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Abstract

It is shown that every 5-connected graph embedded in the projec-
tive plane with face-width at least 3 contains the complete graph on
6 vertices as a minor.

1 Introduction

Let G be a simple graph embedded in a surface Σ. For the most of the paper
we will only concern the case where Σ is the projective plane N1. We use the
terminology from [1], basic facts about graph embeddings can be found in [2]
or [5]. If v is a vertex and f is a face of G then d(v) and d(f) stand for the
degree of v and length of f , respectively. By δ(G) we denote the minimum
degree of vertices of G.

A separation of a graph G is a pair of subgraphs (H,K) such that E(H)∩
E(K) = ∅, H ∪K = G and |V (H)| > |V (H) ∩ V (K)| < |V (K)|. The order
of the separation (H,K) is |V (H) ∩ V (K)|. A separation of order k is a
k-separation. A graph G is k-connected if |V (G)| > k and G has no k′-
separation for any k′ < k. If G is k-connected then δ(G) ≥ k.
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Let G be a graph embedded in Σ. We say that a vertex v sees a vertex
u if u and v lie on a common face. Seeing is a symmetric relation among
vertices of G that contains adjacency.

Let U,W be subsets of V (G). A U −W path is a path P in G such that
one endvertex of P is in U the other endvertex is in W and no intermediate
vertex is in U ∪ W . We say that S ⊆ V (G) separates U from W if every
U −W path uses a vertex from S. We define similarly u −W , U − w, and
u− w paths where u, w ∈ V (G).

Let Σ denote any surface other than the sphere. Let C be a contractible
simple closed curve in Σ. In that case we can define the interior of C, Int(C),
as the component of Σ \ C which is homeomorphic to an open disc. Simi-
larly we define the exterior Ext(C) of C. If a simple closed curve C is not
contractible it is called essential. A basic fact from algebraic topology states
that any two essential closed curves in the projective plane are homotopic.
The face-width or representativity of a graph G embedded in Σ is the min-
imum number of intersecting points of G with any essential simple closed
curve and is denoted by fw(G). See [8] or [5] for an introduction.

A graph H is a minor of a graph G, H ≤m G, if H can be obtained by a
series of contractions of edges from a subgraph of G. A minor H of G can be
described in the following way: a vertex v of H corresponds to a connected
subgraph vH of G, distinct vertices of H correspond to disjoint subgraphs
of G and if two vertices v and u of H are adjacent there is an edge of G
connecting a vertex of vH with a vertex of uH . Every vertex of G clearly
belongs to at most one vH . The phrase that a vertex of G is a certain vertex
of the minor H will mean that it belongs to some vH , v ∈ V (H).

A k-wheel (Wk) is a graph with vertices v0, v1, . . . , vk, . . . such that v0 is
adjacent exactly to vertices v1, . . . , vk and the vertices of Wk distinct from
v0 induce a (simple) cycle; v0 is called the hub of the wheel, the vertices
v1, . . . , vk are called spoke vertices, the other vertices are called rim vertices
and may or may not be present; edges incident with v0 are called spokes,
the remaining ones are called rim edges. Further on, we assume that spoke
vertices appear along the cycle according to their indices.

Let G be a graph embedded in Σ, and let v ∈ V (G). The surface neigh-
borhood of v is the closure of the union of faces incident with v. If G is
3-connected and fw(G) ≥ 3 (or G is plane and 3-connected), then the surface
neighborhood of any vertex is a closed disc with induced embedding of a
wheel. This implies that in this case no two faces of G can both be incident
with a pair of nonadjacent vertices of G.
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Let
C = v1f1 . . . vkfkv1 (1)

