K_{6}-minors in projective planar graphs*

Gašper Fijavž* and Bojan Mohar ${ }^{\dagger}$
Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana
Slovenia

Abstract

It is shown that every 5 -connected graph embedded in the projective plane with face-width at least 3 contains the complete graph on 6 vertices as a minor.

1 Introduction

Let G be a simple graph embedded in a surface Σ. For the most of the paper we will only concern the case where Σ is the projective plane \mathbb{N}_{1}. We use the terminology from [1], basic facts about graph embeddings can be found in [2] or [5]. If v is a vertex and f is a face of G then $\mathrm{d}(v)$ and $\mathrm{d}(f)$ stand for the degree of v and length of f, respectively. By $\delta(G)$ we denote the minimum degree of vertices of G.

A separation of a graph G is a pair of subgraphs (H, K) such that $E(H) \cap$ $E(K)=\emptyset, H \cup K=G$ and $|V(H)|>|V(H) \cap V(K)|<|V(K)|$. The order of the separation (H, K) is $|V(H) \cap V(K)|$. A separation of order k is a k-separation. A graph G is k-connected if $|V(G)|>k$ and G has no k^{\prime} separation for any $k^{\prime}<k$. If G is k-connected then $\delta(G) \geq k$.

[^0]Let G be a graph embedded in Σ. We say that a vertex v sees a vertex u if u and v lie on a common face. Seeing is a symmetric relation among vertices of G that contains adjacency.

Let U, W be subsets of $V(G)$. A $U-W$ path is a path P in G such that one endvertex of P is in U the other endvertex is in W and no intermediate vertex is in $U \cup W$. We say that $S \subseteq V(G)$ separates U from W if every $U-W$ path uses a vertex from S. We define similarly $u-W, U-w$, and $u-w$ paths where $u, w \in V(G)$.

Let Σ denote any surface other than the sphere. Let C be a contractible simple closed curve in Σ. In that case we can define the interior of $C, \operatorname{Int}(C)$, as the component of $\Sigma \backslash C$ which is homeomorphic to an open disc. Similarly we define the exterior $\operatorname{Ext}(C)$ of C. If a simple closed curve C is not contractible it is called essential. A basic fact from algebraic topology states that any two essential closed curves in the projective plane are homotopic. The face-width or representativity of a graph G embedded in Σ is the minimum number of intersecting points of G with any essential simple closed curve and is denoted by $\mathrm{fw}(G)$. See [8] or [5] for an introduction.

A graph H is a minor of a graph $G, H \leq_{m} G$, if H can be obtained by a series of contractions of edges from a subgraph of G. A minor H of G can be described in the following way: a vertex v of H corresponds to a connected subgraph v_{H} of G, distinct vertices of H correspond to disjoint subgraphs of G and if two vertices v and u of H are adjacent there is an edge of G connecting a vertex of v_{H} with a vertex of u_{H}. Every vertex of G clearly belongs to at most one v_{H}. The phrase that a vertex of G is a certain vertex of the minor H will mean that it belongs to some $v_{H}, v \in V(H)$.

A k-wheel $\left(W_{k}\right)$ is a graph with vertices $v_{0}, v_{1}, \ldots, v_{k}, \ldots$ such that v_{0} is adjacent exactly to vertices v_{1}, \ldots, v_{k} and the vertices of W_{k} distinct from v_{0} induce a (simple) cycle; v_{0} is called the hub of the wheel, the vertices v_{1}, \ldots, v_{k} are called spoke vertices, the other vertices are called rim vertices and may or may not be present; edges incident with v_{0} are called spokes, the remaining ones are called rim edges. Further on, we assume that spoke vertices appear along the cycle according to their indices.

Let G be a graph embedded in Σ, and let $v \in V(G)$. The surface neighborhood of v is the closure of the union of faces incident with v. If G is 3 -connected and $\mathrm{fw}(G) \geq 3$ (or G is plane and 3-connected), then the surface neighborhood of any vertex is a closed disc with induced embedding of a wheel. This implies that in this case no two faces of G can both be incident with a pair of nonadjacent vertices of G.

