On a list-coloring problem*

Sylvain Gravier ${ }^{\dagger} \quad$ Frédéric Maffray ${ }^{\dagger} \quad$ Bojan Mohar ${ }^{\ddagger}$

December 24, 2002

Abstract

We study the function $f(G)$ defined for a graph G as the smallest integer k such that the join of G with a stable set of size k is not $|V(G)|-$ choosable. This function was introduced recently in order to describe extremal graphs for a list-coloring version of a famous inequality due to Nordhaus and Gaddum [1]. Some bounds and some exact values for $f(G)$ are determined.

1 Introduction

We consider undirected, finite, simple graphs. A coloring of a graph $G=$ (V, E) is a mapping $c: V \rightarrow\{1,2, \ldots\}$ such that $c(u) \neq c(v)$ for every edge $u v \in E$. If $|c(V)| \leq k$, then c is also said to be a k-coloring. The chromatic number $\chi(G)$ is the smallest integer k such that G admits a k-coloring. A graph is k-colorable if it admits a k-coloring.

Vizing [4], as well as Erdős, Rubin and Taylor [2] introduced a variant of the coloring problem as follows. Suppose that each vertex v is assigned a list $L(v) \subseteq\{1,2, \ldots\}$ of allowed colors; we then want to find a coloring c such that $c(v) \in L(v)$ for all $v \in V$. If such a coloring exists, we say that G is L-colorable and that c is an L-coloring of G. The graph is k-choosable if G is L-colorable for every assignment L that satisfies $|L(v)| \geq k$ for all $v \in V$. The choice number or list-chromatic number $\operatorname{Ch}(G)$ of G is the smallest k such that G is k-choosable. Clearly, every graph satisfies $C h(G) \geq \chi(G)$.

Let G_{1}, G_{2} be two vertex-disjoint graphs. The graph $G_{1} * G_{2}=\left(V\left(G_{1}\right) \cup\right.$ $\left.V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x y \mid x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}\right)$ is called the join of G_{1} and G_{2}. It is easy to see that $\chi\left(G_{1} * G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$ for

[^0]any two vertex-disjoint graphs G_{1}, G_{2}. So, the chromatic number has a straightforward behavior with respect to the join operation. On the other hand, the choice number does not behave so simply. For instance, if G_{1} and G_{2} are edgeless graphs on n and n^{n} vertices, respectively, then obviously $C h\left(G_{1}\right)=C h\left(G_{2}\right)=1$, but it is known (see [3]) that $\operatorname{Ch}\left(G_{1} * G_{2}\right)=n+1$, i.e., the complete bipartite graph $K_{n, n^{n}}$ is not n-choosable (indeed, to see this, assign to the i-th vertex on the "left" side (the stable set of size n) of $K_{n, n^{n}}$ the list $L_{i}=\{(i-1) n+1, \ldots,(i-1) n+n\}(i=1, \ldots, n)$. Assign to the vertices on the "right" side, one-to-one, all the lists of size n obtained by picking one element from each $L_{i}, i=1, \ldots, n$; clearly there are n^{n} such possibilities; this produces a list assignment L where all lists have size n and for which there is no L-coloring).

Let us denote by S_{k} the edgeless graph on k vertices. Since the complete bipartite graph $K_{n, n^{n}}$ is not n-choosable, if H is any graph on n vertices then $C h\left(H * S_{n^{n}}\right)>n$. We can therefore define $f(H)$ as the smallest integer k such that $\operatorname{Ch}\left(H * S_{k}\right)>|V(H)|$. The fact from [3] that $K_{n, n^{n}}$ is not n-choosable and is minimal with that property means that $f\left(S_{n}\right)=n^{n}$. It is easy to see that $f(K)=1$ for every complete graph K. Obviously, if $e \in E(G)$, then $f(G-e) \geq f(G)$. This implies:

If G is any graph on n vertices, then $1 \leq f(G) \leq n^{n}$.

The definition of $f(G)$ was motivated by the determination of extremal graphs for the inequality $C h(G)+C h(\bar{G}) \leq|V(G)|+1$ (see [1]). Here we would like to examine in more detail the problem of evaluating and computing $f(G)$.