be a sequence such that vi (i = 1, . . . , k) are distinct vertices of G, fi (i =
1, . . . , k) are faces of G, and each face fi is incident with vertices vi and vi+1.
Then we say that C is a face chain (FC). We call vi and fi (i = 1, . . . , k) the
vertices and faces of C, respectively, and write V (C) = {v1, . . . , vk}. We also
call vi and fi the beads of C and define k to be the length of C. We define
the length of a (contiguous) subsequence C ′ of C as one half r, where r is the
number of beads of C ′ minus one. Note that the length of the subsequence
is an integer if and only if the end beads are of the same type. The face
chain C determines a closed curve Γ = Γ(C) which intersects G in vertices
v1, . . . , vk and runs through faces f1, . . . , fk (in this order). If each vi occurs
on the boundary of fi−i and fi at most once, then Γ(C) is determined up to
homotopy. We may assume that Γ is a simple closed curve unless there are
indices i < j such that fi = fj and vi, vj , vi+1, vj+1 occur in this (interlaced)
order along the boundary of fi. If Γ is essential, then we say that C is an
essential face chain. Suppose now that Γ is contractible and simple. The
graph Gp := G ∩ (Int(Γ) ∪ Γ) is clearly a plane graph and will be referred
to as the plane part of C. The graph Gx := G ∩ (Ext(Γ) ∪ Γ) will be called
the exterior part of C. If |V (Gp)| > k then C is called a k-separating face
chain (k-SFC for short). If, furthermore, |V (Gx)| > k then (Gp, Gx) is a
k-separation.

Lemma 1 Let G be a 5-connected graph and let C = v1f1 . . . v5f5v1 be a 5-
SFC. Then either V (Gp) = 6 or V (Gp) ≥ 11. In the latter case, there exists
a vertex v ∈ V (Gp) that sees no vertices of C.

Proof. Let us call v1, . . . , v5 the outer vertices of Gp and call the remaining
ones interior vertices. We have to show that there cannot be less than 6
interior vertices provided there are at least two of them. Without the loss of
generality, we can assume that outer vertices induce a 5-cycle in the order of
their indices. Suppose that Gp is a counterexample with a minimum number
of vertices and let r = |V (Gp)|.

Suppose first that r = 7. Let u and w be the interior vertices. Since
d(u) ≥ 5, u has at least four neighbors in V (C). So has w. Then u and w
have at least three common neighbors in V (C) which is clearly not possible.
Therefore r ≥ 8.
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If u ∈ V (Gp) is the only interior vertex adjacent to v1, the sequence
u, v2, v3, v4, v5 would induce another 5-SFC, its plane part would have one
vertex less than Gp and at least 7 vertices which is a contradiction to the
minimality of Gp. Therefore, every outer vertex of Gp is adjacent to at least
two interior vertices. Obviously, no interior vertex can be adjacent to three
consecutive outer vertices and there can be at most one adjacent to three
nonconsecutive ones. Since δ(G) ≥ 5, this implies that Gp − V (C) is a plane
graph with at most one vertex of degree ≤2; hence it is not outerplanar. Let
v be an interior vertex of Gp − V (C). Its neighborhood alone contains at
least 6 vertices and these are distinct from vertices of C. This completes the
proof.

We will use another technical lemma.

Lemma 2 Let G be either a plane or projective plane graph with minimum
degree 5. Then G contains a vertex v of degree 5 which is incident with at
least four triangular faces and the fifth face f incident with v has length at
most 5. Moreover, if d(f) = 4, at least three vertices of f have degree 5. If
d(f) = 5, all vertices of f have degree 5.

Proof. We will prove this fact using discharging method. Let d(v)− 6 and
2d(f) − 6 be the initial charges of every vertex v and face f , respectively.
Plugging

∑

v∈V (G)

d(v) = 2|E(G)| and
∑

f∈F (G)

d(f) = 2|E(G)|

into Euler’s formula we obtain

∑

v∈V (G)

(d(v)− 6) +
∑

f∈F (G)

(2d(f)− 6) < 0.

The total initial charge is negative. Now we redistribute the charge from
positively charged faces of G according to the following rule:

R. Every face f of length at least 4 distributes its positive charge uniformly
among vertices of degree 5 incident with it.