Let

$$
\begin{equation*}
C=v_{1} f_{1} \ldots v_{k} f_{k} v_{1} \tag{1}
\end{equation*}
$$

be a sequence such that $v_{i}(i=1, \ldots, k)$ are distinct vertices of $G, f_{i}(i=$ $1, \ldots, k)$ are faces of G, and each face f_{i} is incident with vertices v_{i} and v_{i+1}. Then we say that C is a face chain (FC). We call v_{i} and $f_{i}(i=1, \ldots, k)$ the vertices and faces of C, respectively, and write $V(C)=\left\{v_{1}, \ldots, v_{k}\right\}$. We also call v_{i} and f_{i} the beads of C and define k to be the length of C. We define the length of a (contiguous) subsequence C^{\prime} of C as one half r, where r is the number of beads of C^{\prime} minus one. Note that the length of the subsequence is an integer if and only if the end beads are of the same type. The face chain C determines a closed curve $\Gamma=\Gamma(C)$ which intersects G in vertices v_{1}, \ldots, v_{k} and runs through faces f_{1}, \ldots, f_{k} (in this order). If each v_{i} occurs on the boundary of f_{i-i} and f_{i} at most once, then $\Gamma(C)$ is determined up to homotopy. We may assume that Γ is a simple closed curve unless there are indices $i<j$ such that $f_{i}=f_{j}$ and $v_{i}, v_{j}, v_{i+1}, v_{j+1}$ occur in this (interlaced) order along the boundary of f_{i}. If Γ is essential, then we say that C is an essential face chain. Suppose now that Γ is contractible and simple. The graph $G_{p}:=G \cap(\operatorname{Int}(\Gamma) \cup \Gamma)$ is clearly a plane graph and will be referred to as the plane part of C. The graph $G_{x}:=G \cap(\operatorname{Ext}(\Gamma) \cup \Gamma)$ will be called the exterior part of C. If $\left|V\left(G_{p}\right)\right|>k$ then C is called a k-separating face chain (k-SFC for short). If, furthermore, $\left|V\left(G_{x}\right)\right|>k$ then $\left(G_{p}, G_{x}\right)$ is a k-separation.

Lemma 1 Let G be a 5-connected graph and let $C=v_{1} f_{1} \ldots v_{5} f_{5} v_{1}$ be a 5SFC. Then either $V\left(G_{p}\right)=6$ or $V\left(G_{p}\right) \geq 11$. In the latter case, there exists a vertex $v \in V\left(G_{p}\right)$ that sees no vertices of C.

Proof. Let us call v_{1}, \ldots, v_{5} the outer vertices of G_{p} and call the remaining ones interior vertices. We have to show that there cannot be less than 6 interior vertices provided there are at least two of them. Without the loss of generality, we can assume that outer vertices induce a 5 -cycle in the order of their indices. Suppose that G_{p} is a counterexample with a minimum number of vertices and let $r=\left|V\left(G_{p}\right)\right|$.

Suppose first that $r=7$. Let u and w be the interior vertices. Since $\mathrm{d}(u) \geq 5, u$ has at least four neighbors in $V(C)$. So has w. Then u and w have at least three common neighbors in $V(C)$ which is clearly not possible. Therefore $r \geq 8$.

If $u \in V\left(G_{p}\right)$ is the only interior vertex adjacent to v_{1}, the sequence $u, v_{2}, v_{3}, v_{4}, v_{5}$ would induce another 5 -SFC, its plane part would have one vertex less than G_{p} and at least 7 vertices which is a contradiction to the minimality of G_{p}. Therefore, every outer vertex of G_{p} is adjacent to at least two interior vertices. Obviously, no interior vertex can be adjacent to three consecutive outer vertices and there can be at most one adjacent to three nonconsecutive ones. Since $\delta(G) \geq 5$, this implies that $G_{p}-V(C)$ is a plane graph with at most one vertex of degree ≤ 2; hence it is not outerplanar. Let v be an interior vertex of $G_{p}-V(C)$. Its neighborhood alone contains at least 6 vertices and these are distinct from vertices of C. This completes the proof.

We will use another technical lemma.
Lemma 2 Let G be either a plane or projective plane graph with minimum degree 5. Then G contains a vertex v of degree 5 which is incident with at least four triangular faces and the fifth face f incident with v has length at most 5. Moreover, if $\mathrm{d}(f)=4$, at least three vertices of f have degree 5. If $\mathrm{d}(f)=5$, all vertices of f have degree 5 .

