Long cycles in graphs on a fixed surface*

Thomas Böhme
Department of Mathematics
Technical University of Ilmenau
D-98684 Ilmenau, GERMANY
e-mail: tboehme@theoinf.tu-ilmenau.de
Bojan Mohar ${ }^{\dagger}$
Department of Mathematics, University of Ljubljana,
1111 Ljubljana, Slovenia
e-mail: bojan.mohar@uni-lj.si
and
Carsten Thomassen
Department of Mathematics
Technical University of Denmark
DK-2800 Lyngby, DENMARK
e-mail: C.Thomassen@mat.dtu.dk

[^0]
Abstract

We prove that there exists a function $a: \mathbb{N}_{0} \times \mathbb{R}_{+} \rightarrow \mathbb{N}$ such that (i) If G is a 4-connected graph embedded on a surface of Euler genus g such that the face-width of G is at least $a(g, \varepsilon)$, then G can be covered by two cycles each of which has length at least $(1-\varepsilon) n$. We apply this to derive lower bounds for the length of a longest cycle in a graph G on any fixed surface. Specifically, there exist functions $b: \mathbb{N}_{0} \rightarrow \mathbb{N}$ and $c: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$such that for every graph G on n vertices that is embedded on a surface of Euler genus g the following statements hold: (ii) If G is 4 -connected, then G contains a collection of at most $b(g)$ paths which cover all vertices of G, and G contains a cycle of length at least $n / b(g)$. (iii) If G is 3 -connected, then G contains a cycle of length at least $c(g) n^{\log 2 / \log 3}$. Moreover, for each $\varepsilon>0$, every 4 -connected graph G with sufficiently large face-width contains a spanning tree of maximum degree at most 3 and a 2 -connected spanning subgraph of maximum degree at most 4 such that the number of vertices of degree 3 or 4 in either of these subgraphs is at most $\varepsilon|V(G)|$.

1 Introduction

The notation and terminology in this paper is the same as in $[12,18,21]$.
In 1956 Tutte [22] proved that every planar graph G which is not a forest contains a cycle C such that every component of $G-V(C)$ has at most three neighbors on C. We call such a cycle a Tutte cycle. Tutte proved that C can be chosen to contain any prescribed edge if G is 2-connected. For a short proof see [17]. Thomas and Yu [16] extended Tutte's theorem to projective planar graphs. It follows that every 4-connected planar or projective planar graph has a Hamiltonian cycle.

This result does not extend to 3 -connected planar graphs since there exist planar triangulations on n vertices whose longest cycle is of length $O\left(n^{\alpha}\right)$, where $\alpha=\log 2 / \log 3 \approx 0.63$; cf. [13]. In fact, Grünbaum and Walther [8] conjectured that every 3 -connected planar graph of order n contains a cycle of length at least $c n^{\alpha}$ for some positive constant c. Jackson and Wormald [10] proved the existence of a cycle of length at least $c n^{\beta}$ where c is a positive constant and $\beta \approx 0.2$. Gao and $\mathrm{Yu}[9]$ improved their result by showing that every 3 -connected planar graph G contains a cycle of length at least $\frac{1}{6}|V(G)|^{0.4}+1$. Recently, Chen and Yu [5] proved the conjecture of Grünbaum and Walther. Both aforementioned results hold also for graphs on the projective plane, the torus, and the Klein bottle.

As every graph can be embedded on some surface, these results do not generalize to surfaces of higher genera even for 1000-connected graphs. An additional modest condition on the face-width does not help either. Archdeacon, Hartsfield, and Little [1] proved that for each k there exists a k-connected triangulation of an orientable surface having face-width k in which every spanning tree has a vertex of degree at least k. In particular, such graphs are far from being Hamiltonian.