An alternative definition for $f(G)$ can be given as follows. Let $G=$ (V, E) be a graph on n vertices, and let $\mathcal{L}(G)$ be the set of assignments $L: V \rightarrow \mathcal{P}(\{1,2, \ldots\})$ that satisfy:
(i) $|L(v)| \geq n, \forall v \in V$, and
(ii) $L(u) \cap L(v)=\emptyset$ if $u, v \in V, u v \notin E$.

Clearly, for every $L \in \mathcal{L}(G)$, there exists at least one L-coloring of G, because of (i). Moreover, by (ii) every L-coloring c of G uses exactly n colors; we denote by $c(V)$ the set of n colors used by c. We now write:

$$
\begin{equation*}
\mathcal{C}(L)=\{c(V) \mid c \text { is an } L \text {-coloring of } G\} . \tag{2}
\end{equation*}
$$

Now define $f^{\prime}(G)=\min \{|\mathcal{C}(L)|: L \in \mathcal{L}(G)\}$.

Lemma 1 For every graph G, we have $f(G)=f^{\prime}(G)$.
Proof. Assume G has n vertices, and write $f(G)=k$. By the definition of $f(G)$, we have $C h\left(G * S_{k}\right) \geq n+1$. Thus there exists a list assignment L on $V\left(G * S_{k}\right)$ with $|L(v)| \geq n\left(\forall v \in V\left(G * S_{k}\right)\right)$ and such that $G * S_{k}$ is not L-colorable. Suppose there were non-adjacent vertices $u, v \in V(G)$ such that $L(u) \cap L(v) \neq \emptyset$. We could then do the following: assign a color from $L(u) \cap L(v)$ to u and v; for all vertices x of $G-\{u, v\}$ taken successively, assign to x a color from $L(x)$ different from the colors already assigned to the preceding vertices (this is possible because $L(x)$ is large enough); likewise for every vertex y of S_{k} assign to y a color from $L(y)$ different from the colors assigned to the vertices of G. Thus we would obtain an L-coloring of $G * S_{k}$, a contradiction. It follows that the restriction of L to G satisfies (i) and (ii). Furthermore, whenever c is an L-coloring of G, the set $c(V(G))$ must appear as $L(s)$ for at least one $s \in S_{k}$, for otherwise this L-coloring c of G could obviously be extended to an L-coloring of $G * S_{k}$, a contradiction. Hence $|\mathcal{C}(L)| \leq k$. The definition of f^{\prime} implies $f^{\prime}(G) \leq k$, i.e., $f^{\prime}(G) \leq f(G)$.

Conversely, assume that L is a list assignment on G such that $L \in$ $\mathcal{L}(G)$ and $|\mathcal{C}(L)|=f^{\prime}(G)=j$. Write $\mathcal{C}(L)=\left\{C_{1}, \ldots, C_{j}\right\}$ and let $S_{j}=$ $\left\{s_{1}, \ldots, s_{j}\right\}$ be a stable set of size j. Let L^{\prime} be the list assignment defined by $L^{\prime}(v)=L(v)$ for all $v \in V(G)$ and $L^{\prime}\left(s_{i}\right)=C_{i}(i=1, \ldots, j)$. Observe that, by (ii), $\left|L^{\prime}(u)\right| \geq n$ for all $u \in V\left(G * S_{j}\right)$. Clearly $G * S_{j}$ is not L^{\prime}-colorable, so $f(G) \leq j$, i.e., $f(G) \leq f^{\prime}(G)$.

Using Lemma 1, it is possible to compute $f(G)$ for some small graphs, but in general the computation is difficult even for graphs with a simple structure. For example, one can establish that $f\left(C_{4}\right)=36$, but we need a tedious case analysis to show that $f\left(C_{5}\right)=500$.

Theorem 1 If G has n vertices and is not a complete graph, then $f(G) \geq$ n^{2}.