Proof. We will prove this fact using discharging method. Let $\mathrm{d}(v)-6$ and $2 \mathrm{~d}(f)-6$ be the initial charges of every vertex v and face f, respectively. Plugging

$$
\sum_{v \in V(G)} \mathrm{d}(v)=2|E(G)| \quad \text { and } \quad \sum_{f \in F(G)} \mathrm{d}(f)=2|E(G)|
$$

into Euler's formula we obtain

$$
\sum_{v \in V(G)}(\mathrm{d}(v)-6)+\sum_{f \in F(G)}(2 \mathrm{~d}(f)-6)<0 .
$$

The total initial charge is negative. Now we redistribute the charge from positively charged faces of G according to the following rule:
R. Every face f of length at least 4 distributes its positive charge uniformly among vertices of degree 5 incident with it.

After charge distribution, only vertices of degree five can be negatively charged. Since the total charge of G remains negative, there exists a negatively charged
vertex v which can be incident with at most one nontriangular face. Moreover, if v is incident with a face f of length ≥ 4, then more than $2 \mathrm{~d}(f)-6$ vertices of f have degree 5 . This completes the proof.

Throughout the paper we will use the following two theorems. The first one can be proved using Menger's theorem (cf. [6] or [9]).
Theorem 3 Let G be a plane graph and let $s_{1}, \ldots, s_{l}, t_{l}, \ldots, t_{1}$ be vertices along the outer face f_{0} in that order. Then G contains disjoint $s_{i}-t_{i}$ paths $P_{i}(i=1, \ldots, l)$ if and only if there is no k-separating face chain C such that f_{0} is a bead of C and vertices of C separate more than k pairs s_{i}, t_{i}.

The second result has been proven by Robertson and Seymour in [6].
Theorem 4 Let G be a projective plane graph and f a face bounded by a facial cycle $s_{1} s_{2} s_{3} t_{1} t_{2} t_{3}$ of length 6 . Then G contains disjoint $s_{i}-t_{i}$ paths P_{i} $(i=1,2,3)$ if and only if there exists no k-SFC with $k \leq 5$ containing f in its interior.

2 Main theorem

Throughout this section, let G be a 5 -connected graph embedded in the projective plane \mathbb{N}_{1} with face-width at least 3 . We will show that G contains K_{6} as a minor.
(1) There exist no k-SFC for $k \leq 4$.

Proof. Let C be a k-SFC and $k \leq 4$. Let G_{p} and G_{x} be the plane part and the exterior part with respect to C. If $\left|V\left(G_{x}\right)\right|=k \leq 4$ we can find an essential curve Γ with $|\Gamma \cap G| \leq 2$. Otherwise $\left|V\left(G_{x}\right)\right|>k$ and $\left(G_{p}, G_{x}\right)$ is a k-separation. A contradiction.
(2) Suppose C is a 5-SFC with vertices $V(C)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. If $V\left(G_{x}\right)=V(C)$ then $v_{1} v_{3} v_{5} v_{2} v_{4}$ is a 5-cycle of G and is contained in G_{x}.
Proof. With local deformation of C we may assume that G_{p} contains all the edges of G of the form $v_{i} v_{i+1}$. It is then enough to show that $\delta\left(G_{x}\right)=2$. Suppose this is not the case. Then G_{x} is a proper subgraph of the 5 -cycle $v_{1} v_{3} v_{5} v_{2} v_{4}$. We may assume that the edge $v_{1} v_{3}$ is not present in G_{x}. In this case, vertices v_{4} and v_{5} cover all edges of G_{x}. Now the induced embedding of $G-v_{4}-v_{5}$ is in the plane, which is a contradiction to $\mathrm{fw}(G) \geq 3$.

Choosing a 5-wheel minor W

Choose an arbitrary vertex v of degree 5 which satisfies the conclusion of Lemma 2. Let $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5} be its neighbors and let $g_{i}(i=1, \ldots, 5)$ denote the face incident with v, v_{i}, and v_{i+1} (indices modulo 5). If v is incident with a nontriangular face, let g_{5} be the one. Vertices $v_{i}(i=1, \ldots, 5)$ are spoke vertices of the 5 -wheel induced by the surface neighborhood of v.