If the surface is fixed and the face-width is large, the situation changes. Thomassen [20] proved that large face-width of a triangulation of a fixed orientable surface implies the existence of a spanning tree of maximum degree at most 4 and that 4 cannot be replaced by 3 . It was conjectured in [20] that the additional condition that the triangulation is 5 -connected implies that the graph is Hamiltonian, and this was verified by Yu [23]. It was also observed in [20] that " 5 -connected" cannot be replaced by " 4 -connected". However, we show in this paper that the cutting technique used in [19, 21] to prove a 5 -color theorem for each fixed surface can be used to prove the existence of long cycles in 4 -connected or 3-connected graphs on a fixed surface. Specifically, we prove the following theorems.

Theorem 1.1 There is a function $a: \mathbb{N}_{0} \times \mathbb{R}_{+} \rightarrow \mathbb{N}$ such that for every $\varepsilon>0$ and every 4-connected graph G that has an embedding of Euler genus g and face-width at least $a(g, \varepsilon)$, there are two cycles C_{1}, C_{2} in G such that
(1) $V\left(C_{1}\right) \cup V\left(C_{2}\right)=V(G)$, and
(2) $\left|V\left(C_{i}\right)\right| \geq(1-\varepsilon)|V(G)|$, for $i=1,2$.

We apply Theorem 1.1 to prove
Theorem 1.2 There exists a function $b: \mathbb{N}_{0} \rightarrow \mathbb{N}$ such that, if G is a 4-connected graph of Euler genus g, then G contains a collection of paths P_{1}, \ldots, P_{k}, where $k \leq b(g)$, which cover all vertices of G, and G contains a cycle of length at least $2 n /(5 b(g))$.

Theorem 1.3 There exists a function $c: \mathbb{N}_{0} \rightarrow \mathbb{R}_{+}$such that, if G is a 3-connected graph of Euler genus g, then G has a cycle of length at least $c(g)|V(G)|^{\log 2 / \log 3}$.

Barnette $[2,3]$ proved that every 3-connected planar graph contains a spanning tree of maximum degree at most 3 and a 2-connected spanning subgraph of maximum degree at most 16 , and Gao [7] improved the bound 16 to 6 (which is best possible). Sanders and Zhao [15] extended these results to higher surfaces.

Ellingham and Gao [6] modified the method from [20] to prove that large face-width of a 4-connected triangulation on a fixed surface implies the existence of a spanning tree of maximum degree at most 3 , and Yu [23] extended this to nontriangulations. Theorem 1.1 implies the following extension of Yu's result.

Corollary 1.4 There exists a function $a: \mathbb{N}_{0} \times \mathbb{R}_{+} \rightarrow \mathbb{N}$ such that, if G is a 4-connected graph embedded with face-width at least $a(g, \varepsilon)$ on a surface of Euler genus g, then G contains a spanning tree T of maximum degree at most 3, a 2-connected spanning subgraph H of maximum degree at most 4 , and a path P such that
(a) $P \subseteq T \subseteq H$ and
(b) the number of vertices of degree 3 or 4 in T and in H is at most $\varepsilon|V(G)|$ and all such vertices are in $V(P)$.

Proof. Let C_{1}, C_{2} be the cycles in Theorem 1.1. Then we take $H=C_{1} \cup C_{2}$ minus those edges of C_{2} which are chords of C_{1}. Let e be an arbitrary edge of C_{1} and let $P=C_{1}-e$. Then G has a spanning tree T of maximum degree 3 which is obtained from $H-e$ by deleting only edges in $E\left(C_{2}\right) \backslash E\left(C_{1}\right)$ incident with vertices in C_{1}. It is obvious that H, T, P have the stated properties.

We shall use the following lemmas.
Lemma 1.5 If G is a disconnected graph on a surface S, then $S \backslash G$ contains a simple, closed, twosided curve C which is either noncontractible in S, or contractible in S such that each of $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ contains a connected component of G.

Proof. Add on S an edge e between two components G_{1}, G_{2} of G. The facial walk F containing e must contain e twice and in opposite directions because e is a cutedge. Therefore, S has a simple closed twosided curve C (close to $F \cap G_{1}$) such that $C \cap G=\emptyset$ and C crosses e once. If C is contractible, then $\operatorname{int}(C)$ contains one of G_{1}, G_{2} and $\operatorname{ext}(C)$ contains the other.