After charge distribution, only vertices of degree five can be negatively charged.
Since the total charge of G remains negative, there exists a negatively charged
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vertex v which can be incident with at most one nontriangular face. More-
over, if v is incident with a face f of length ≥ 4, then more than 2d(f) − 6
vertices of f have degree 5. This completes the proof.

Throughout the paper we will use the following two theorems. The first
one can be proved using Menger’s theorem (cf. [6] or [9]).

Theorem 3 Let G be a plane graph and let s1, . . . , sl, tl, . . . , t1 be vertices
along the outer face f0 in that order. Then G contains disjoint si − ti paths
Pi (i = 1, . . . , l) if and only if there is no k-separating face chain C such that
f0 is a bead of C and vertices of C separate more than k pairs si, ti.

The second result has been proven by Robertson and Seymour in [6].

Theorem 4 Let G be a projective plane graph and f a face bounded by a
facial cycle s1s2s3t1t2t3 of length 6. Then G contains disjoint si − ti paths Pi

(i = 1, 2, 3) if and only if there exists no k-SFC with k ≤ 5 containing f in
its interior.

2 Main theorem

Throughout this section, let G be a 5-connected graph embedded in the
projective plane N1 with face-width at least 3. We will show that G contains
K6 as a minor.

(1) There exist no k-SFC for k ≤ 4.

Proof. Let C be a k-SFC and k ≤ 4. Let Gp and Gx be the plane part
and the exterior part with respect to C. If |V (Gx)| = k ≤ 4 we can find an
essential curve Γ with |Γ∩G| ≤ 2. Otherwise |V (Gx)| > k and (Gp, Gx) is a
k-separation. A contradiction.

(2) Suppose C is a 5-SFC with vertices V (C) = {v1, v2, v3, v4, v5}. If
V (Gx) = V (C) then v1v3v5v2v4 is a 5-cycle of G and is contained in Gx.

Proof. With local deformation of C we may assume that Gp contains all
the edges of G of the form vivi+1. It is then enough to show that δ(Gx) = 2.
Suppose this is not the case. Then Gx is a proper subgraph of the 5-cycle
v1v3v5v2v4. We may assume that the edge v1v3 is not present in Gx. In this
case, vertices v4 and v5 cover all edges of Gx. Now the induced embedding
of G− v4 − v5 is in the plane, which is a contradiction to fw(G) ≥ 3.
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Choosing a 5-wheel minor W

Choose an arbitrary vertex v of degree 5 which satisfies the conclusion of
Lemma 2. Let v1, v2, v3, v4 and v5 be its neighbors and let gi (i = 1, . . . , 5)
denote the face incident with v, vi, and vi+1 (indices modulo 5). If v is
incident with a nontriangular face, let g5 be the one. Vertices vi (i = 1, . . . , 5)
are spoke vertices of the 5-wheel induced by the surface neighborhood of v.

Let C = u1f1u2f2u3f3u4f4u5f5u1 be a maximal (in the sense of contain-
ment of edges in its interior) 5-SFC that contains v in its interior. Clearly, C
exists, because v1f1v2f2 . . . v5f5v1 is a 5-SFC which contains v in its interior.
We define Gp and Gx with respect to C.

First suppose that v is the only vertex in Int(C). In this case vi = ui for
i = 1, . . . , 5. Also observe that fi �= gi for i = 1, . . . , 4 and f5 = g5 if and only
if g5 is not a triangle. We set W as the 5-wheel induced by the neighborhood
of v.

Now, suppose Int(C) contains at least two vertices. By Lemma 1 there
is an interior vertex u0 of Gp which does not see any of the vertices ui (i =
1, . . . , 5). Since G is 5-connected, there are internally disjoint paths Pi joining
u0 with ui, i = 1, . . . , 5. It is easy to see that Pi ⊆ Gp for all i = 1, . . . , 5.
The neighorhood of u0 is strictly contained in Int(C). It is easy to observe
that it contains internally disjoint Pi −Pi+1 paths Qi for i = 1, . . . , 5. Let W
be a graph induced by the union

⋃5
i=1(Pi ∪Qi). Clearly W is contractible to

a 5-wheel with hub u0 and u1, . . . , u5 are contained in the spoke vertices of
the 5-wheel minor.