Let $C=u_{1} f_{1} u_{2} f_{2} u_{3} f_{3} u_{4} f_{4} u_{5} f_{5} u_{1}$ be a maximal (in the sense of containment of edges in its interior) 5 -SFC that contains v in its interior. Clearly, C exists, because $v_{1} f_{1} v_{2} f_{2} \ldots v_{5} f_{5} v_{1}$ is a 5 -SFC which contains v in its interior. We define G_{p} and G_{x} with respect to C.

First suppose that v is the only vertex in $\operatorname{Int}(C)$. In this case $v_{i}=u_{i}$ for $i=1, \ldots, 5$. Also observe that $f_{i} \neq g_{i}$ for $i=1, \ldots, 4$ and $f_{5}=g_{5}$ if and only if g_{5} is not a triangle. We set W as the 5 -wheel induced by the neighborhood of v.

Now, suppose $\operatorname{Int}(C)$ contains at least two vertices. By Lemma 1 there is an interior vertex u_{0} of G_{p} which does not see any of the vertices $u_{i}(i=$ $1, \ldots, 5)$. Since G is 5 -connected, there are internally disjoint paths P_{i} joining u_{0} with $u_{i}, i=1, \ldots, 5$. It is easy to see that $P_{i} \subseteq G_{p}$ for all $i=1, \ldots, 5$. The neighorhood of u_{0} is strictly contained in $\operatorname{Int}(C)$. It is easy to observe that it contains internally disjoint $P_{i}-P_{i+1}$ paths Q_{i} for $i=1, \ldots, 5$. Let W be a graph induced by the union $\bigcup_{i=1}^{5}\left(P_{i} \cup Q_{i}\right)$. Clearly W is contractible to a 5 -wheel with hub u_{0} and u_{1}, \ldots, u_{5} are contained in the spoke vertices of the 5 -wheel minor.

In both cases the following is true.
(3) Let C be a maximal 5-SFC in G containing v in its interior and let u_{1}, \ldots, u_{5} be the vertices of C. Then there is a 5 -wheel minor W having vertices of C as its spoke vertices. Moreover, W is entirely in $\operatorname{Int}(C) \cup V(C)$ except in the case when $\operatorname{Int}(C)$ contains exactly one vertex of degree five which is not incident with triangles only. In this case, only the subdivided rim edge $u_{1} u_{5}$ is realized in the exterior of C.

Finding a suitable cycle minor U in G_{x}

In this part we will mostly work with the outer part G_{x} of the 5 -SFC $C=$ $u_{1} f_{1} u_{2} f_{2} u_{3} f_{3} u_{4} f_{4} u_{5} f_{5} u_{1}$ chosen above. Let $U \subseteq G_{x}$ denote a graph which contracts to a 5 -cycle with vertices $u_{1}, u_{3}, u_{5}, u_{2}, u_{4}$ in that order. Our goal is to show that U exists. Observe that if W is the 5 -wheel minor from (3) and
W is contained in $\operatorname{Int}(C) \cup V(C)$, then $W \cup U$ is contractible to K_{6}. If the subdivided rim edge $u_{1}-u_{5}$ of W is in the exterior part of C, then we shall argue that U can be chosen so that $W \cup U$ still contains K_{6} minor. More precisely, let U_{i} be the connected subgraph of U which is contracted to u_{i} in order to get the 5 -cycle. Then $W \cup U$ is contractible to K_{6} if $U_{3} \cap W=\left\{u_{3}\right\}$, i.e. U_{3} does not contain a vertex of the $u_{1}-u_{5}$ segment of W.

First we prove a statement concerning 6 -SFCs in G.
(4) At most one of the vertices $u_{i}(i=1, \ldots, 5)$ can be a vertex of a 6-SFC D such that $\operatorname{Int}(C) \cup f_{i} \cup f_{i-1} \subseteq \operatorname{Int}(D)$. If such a $6-S F C$ exists, then D and C have no beads in common apart from u_{i}.

Proof. First we show that apart from u_{i} the 6 -SFC D which satisfies the assumptions contains no other bead of C. Suppose this is not the case. Let x be another common bead of C and D. Then u_{i} and x divide C and D into subsequences of lengths c_{1}, c_{2} and d_{1}, d_{2}, respectively, see Figure 1. By the

Figure 1: A 6-separating face chain D.
maximality of C we have $c_{1}+d_{2} \geq 6$ and $c_{2}+d_{1} \geq 6$. On the other hand, $c_{1}+c_{2}+d_{1}+d_{2}=5+6=11$ which is a contradiction.