Lemma 1.6 Let G be a connected graph embedded on a surface S, and let A be a set of vertices such that $G-A$ is disconnected. Then S has a simple closed curve C such that $C \cap G \subseteq A$, and either C is noncontractible or else C is contractible and each of $\operatorname{int}(C)$ and $\operatorname{ext}(C)$ contains a connected component of $G-A$.

Proof. Apply the proof of Lemma 1.5 to $G-A$. Let C_{0} be the corresponding curve. We may assume that C_{0} intersects G only in edges joining a component of $G-A$ and A and that C_{0} intersects each such edge at most once and that each such intersection is a crossing. Now we modify C as follows. For each edge $e=u v(v \in A)$ where C intersects G, we replace a short segment of C around that intersection with a simple curve which follows e to v, crosses through v and returns back on the other side of e. The resulting curve C^{\prime} is homotopic to C_{0} and is composed of one or more simple closed curves C_{1}, \ldots, C_{k} which intersect G only at A. If all of these curves are contractible, so is C_{0}. Then each of $\operatorname{int}\left(C_{0}\right)$ and $\operatorname{ext}\left(C_{0}\right)$ contains a connected component of $G-A$ (by the assumption on C_{0}). It is easy to see (by induction on k) that the same must hold for at least one of the curves C_{1}, \ldots, C_{k}.

2 Proof of Theorem 1.1

First we introduce some notation.
If G is a plane 2-connected graph with outer cycle C_{1} and another facial cycle C_{0} disjoint from C_{1}, then we call G a cylinder with outer cycle C_{1} and inner cycle C_{0}. If H is a graph on a surface of Euler genus g, with disjoint facial cycles $C_{0}^{\prime}, C_{1}^{\prime}$ of the same lengths as C_{0} and C_{1} (respectively), then we can identify C_{0} and C_{0}^{\prime} into a cycle $C_{0}^{\prime \prime}$ and identify C_{1} and C_{1}^{\prime} into a cycle $C_{1}^{\prime \prime}$. Let M be the graph obtained from the union of G and H after these identifications. The embeddings of G and H determine an embedding of M into a surface of Euler genus $g+2$. We also say that H is obtained from M by cutting $C_{0}^{\prime \prime}$ and $C_{1}^{\prime \prime}$ and by deleting the cylinder G. The cylinderwidth of G is the largest integer q such that G has q pairwise disjoint cycles R_{0}, \ldots, R_{q-1} such that $C_{0} \subseteq \operatorname{int}\left(R_{0}\right) \subseteq \operatorname{int}\left(R_{1}\right) \subseteq \cdots \subseteq \operatorname{int}\left(R_{q-1}\right)$. The paper [21, Theorem 9.1] has a short proof of the following result:

For any natural numbers g and r there exists a natural number $f(g, r)$ such that any 2 -connected graph H on \mathbb{S}_{g} (the orientable surface of Euler genus $2 g$) having face-width $\geq f(g, r)$, contains g pairwise disjoint cylinders Q_{1}, \ldots, Q_{g} of cylinder-width at least r whose cutting and deletion results in a connected plane graph.

In [21] this was proved for triangulations but the proof extends to all (2connected) graphs by standard techniques: If H is not a triangulation, we form a triangulation $H_{1} \supseteq H$ by adding a new vertex in each face of size at least 4 and joining it to all vertices of H on that face. Then it is easy to see that, if H_{1} contains a cylinder of cylinder-width q, then H contains a cylinder of cylinder-width at least $q / 2-1$.

Suppose, in addition, that H is 4 -connected. Let us focus on one of the g cylinders, say Q_{j}, and suppose its cylinder-width is $>10 q$. Let $R_{0}, R_{1}, \ldots, R_{10 q}$ be the cycles in the definition of the cylinder-width. We select an $i \in\{0,1, \ldots, q-1\}$ such that the number of vertices in the subcylinder between $R_{5 i}$ and $R_{5 i+5}$ is smallest possible. Then we cut $R_{5 i+2}$ and $R_{5 i+3}$ and delete the cylinder between these two cycles. We repeat this procedure for each of the cylinders Q_{1}, \ldots, Q_{g}. The resulting graph H^{\prime} is planar, 2-connected and has therefore a Tutte cycle C containing an edge which is not contained in any of the g cylinders.