In both cases the following is true.

(3) Let C be a maximal 5-SFC in G containing v in its interior and let
u1, . . . , u5 be the vertices of C. Then there is a 5-wheel minor W having
vertices of C as its spoke vertices. Moreover, W is entirely in Int(C)∪V (C)
except in the case when Int(C) contains exactly one vertex of degree five
which is not incident with triangles only. In this case, only the subdivided
rim edge u1u5 is realized in the exterior of C.

Finding a suitable cycle minor U in Gx

In this part we will mostly work with the outer part Gx of the 5-SFC C =
u1f1u2f2u3f3u4f4u5f5u1 chosen above. Let U ⊆ Gx denote a graph which
contracts to a 5-cycle with vertices u1, u3, u5, u2, u4 in that order. Our goal is
to show that U exists. Observe that if W is the 5-wheel minor from (3) and
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W is contained in Int(C) ∪ V (C), then W ∪ U is contractible to K6. If the
subdivided rim edge u1 − u5 of W is in the exterior part of C, then we shall
argue that U can be chosen so that W ∪ U still contains K6 minor. More
precisely, let Ui be the connected subgraph of U which is contracted to ui in
order to get the 5-cycle. Then W ∪U is contractible to K6 if U3 ∩W = {u3},
i.e. U3 does not contain a vertex of the u1 − u5 segment of W .

First we prove a statement concerning 6-SFCs in G.

(4) At most one of the vertices ui (i = 1, . . . , 5) can be a vertex of a 6-SFC
D such that Int(C)∪ fi ∪ fi−1 ⊆ Int(D). If such a 6-SFC exists, then D and
C have no beads in common apart from ui.

Proof. First we show that apart from ui the 6-SFC D which satisfies the
assumptions contains no other bead of C. Suppose this is not the case. Let
x be another common bead of C and D. Then ui and x divide C and D into
subsequences of lengths c1, c2 and d1, d2, respectively, see Figure 1. By the

Figure 1: A 6-separating face chain D.

maximality of C we have c1 + d2 ≥ 6 and c2 + d1 ≥ 6. On the other hand,
c1 + c2 + d1 + d2 = 5 + 6 = 11 which is a contradiction.

Let i �= j and suppose that there exist Di and Dj , each satisfying the
conditions of the proposition, containing vertices ui and uj, respectively. By
the preceeding paragraph, ui lies in the interior of Dj , and uj lies in the
interior of Di. Therefore Di and Dj share at least two beads. Denote them
by x and y and label the lengths of segments according to Figure 2. We
may assume that, apart from x and y, the segments labeled with e1 and e3

contain no bead of Di. If e1 + e3 ≤ d2, we could replace the segment of
Di of length d2 by the two segments of Dj . This would either contradict
maximality of C or give a 6-SFC intersecting V (C) in two vertices. Hence,
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Figure 2: 6-separating face chains Di and Dj .

d2 ≤ e1 + e3 − 1. This easily implies that d2 + e2 ≤ 5. The corresponding
segments of Di and Dj thus form a 5-SFC C ′ (contradicting maximality of
C) unless they have a vertex z in common. In that case, C ′ contains a face
chain of length ≤ 2. Since G is 3-connected, this face chain is essential. This
implies that fw(G) ≤ 2, a contradiction.

We call a vertex ui nice if it is not contained as a bead in a 6-SFC which
satisfies the conditions of (4). Since at least one of u2 and u4 is nice we may
assume that u2 is a nice vertex. We say that the face fi (i = 1, . . . , 5) is
essential if fi ∪W contains an essential cycle. This is true if fi contains the
vertex vi+3 (index modulo 5). There is another possibility for f2 and f3 to be
essential without containing vertices u5 and u1, respectively. This is possible
if W is not contained in Gp and f2 (or f3) intersects the u1 − u5 segment
which is in Gx.