Let $i \neq j$ and suppose that there exist D_{i} and D_{j}, each satisfying the conditions of the proposition, containing vertices u_{i} and u_{j}, respectively. By the preceeding paragraph, u_{i} lies in the interior of D_{j}, and u_{j} lies in the interior of D_{i}. Therefore D_{i} and D_{j} share at least two beads. Denote them by x and y and label the lengths of segments according to Figure 2. We may assume that, apart from x and y, the segments labeled with e_{1} and e_{3} contain no bead of D_{i}. If $e_{1}+e_{3} \leq d_{2}$, we could replace the segment of D_{i} of length d_{2} by the two segments of D_{j}. This would either contradict maximality of C or give a 6 -SFC intersecting $V(C)$ in two vertices. Hence,

Figure 2: 6-separating face chains D_{i} and D_{j}.
$d_{2} \leq e_{1}+e_{3}-1$. This easily implies that $d_{2}+e_{2} \leq 5$. The corresponding segments of D_{i} and D_{j} thus form a 5 -SFC C^{\prime} (contradicting maximality of C) unless they have a vertex z in common. In that case, C^{\prime} contains a face chain of length ≤ 2. Since G is 3 -connected, this face chain is essential. This implies that $\mathrm{fw}(G) \leq 2$, a contradiction.

We call a vertex u_{i} nice if it is not contained as a bead in a 6 - SFC which satisfies the conditions of (4). Since at least one of u_{2} and u_{4} is nice we may assume that u_{2} is a nice vertex. We say that the face $f_{i}(i=1, \ldots, 5)$ is essential if $f_{i} \cup W$ contains an essential cycle. This is true if f_{i} contains the vertex v_{i+3} (index modulo 5). There is another possibility for f_{2} and f_{3} to be essential without containing vertices u_{5} and u_{1}, respectively. This is possible if W is not contained in G_{p} and f_{2} (or f_{3}) intersects the $u_{1}-u_{5}$ segment which is in G_{x}.

Suppose that f_{i} is an essential face. Then f_{i} or f_{5} is a face of every 6-SFC D which contains $\operatorname{Int}(C)$ in its interior. Now, (4) implies:
(5) If some face $f_{i}(i=1, \ldots, 5)$ is essential, then all vertices u_{1}, \ldots, u_{5} are nice.

We now have the necessary tools to construct the suitable cycle minor.
(6) Suppose that neither f_{1} nor f_{2} are essential faces and that u_{2} is a nice vertex. Then G_{x} contains a subgraph U which contracts to a 5-cycle through vertices $u_{1}, u_{3}, u_{5}, u_{2}, u_{4}$, respectively, and such that $U_{3} \cap W=\left\{u_{3}\right\}$.

Proof. Let x_{1} and x_{3} be the vertices of G_{x} incident with f_{1} and f_{2}, respectively, and adjacent to u_{2}. Observe that $x_{1} \neq u_{1}$ and $x_{3} \neq u_{3}$ by the

Figure 3: Contracting paths in U.
maximality of C. Delete u_{2} from G_{x} and add an edge joining vertices x_{1} and x_{3}. We add edges $x_{1} u_{1}, x_{3} u_{3}$ and $u_{1} u_{5}$ as well. Denote the resulting graph by G_{x}^{\prime}. We want to find disjoint $x_{1}-u_{4}, x_{3}-u_{5}$ and $u_{1}-u_{3}$ paths in G_{x}^{\prime}. According to Theorem 4 the only obstruction for existence of such paths is a 5 -SFC C^{\prime} containing the endpoints of required paths in $\operatorname{Int}\left(C^{\prime}\right) \cup C^{\prime}$. By the maximality of C, C^{\prime} is not a 5 -SFC in G. This is only possible if one of the beads of C^{\prime} is a face incident with the edge $x_{1} x_{3}$. Such a C^{\prime} would then induce a 6 -SFC containing u_{2} and satisfying the assumptions of (4). This is a contradiction since u_{2} is a nice vertex.

Contracting appropriately the obtained paths as shown in Figure 3, the noncontracted edges induce a required cycle. We may assume that the $u_{1}-u_{3}$ path has connected intersection with f_{2}. Then we may achieve $U_{3} \subseteq f_{2}$, so that $U_{3} \cap W=\left\{u_{3}\right\}$.