We claim that any vertex $v \in V(H) \backslash V(C)$ is in one of the cylinders, say Q_{j}, and in Q_{j}, v is between $R_{5 i}$ and $R_{5 i+5}$. (In particular, v is on neither $R_{5 i}$ nor $R_{5 i+5}$.) To see this, let B be the C-bridge of H^{\prime} containing v. (That
is, B is the component B^{\prime} of $H^{\prime}-V(C)$ containing v together with the set A of vertices on C joined to B^{\prime} and all edges between A and B^{\prime}.) We apply Lemma 1.6 to the plane graph H^{\prime} and let Q be the resulting simple closed curve intersecting H^{\prime} only in A. Now, Q must intersect some face of H^{\prime} which is not a face of H since otherwise A would separate H (which is impossible since H is 4 -connected and $|A| \leq 3$) or Q would be noncontractible on \mathbb{S}_{g} (which is impossible because H has face-width >3). So we may assume without loss of generality that both C and B intersect $R_{5 i+2}$ in some Q_{j}. Hence C contains at least two vertices of each of $R_{5 i+1}$ and $R_{5 i}$. Since B has at most three vertices of attachment, B cannot intersect $R_{5 i}$. So, B is between $R_{5 i}$ and $R_{5 i+2}$. Our choice of i (in each of the g cylinders) implies that C misses at most $|V(H)| / q$ vertices of H.

Suppose now that we select the indices i in $\{q, q+1, \ldots, 2 q-1\}$ (one for each of the cylinders). Then we can find another cycle C^{\prime} in H missing at most $|V(H)| / q$ vertices of H such that $V(C) \cup V\left(C^{\prime}\right)=V(H)$. This completes the proof of Theorem 1.1 in the orientable case.

We now turn to the nonorientable case. Let g, q be any natural numbers. Now draw any specific graph H_{0} on \mathbb{N}_{g} (the nonorientable surface of Euler genus g) such that H_{0} contains $\lfloor g / 2\rfloor$ pairwise disjoint cylinders of cylinder width $10 q+1$ whose removal results in a connected graph in the projective plane (if g is odd) or the sphere (if g is even). Robertson and Seymour [14] proved that, if the face-width of a graph H on \mathbb{N}_{g} is sufficiently large, then one can delete edges and contract edges of H such that one obtains H_{0} on \mathbb{N}_{g}. In particular, H also contains $\lfloor g / 2\rfloor$ pairwise disjoint cylinders of cylinder width $10 q+1$ whose removal results in a connected graph in the projective plane or the sphere. If g is even, we repeat the proof in the orientable case. If g is odd, the same proof works, except that we use the extension of Tutte's theorem obtained by Thomas and Yu [16] that every 2 -connected graph in the projective plane has a Tutte cycle containing any prescribed edge.

3 Proof of Theorem 1.2

Bondy and Locke [4] proved that, if a 3-connected graph has a path of length k, then it has a cycle of length at least $2 k / 5$. So, it suffices to prove the first statement in Theorem 1.2. We prove this by induction on the Euler genus.

By the theorems of Tutte [22] and Thomas and Yu [16], $b(0)=b(1)=1$. Suppose that $b(0) \leq b(1) \leq \cdots \leq b(g-1)$ exist. We shall prove that $b(g) \leq 4 a(g, 1 / 2) \cdot b(g-1)+2 g+100$.

Let G be any 4-connected graph on a surface S of Euler genus $g \geq 2$. Let w_{0} denote the face-width of G on S. We may assume that $w_{0}<a(g, 1 / 2)$, since otherwise $V(G)$ is covered by two paths by Theorem 1.1.