Suppose that fi is an essential face. Then fi or f5 is a face of every 6-SFC
D which contains Int(C) in its interior. Now, (4) implies:

(5) If some face fi (i = 1, . . . , 5) is essential, then all vertices u1, . . . , u5

are nice.

We now have the necessary tools to construct the suitable cycle minor.

(6) Suppose that neither f1 nor f2 are essential faces and that u2 is a nice
vertex. Then Gx contains a subgraph U which contracts to a 5-cycle through
vertices u1, u3, u5, u2, u4, respectively, and such that U3 ∩W = {u3}.
Proof. Let x1 and x3 be the vertices of Gx incident with f1 and f2, re-
spectively, and adjacent to u2. Observe that x1 �= u1 and x3 �= u3 by the
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Figure 3: Contracting paths in U .

maximality of C. Delete u2 from Gx and add an edge joining vertices x1 and
x3. We add edges x1u1, x3u3 and u1u5 as well. Denote the resulting graph
by G′

x. We want to find disjoint x1 − u4, x3 − u5 and u1 − u3 paths in G′
x.

According to Theorem 4 the only obstruction for existence of such paths is
a 5-SFC C ′ containing the endpoints of required paths in Int(C ′) ∪ C ′. By
the maximality of C, C ′ is not a 5-SFC in G. This is only possible if one of
the beads of C ′ is a face incident with the edge x1x3. Such a C ′ would then
induce a 6-SFC containing u2 and satisfying the assumptions of (4). This is
a contradiction since u2 is a nice vertex.

Contracting appropriately the obtained paths as shown in Figure 3, the
noncontracted edges induce a required cycle. We may assume that the u1−u3

path has connected intersection with f2. Then we may achieve U3 ⊆ f2, so
that U3 ∩W = {u3}.

The following proposition settles another case.

(7) Suppose that f1 is an essential face but f2 is not essential. Then we can
find a subgraph U in Gx as stated in (6).

Proof. The situation is roughly depicted in Figure 4. Since f1 is an essential
face, it contains u4. We cut the projective plane along the corresponding
essential curve (shown as the dotted line), split the vertex u4 and obtain a
‘planar’ drawing of Gx. This drawing is represented in Figure 4 as the square
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Figure 4: Cutting when f1 is an essential face.

P . Let S denote the set of vertices of the (u4, u1] segment along f1 and let
x ∈ V (Gx) be the neighbor of u3 incident with f2. In order to find U it is
enough to find pairwise disjoint paths Q1 linking x with u5, and Q2 linking
u3 with u1 (respectively) that are disjoint from vertices on the top segment
of P and the left copy of u4.

Suppose that f is a face lying inside the square P , where f �= fi (i =
1, . . . , 5). The following observations are true and they are easy to argue:

1. f is not incident with the base and the top of P at the same time.

2. f is not incident with f4 and the left copy of u4 at the same time.

3. If f is incident with the left copy of u4 and f ′ is a face in P incident
with the right copy of u4, then f and f ′ do not share a vertex (distinct
from u4).

Concerning the above observations and using Theorem 3 (applied to P
after removal of the left copy of u4 and the top segment of P ) the only
possible obstruction for the required paths Q1 and Q2 is a pair of faces g
and g′ �= f4 in P sharing a common vertex y such that g is incident with the
left copy of u4 and g′ is incident with a vertex z �= u4 (by observation 3) on

10



Figure 5: Cutting when both f2 and f3 are essential.

the segment [u2, u4) in P . In this case the sequence u4gyg
′zf1u1f5u5f4u4 is

a 5-SFC contradicting the maximality of C.
Now it is easy to observe, that we can choose U3 to consist of the vertex

u3 only.

By (6) and (7) we may assume that f2 is essential. By (5), all vertices
ui (i = 1, . . . , 5) are nice. Hence, we may apply (6) to u4, f3, and f4 if
neither f3 nor f4 is essential. If f4 is essential and f3 is not essential, we
apply the arguments of (7) to u4, f3 and f4, by symmetry. Therefore we may
assume, that both, f2 and f3 are essential. This case is considered in the
next proposition.