The following proposition settles another case.
(7) Suppose that f_{1} is an essential face but f_{2} is not essential. Then we can find a subgraph U in G_{x} as stated in (6).

Proof. The situation is roughly depicted in Figure 4. Since f_{1} is an essential face, it contains u_{4}. We cut the projective plane along the corresponding essential curve (shown as the dotted line), split the vertex u_{4} and obtain a 'planar' drawing of G_{x}. This drawing is represented in Figure 4 as the square

Figure 4: Cutting when f_{1} is an essential face.
P. Let S denote the set of vertices of the $\left(u_{4}, u_{1}\right]$ segment along f_{1} and let $x \in V\left(G_{x}\right)$ be the neighbor of u_{3} incident with f_{2}. In order to find U it is enough to find pairwise disjoint paths Q_{1} linking x with u_{5}, and Q_{2} linking u_{3} with u_{1} (respectively) that are disjoint from vertices on the top segment of P and the left copy of u_{4}.

Suppose that f is a face lying inside the square P, where $f \neq f_{i}(i=$ $1, \ldots, 5)$. The following observations are true and they are easy to argue:

1. f is not incident with the base and the top of P at the same time.
2. f is not incident with f_{4} and the left copy of u_{4} at the same time.
3. If f is incident with the left copy of u_{4} and f^{\prime} is a face in P incident with the right copy of u_{4}, then f and f^{\prime} do not share a vertex (distinct from u_{4}).

Concerning the above observations and using Theorem 3 (applied to P after removal of the left copy of u_{4} and the top segment of P) the only possible obstruction for the required paths Q_{1} and Q_{2} is a pair of faces g and $g^{\prime} \neq f_{4}$ in P sharing a common vertex y such that g is incident with the left copy of u_{4} and g^{\prime} is incident with a vertex $z \neq u_{4}$ (by observation 3) on

Figure 5: Cutting when both f_{2} and f_{3} are essential.
the segment $\left[u_{2}, u_{4}\right)$ in P. In this case the sequence $u_{4} g y g^{\prime} z f_{1} u_{1} f_{5} u_{5} f_{4} u_{4}$ is a 5 -SFC contradicting the maximality of C.

Now it is easy to observe, that we can choose U_{3} to consist of the vertex u_{3} only.

By (6) and (7) we may assume that f_{2} is essential. By (5), all vertices $u_{i}(i=1, \ldots, 5)$ are nice. Hence, we may apply (6) to u_{4}, f_{3}, and f_{4} if neither f_{3} nor f_{4} is essential. If f_{4} is essential and f_{3} is not essential, we apply the arguments of (7) to u_{4}, f_{3} and f_{4}, by symmetry. Therefore we may assume, that both, f_{2} and f_{3} are essential. This case is considered in the next proposition.
(8) Suppose that f_{2} and f_{3} are essential faces. Then G_{x} contains U as stated in (6).

Proof. Since f_{2} and f_{3} are essential, they both contain at least one vertex from the $u_{1}-u_{5}$ segment of W. Denote them by y_{5} and y_{1}, respectively. The situation is depicted in Figure 5.

Note that if $W \subseteq G_{p}$, then $y_{1}=u_{1}$ and $y_{5}=u_{5}$. In the case $W \nsubseteq G_{p}, f_{2}$ and f_{3} do not share a vertex apart from u_{3}, since $\mathrm{d}\left(u_{3}\right) \geq 5$. In both cases $y_{5} \neq y_{1}$.

Now, consider the 3-FC $u_{3} f_{3} y_{1} f_{5} y_{5} f_{2} u_{3}$. Since it is not a separating facechain, it bounds a triangular face. We denote the latter by g. This implies, that u_{3} is adjacent to both y_{1} and y_{5} and we can set U_{3}, the connected subgraph which contracts to the third vertex of U, to be $\left\{u_{3}\right\}$.

Furthermore, we set $U_{i}:=\left\{y_{i}, u_{i}\right\}(i=1,5)$. We cut the projective plane along the dotted line splitting the vertex u_{3} in order to obtain a 'planar' drawing P of G_{x}. Now, it suffices to find a path Q, linking u_{2} with u_{4}, which is disjoint from both U_{1} and U_{5}.