Consider first the case where $w_{0} \geq 4$. Let C_{0} be a noncontractible simple closed curve intersecting G in w_{0} vertices. We think of C_{0} as a cycle in the graph obtained from G by adding $(\leq) w_{0}$ edges, and then we cut that graph along C_{0}. Then C_{0} is cut into a cycle C_{1}, say, and (if C_{0} is twosided) a cycle C_{2}. The resulting graph G_{1} is embedded in a surface S^{\prime} (possibly disconnected) of Euler genus $g-1$ or $g-2$ (if C_{0} is onesided or twosided, respectively). We add a new vertex x_{1} in the face bounded by C_{1} and join it to all vertices of C_{1}. If C_{2} exists, we also add a new vertex x_{2} in the face bounded by C_{2}.

We assume that S^{\prime} is connected. (The case where S^{\prime} is disconnected is similar and easier.) We claim that the resulting graph G_{1}^{\prime} is 4 -connected. Suppose (reductio ad absurdum) that G_{1}^{\prime} has a (smallest) vertex set A such that $G_{1}^{\prime}-A$ is disconnected and $|A| \leq 3$. If A contains x_{1}, then A also contains two vertices of C_{1} by the minimality of A. We now apply Lemma 1.6. It is easy to modify the resulting simple closed curve in S^{\prime} into a noncontractible curve in S having only a proper subset of $V\left(C_{0}\right)$ in common with G, a contradiction to the definition of the face-width. So, we may assume that A contains neither x_{1} nor x_{2}. Again, we apply Lemma 1.6 and, if necessary, modify the resulting simple closed curve R such that it does not intersect the interior of any of the faces having x_{1} or x_{2} on the boundary. Then R determines a simple closed curve R^{\prime} on S such that $R^{\prime} \cap G \subseteq A$. Since G is 4-connected, R^{\prime} is noncontractible on S, contradicting the assumption that $w_{0} \geq 4$. So, G_{1}^{\prime} is 4-connected.

By the induction hypothesis, $V\left(G_{1}^{\prime}\right)$ is covered by at most $b(g-1)$ paths in G_{1}^{\prime}. After removing x_{1}, x_{2} and some vertices of C_{1} (or C_{2}) from these paths, we obtain at most $2 a(g, 1 / 2) b(g-1)$ paths in G which cover $V(G)$.

Consider next the case where $2 \leq w_{0} \leq 3$. We let C_{0} be a noncontractible simple closed curve on S intersecting G in at most 3 points. If possible, we choose C_{0} such that it is onesided and $\left|C_{0} \cap G\right|$ is smallest possible subject to that condition. If there are no onesided closed curves intersecting G in ≤ 3 points, then we select a twosided curve C_{0} such that $\left|C_{0} \cap G\right|=w_{0}$. As in the case $w_{0} \geq 4$, we think of C_{0} as a cycle (of length 2 , or 3) and we cut S along C_{0} such that C_{0} becomes one cycle C_{1} of length 4 or 6 (if C_{0} is onesided) or two cycles C_{1}, C_{2} of length 2 or 3 if C_{0} is twosided. If C_{0} is onesided we add a new vertex x_{1} and join it to C_{1}. If C_{0} is twosided, we do not add any of x_{1}, x_{2}. The resulting graph is called G_{1}. If G_{1} is 4 -connected, we apply induction as in the case $w_{0} \geq 4$. It is easy to see that G_{1} is 4 -connected if
C_{0} is onesided. (For, if a separating set A of at most three vertices contains x_{1} and two vertices on C_{1}, then some component of $G_{1}-A$ is a path on C_{1} and we obtain a contradiction to the minimality of C_{1}.) Therefore we may assume that C_{0} is twosided and that G_{1} is not 4 -connected. Now we apply Lemma 1.6 where A is a separating vertex set of G_{1} with at most three vertices. The resulting simple closed curve C_{3} is twosided (otherwise we would have taken that curve as C_{0}). If necessary, we modify C_{3} so that it does not cross C_{1} or C_{2}. (This is possible since $\left|V\left(C_{0}\right)\right| \leq 3$.) Now we cut C_{3} into two cycles C_{4} and C_{5}. If possible, we select a noncontractible curve C_{6} in S which does not cross any of $C_{1}, C_{2}, C_{4}, C_{5}$ such that C_{6} has less than 4 vertices in common with G and we cut C_{6} into cycles C_{7} and C_{8}. We continue like this as often as possible. Thus we cut S into surfaces and G into graphs G_{1}, \ldots, G_{p}. By Lemma 1.6, each of G_{1}, \ldots, G_{p} is 4-connected or complete. We define an auxiliary multigraph J_{1} whose vertices are the graphs G_{1}, \ldots, G_{p}. Each of the curves $C_{3 i}(i=0,1,2, \ldots)$ that we have cut along belongs to two (or one) of the graphs G_{1}, \ldots, G_{p}, and J_{1} will have an edge (or a loop) between these graphs. We say that the curve $C_{3 i}$ corresponds to that edge of J_{1}. As G is 4-connected, J_{1} has no cutedge.