(8) Suppose that f2 and f3 are essential faces. Then Gx contains U as
stated in (6).

Proof. Since f2 and f3 are essential, they both contain at least one vertex
from the u1−u5 segment of W . Denote them by y5 and y1, respectively. The
situation is depicted in Figure 5.

Note that if W ⊆ Gp, then y1 = u1 and y5 = u5. In the case W �⊆ Gp, f2

and f3 do not share a vertex apart from u3, since d(u3) ≥ 5. In both cases
y5 �= y1.
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Now, consider the 3-FC u3f3y1f5y5f2u3. Since it is not a separating face-
chain, it bounds a triangular face. We denote the latter by g. This implies,
that u3 is adjacent to both y1 and y5 and we can set U3, the connected
subgraph which contracts to the third vertex of U , to be {u3}.

Furthermore, we set Ui := {yi, ui} (i = 1, 5). We cut the projective plane
along the dotted line splitting the vertex u3 in order to obtain a ‘planar’
drawing P of Gx. Now, it suffices to find a path Q, linking u2 with u4, which
is disjoint from both U1 and U5.

Applying Theorem 3 to the disk obtained from P by deleting u3, U1, and
U5, yields that the only possible obstruction for Q would be a face h �= f5

containing vertices from both, U1 and U5. However, such a face h does not
exist since it would give rise to an essential curve intersecting G only in two
vertices, contradicting fw(G) ≥ 3.

Now we state the main theorem which is a direct consequence of (3),
(6)–(8), and the remarks preceeding (8).

Theorem 5 If G is a 5-connected graph embedded in the projective plane
with fw(G) ≥ 3 then it contains a K6 minor.

3 Final remarks

Theorem 5 is in a sense best possible. We cannot relax any of the assump-
tions. Observe that K6 triangulates the projective plane. Therefore every
embedding of K6 in N1 has face-width at least 3. Since the face-width is
minor-monotone, no projective graph of face-width less than 3 contains a
K6-minor. Neither can we relax the connectivity assumption.

Proposition 6 There is an infinite family of 4-connected projective planar
graphs with minimum degree 5 and face-width 3 which do not contain a K6-
minor.

Proof. Let G be a graph shown on Figure 6. The frame of G is a graph H
depicted in black which consists of 7 vertices and 13 edges. H1 and H2 are
plane graphs attached to the frame such that G is 4-connected, has minimum
degree 5 and face-width 3. Such graphs H1 and H2 obviously exist; any 4-
connected planar graph with minimum degree 5 and with a face of length 4
is a candidate.
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Figure 6: A graph with no K6 minor.

Suppose G contains a K6 minor. Since G is connected we can obtain a K6

using contractions and deletions of edges only. First, contract and delete as
many edges of E(G) \E(H) as possible such that the resulting graph G′ still
contains a K6 minor. Denote by H ′

1 and H ′
2 the resulting minors of H1 and

H2, respectively. Observe that the subset of vertices of G′ that corresponds
to a vertex of K6 is either a connected set of frame vertices or a single vertex.

Let U ′
i = V (H ′

i) \ V (H), i = 1, 2. If U ′
1 = U ′

2 = ∅, then H ′
1 and H ′

2 con-
tribute to the K6 minor at most one diagonal edge each. Hence G′ contains
7 vertices and at most 15 edges. Since K6 has 15 edges as well, it cannot be
a minor of G′.

Suppose now that r := |U ′
1| > 0. The vertices of U ′

1 induce the complete
graph Kr, hence r ≤ 4. Each of these vertices is joined to the vertices of the
K6 minor outside U ′

1. This implies that r �= 4. If 1 ≤ r ≤ 3, each vertex
u ∈ U ′

1 has 6 − r edges joining u with the frame. This is easily seen to be
impossible. The proof is complete.
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