Applying Theorem 3 to the disk obtained from P by deleting u_{3}, U_{1}, and U_{5}, yields that the only possible obstruction for Q would be a face $h \neq f_{5}$ containing vertices from both, U_{1} and U_{5}. However, such a face h does not exist since it would give rise to an essential curve intersecting G only in two vertices, contradicting $\mathrm{fw}(G) \geq 3$.

Now we state the main theorem which is a direct consequence of (3), (6)-(8), and the remarks preceeding (8).

Theorem 5 If G is a 5-connected graph embedded in the projective plane with $\mathrm{fw}(G) \geq 3$ then it contains a K_{6} minor.

3 Final remarks

Theorem 5 is in a sense best possible. We cannot relax any of the assumptions. Observe that K_{6} triangulates the projective plane. Therefore every embedding of K_{6} in \mathbb{N}_{1} has face-width at least 3. Since the face-width is minor-monotone, no projective graph of face-width less than 3 contains a K_{6}-minor. Neither can we relax the connectivity assumption.

Proposition 6 There is an infinite family of 4-connected projective planar graphs with minimum degree 5 and face-width 3 which do not contain a K_{6} minor.

Proof. Let G be a graph shown on Figure 6. The frame of G is a graph H depicted in black which consists of 7 vertices and 13 edges. H_{1} and H_{2} are plane graphs attached to the frame such that G is 4 -connected, has minimum degree 5 and face-width 3 . Such graphs H_{1} and H_{2} obviously exist; any 4connected planar graph with minimum degree 5 and with a face of length 4 is a candidate.

Figure 6: A graph with no K_{6} minor.

Suppose G contains a K_{6} minor. Since G is connected we can obtain a K_{6} using contractions and deletions of edges only. First, contract and delete as many edges of $E(G) \backslash E(H)$ as possible such that the resulting graph G^{\prime} still contains a K_{6} minor. Denote by H_{1}^{\prime} and H_{2}^{\prime} the resulting minors of H_{1} and H_{2}, respectively. Observe that the subset of vertices of G^{\prime} that corresponds to a vertex of K_{6} is either a connected set of frame vertices or a single vertex.

Let $U_{i}^{\prime}=V\left(H_{i}^{\prime}\right) \backslash V(H), i=1,2$. If $U_{1}^{\prime}=U_{2}^{\prime}=\emptyset$, then H_{1}^{\prime} and H_{2}^{\prime} contribute to the K_{6} minor at most one diagonal edge each. Hence G^{\prime} contains 7 vertices and at most 15 edges. Since K_{6} has 15 edges as well, it cannot be a minor of G^{\prime}.

Suppose now that $r:=\left|U_{1}^{\prime}\right|>0$. The vertices of U_{1}^{\prime} induce the complete graph K_{r}, hence $r \leq 4$. Each of these vertices is joined to the vertices of the K_{6} minor outside U_{1}^{\prime}. This implies that $r \neq 4$. If $1 \leq r \leq 3$, each vertex $u \in U_{1}^{\prime}$ has $6-r$ edges joining u with the frame. This is easily seen to be impossible. The proof is complete.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[2] J. L. Gross, T. W. Tucker, Topological Graph Theory, WileyInterscience, New York, 1987.
[3] R. Halin, H. A. Jung, Über Minimalstrukturen von Graphen, insbesondere von n-fach zusammenhängenden Graphen, Math. Ann. 152 (1963), 75-94.
[4] W. Mader, Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154-168.
[5] B. Mohar, C. Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, 2001.
[6] N. Robertson, P. D. Seymour. Graph minors. VI. Disjoint paths across a disc, J. Combin. Theory Ser. B 41 (1986), 115-138.
[7] N. Robertson, P. D. Seymour. Graph minors. VII. Disjoint paths on a surface, J. Combin. Theory Ser. B 45 (1988), 212-254.
[8] N. Robertson, R. P. Vitray, Representativity of surface embeddings, in: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds.), Springer-Verlag, Berlin, 1990, pp. 293-328.
[9] A. Schrijver, Homotopic routing methods, in: Paths, Flows, and VLSILayout (B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver Eds.), Springer-Verlag, Berlin, 1990, pp. 392-371.

[^0]: *To appear in Combinatorica (2001)
 ${ }^{\dagger}$ Supported in part by the Ministry of Science and Technology of Slovenia, Research Project J1-0502-0101-98.