Next we define a multigraph J_{0} with $V\left(J_{0}\right) \subseteq V\left(J_{1}\right)$ as follows. If J_{1} is a cycle, we let J_{0} consist of a vertex (corresponding to a surface of Euler genus >0 if possible) and a loop. If J_{1} is not a cycle, we let J_{0} be the unique multigraph without vertices of degree 2 such that J_{1} is a subdivision of J_{0}. Then J_{0} has an edge e such that $J_{0}-e$ has no cutedge. Let P be the path in J_{1} which corresponds to the edge e. If P has length 1 , then cutting S and G along the curve corresponding to P results in a 4-connected graph, and we complete the proof by induction. So assume that P has length at least 2. Assume that the notation is such that the first edge of P corresponds to C_{0}, and the last edge of P corresponds to one of C_{3}, C_{6}, \ldots, say R.

When we cut C_{0} into C_{1} and C_{2}, then S becomes a surface with boundaries C_{1} and C_{2}. If we also cut R into R_{1} and R_{2}, then we disconnect S into surfaces S^{\prime} and $S^{\prime \prime}$ with boundaries C_{1}, R_{1} and C_{2}, R_{2}, respectively. We make $S^{\prime}, S^{\prime \prime}$ into closed surfaces S_{1}^{\prime} and $S_{1}^{\prime \prime}$ (respectively) by adding a cylinder (handle) with the outer and inner cycle R_{1}, C_{1} and R_{2}, C_{2}, respectively. On each of these handles we add edges and possibly one new vertex so that the two graphs on the two handles are either complete graphs with four vertices or 4 -connected graphs with 6 vertices (see Figure 1). Hence the resulting graphs on S_{1}^{\prime} and $S_{1}^{\prime \prime}$ are 4-connected. If these graphs have Euler genus less than g, we complete the proof by induction (similarly as in the case $w_{0} \geq 4$). So assume that at least one of them has Euler genus g. Hence S^{\prime} or $S^{\prime \prime}$, say S^{\prime}, is a cylinder. By the choice of J_{0} and P, S^{\prime} corresponds to

Figure 1: The cylinder added to S^{\prime}
P. To each of $S^{\prime}, S^{\prime \prime}$ we add two discs so that $C_{1}, C_{2}, R_{1}, R_{2}$ become facial cycles. The graph on $S^{\prime \prime}$ is 4 -connected or complete and of Euler genus less than g, so we apply induction to that graph. The graph on S^{\prime} is planar with facial cycles C_{1}, R_{1}, each of length 2 or 3 . We add a vertex y joined to all vertices of C_{1} and a vertex z joined to all vertices of R_{1}. By [17], the resulting graph M has a path P from y to z such that each P-bridge has at most 3 vertices of attachment. (In [17] it is required that the graph is 2 -connected. If M is not 2 -connected, we apply [17] to each block of M.) Since G is 4 -connected, P contains all vertices of M (except possibly some on C_{1} or R_{1}) and the proof is complete when $2 \leq w_{0} \leq 3$.

