add M_{i} back to S and cut out the same crosscap along a different cycle C^{\prime} so that F_{0} remains in S. To achieve this, we can take $C^{\prime}=C_{i}$ (the "innermost" of the five copies) unless F_{0} is inside M_{i} in one of the shaded regions as represented in Figure 2. In that case we take for C^{\prime} the dotted cycle shown in Figure 2. Hence, we may assume that F_{0} is contained in S.

Moreover, we may assume that for each of the special faces $F_{j}(1 \leq j \leq$ $r)$, there exist corresponding cycles $F_{j}^{\prime}, F_{j}^{\prime \prime}$. Denote by H the subgraph of G^{\prime} in S. As mentioned above, any almost 2-coloring of F_{j} can be extended to a 3-coloring of the corresponding Klein bottle if F_{j} corresponds to one of $D(1,2), \ldots, D(q-2, q-1)$. Since the removed projective planes M_{i} are all bipartite, the same holds for the cycle F_{j} corresponding to M_{i}. Therefore it suffices to prove that H has a 3 -coloring so that all special faces F_{1}, \ldots, F_{r} are almost 2 -colored.

Let $F_{0}=v_{1} v_{2} \ldots v_{6}$. Let \hat{H} be the graph in S obtained from H by adding a vertex of degree 4 in each 4 -face of H, joining it to the vertices on that face. We claim that \hat{H} contains disjoint paths P_{1}, P_{2}, P_{3} where P_{i} connects
v_{i} and $v_{i+3}, i=1,2,3$. As proved by Robertson and Seymour in [6], such paths exist if and only if there is no contractible simple closed curve γ in S which intersects \hat{H} in at most 5 points such that F_{0} is contained in the disk bounded by γ. Suppose that such a curve γ exists. Because of the existence of $F_{j}^{\prime}, F_{j}^{\prime \prime}$, the curve γ does not pass through $F_{j}, j=1, \ldots, r$. Since all other faces of \hat{H} are of size $3, \gamma$ determines a cycle in \hat{H} of length ≤ 5. This cycle then determines a contractible closed walk W in H of length ≤ 5 such that F_{0} is in the interior of W. Since G^{\prime} and hence also H is locally bipartite, W is of even length, so it must be a 4 -cycle. This contradicts the fact that G^{\prime} is 4-reduced. Hence γ does not exist. This proves the claim.

Now, cut S along P_{1}, P_{2}, P_{3} and use a 2 -coloring on each of the three resulting discs. These colorings can be combined into a 3-coloring of H in the same way as in the proof of (c). Clearly, under such a 3-coloring, each of the special cycles F_{1}, \ldots, F_{r} is almost 2-colored. This completes the proof.

Theorem 4.1 implies, in particular, that for every nonorientable surface S, there are infinitely many 4 -critical graphs of girth 4 on S. Examples of such graphs are 4 -reduced non-3-colorable quadrangulations of large edgewidth.

Suppose that C is a cycle of the embedded graph G such that, after cutting the surface along C, an orientable surface is obtained. Then C is said to be an orientizing cycle. If G is as in the proof of Theorem 4.1, then any cycle passing through all g Möbius strips bounded by C_{1}, \ldots, C_{g} is orientizing. This yields another formulation of Theorem 4.1(c), whose "only if" part was discovered independently by Archdeacon, Hutchinson, Nakamoto, Negami, and Ota [1].

Corollary 4.2 If G is a quadrangulation of \mathbb{N}_{g} and the edge-width of G is sufficiently large, then there is an orientizing cycle C, and G is 3-colorable if and only if C is of even length.

References

[1] D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami, and K. Ota, Chromatic numbers of quadrangulations of closed surfaces, preprint.
[2] S. Fisk, B. Mohar, Coloring graphs without short non-bounding cycles, J. Combin. Theory, Ser. B 60 (1994) 268-276.
[3] J. P. Hutchinson, Three-coloring graphs embedded on surfaces with all faces even-sided, J. Combin. Theory Ser. B 65 (1995) 139-155.
[4] S. Klavžar, B. Mohar, The chromatic numbers of graph bundles over cycles, Discrete Math. 138 (1995) 301-314.
[5] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, to appear.
[6] N. Robertson, P. D. Seymour, Graph minors. VII. Disjoint paths on a surface, J. Combin. Theory Ser. B 45 (1988) 212-254.
[7] D. A. Youngs, 4-chromatic projective graphs, J. Graph Theory 21 (1996) 219-227.

[^0]: *Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-0502-0101-98.