Consider finally the case where $w_{0}=1$. In each face which is not bounded by a cycle, we add a vertex joined to all vertices on the boundary. As G is 4 -connected, we add at most $2 g$ new vertices. For, in each augmented face we can draw a simple noncontractible curve having precisely one vertex in common with G, and no two of these curves are homotopic. Hence there are at most $2 g$ such curves, see, e.g., [11]. Now we repeat the proof of the case when $2 \leq w_{0} \leq 3$.

4 Proof of Theorem 1.3

If the Euler genus is at most 2, we apply the result of [5]. For the general case we repeat the inductive proof of Theorem 1.2. The only essential difference is that instead of using [17] at the end of that proof, we apply [5]. Note that we only need to show that G contains a path of length $c n^{\log 2 / \log 3}$, by the aforementioned result of Bondy and Locke [4]. We leave the details to the
reader.

References

[1] D. Archdeacon, N. Hartsfield, C. H. C. Little, Nonhamiltonian triangulations with large connectivity and representativity, J. Combin. Theory Ser. B 68 (1996) 45-55.
[2] D. W. Barnette, Trees in polyhedral graphs, Canad. J. Math. 18 (1966) 731-736.
[3] D. W. Barnette, 2-connected spanning subgraphs of planar 3-connected graphs, J. Combin. Theory Ser. B 61 (1994) 210-216.
[4] J. A. Bondy, S. C. Locke, Relative length of paths and cycles in 3connected graphs, Discrete Math. 33 (1981) 111-122.
[5] G. Chen, X. Yu, Longest cycles in 3-connected planar graphs, submitted.
[6] M. N. Ellingham, Z. Gao, Spanning trees in locally planar triangulations, J. Combin. Theory Ser. B 61 (1994) 178-198.
[7] Z. Gao, 2-connected coverings of bounded degree in 3-connected graphs, J. Graph Theory 20 (1995) 327-338.
[8] B. Grünbaum, H. Walther, Shortness exponents of families of graphs, J. Combin. Theory Ser. A 14 (1973) 364-385.
[9] Z. Gao, X. Yu, Convex programming and circumference of 3-connected graphs of low genus, J. Combin. Theory Ser. B 69 (1997) 39-51.
[10] B. Jackson, N. Wormald, Longest cycles in 3-connected planar graphs, J. Combin. Theory Ser. B 54 (1992) 291-321.
[11] A. Malnič, B. Mohar, Generating locally cyclic triangulations of surfaces, J. Combin. Theory Ser. B 56 (1992) 147-164.
[12] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins Univ. Press, to appear.
[13] J. W. Moon, L. Moser, Simple paths on polyhedra, Pacific J. Math. 13 (1963) 629-631.
[14] N. Robertson, P. D. Seymour, Graph minors. VII. Disjoint paths on a surface, J. Combin. Theory Ser. B 45 (1988) 212-254.
[15] D. P. Sanders, Y. Zhao, On 2-connected spanning subgraphs with low maximum degree, J. Combin. Theory Ser. B 74 (1998) 64-86.
[16] R. Thomas, X. Yu, 4-connected projective planar graphs are Hamiltonian, J. Combin. Theory Ser. B 62 (1994) 114-132.
[17] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176.
[18] C. Thomassen, Embeddings of graphs with no short noncontractible cycles, J. Combin. Theory Ser. B 48 (1990) 155-177.
[19] C. Thomassen, Five-coloring maps on surfaces, J. Combin. Theory Ser. B 59 (1993) 89-105.
[20] C. Thomassen, Trees in triangulations, J. Combin. Theory Ser. B 60 (1994) 56-62.
[21] C. Thomassen, Color-critical graphs on a fixed surface, J. Combin. Theory Ser. B 70 (1997) 67-100.
[22] W. T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116.
[23] X. Yu, Disjoint paths, planarizing cycles, and k-walks, Trans. Amer. Math. Soc. 349 (1997) 1333-1358.

[^0]: * J. Combin. Theory, Ser. B (2001) to appear.
 ${ }^{\dagger}$ Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-0502-0101-98.