Proof. We will prove, by induction on n, that if u, v are non-adjacent vertices of G and $L \in \mathcal{L}(G)$, then $f^{\prime}(G) \geq|L(u)||L(v)|$. This statement clearly implies the theorem. For $n=2$, the statement is obvious. Now, assume that $n \geq 3$, and write $n_{1}=|L(u)|$ and $n_{2}=|L(v)|$. Pick any $z \in V \backslash\{u, v\}$ and pick any color, say 1 , in $L(z)$. We may assume by (ii) that $1 \notin L(v)$. Define:

$$
\mathcal{C}_{1}(L)=\{c(V) \mid c \text { is an } L \text {-coloring of } G \text { with } c(z)=1\},
$$

$\overline{\mathcal{C}}_{1}(L)=\{c(V) \mid c$ is an L-coloring of G with $1 \notin c(V)\}$.
Clearly, $\mathcal{C}(L) \supseteq \mathcal{C}_{1}(L) \cup \overline{\mathcal{C}}_{1}(L)$ and $\mathcal{C}_{1}(L) \cap \overline{\mathcal{C}}_{1}(L)=\emptyset$. Thus $|\mathcal{C}(L)| \geq$ $\left|\mathcal{C}_{1}(L)\right|+\left|\overline{\mathcal{C}}_{1}(L)\right|$. Let us now evaluate these numbers.

On one hand, we have $\left|\mathcal{C}_{1}(L)\right| \geq\left(n_{1}-1\right) n_{2}$ by the induction hypothesis applied to the graph $G-z$ with the list assignment $L_{1} \in \mathcal{L}(G-z)$ determined by $L_{1}(w)=L(w) \backslash\{1\}$ for each $w \in V(G-z)$.

On the other hand, we claim that $\left|\overline{\mathcal{C}}_{1}(L)\right| \geq n_{2}$. Indeed, fix an L-coloring γ of the subgraph $G \backslash\{u, v\}$ that does not use color 1 . Such a coloring exists because that subgraph has $n-2$ vertices while L_{1} assigns lists of size at least $n-1$ by (i). Write $t_{1}=|L(u) \cap \gamma(V \backslash\{u, v\})|$ and $t_{2}=|L(v) \cap \gamma(V \backslash\{u, v\})|$. Write $\lambda_{1}=n_{1}-\left(t_{1}+1\right)$ and $\lambda_{2}=n_{2}-t_{2}$. Since color 1 is not in $L(v)$ (but possibly is in $L(u)), \gamma$ can be extended to an L-coloring of G in at least $\lambda_{1} \lambda_{2}$ ways, and each of these uses a different set of colors $\gamma(V) \in \overline{\mathcal{C}}_{1}(L)$. Since $\lambda_{1}>0, \lambda_{2}>0$, and $\lambda_{1}+\lambda_{2} \geq n_{2}+1$, we have $\left|\overline{\mathcal{C}}_{1}(L)\right| \geq \lambda_{1} \lambda_{2} \geq n_{2}$.

Now, $\left|\mathcal{C}_{1}(L)\right| \geq\left(n_{1}-1\right) n_{2}$ and $\left|\overline{\mathcal{C}}_{1}(L)\right| \geq n_{2}$ imply $|\mathcal{C}(L)| \geq n_{1} n_{2}$.
We observe that the bound given in the preceding theorem is tight, i.e., for any $n \geq 2$, there exists a graph G on n vertices with $f(G)=n^{2}$. Indeed, consider the graph $K_{n}-E\left(K_{1, i}\right)$ obtained from a complete graph on n vertices by removing i edges incident to one given vertex $u(1 \leq i \leq n-1)$:

Claim $1 f\left(K_{n}-E\left(K_{1, i}\right)\right)=n^{2}$.
Proof. By Theorem 1, we have $f\left(K_{n}-E\left(K_{1, i}\right)\right) \geq n^{2}$, so we need only to prove that $f\left(K_{n}-E\left(K_{1, i}\right)\right) \leq n^{2}$. For this purpose, assign to the vertex u the list $\{1,2, \ldots, n\}$ and to all other vertices of the graph the list $\{n+1, \ldots, 2 n\}$. This yields a list assignment $L \in \mathcal{L}(G)$. It is easy to check that $|\mathcal{C}(L)|=n^{2}$, hence $f(G) \leq n^{2}$.

We do not know of any graph G other than $K_{n}-E\left(K_{1, i}\right)$ that satisfies $f(G)=|V(G)|^{2}$.

2 The significance of clique partitions

Given a graph $G=(V, E)$, a clique partition of G is a set $Q=\left\{Q_{1}, \ldots, Q_{p}\right\}$ of pairwise disjoint, non-empty cliques such that $V=Q_{1} \cup \cdots \cup Q_{p}$. Let $n=|V|$ and $q_{i}=\left|Q_{i}\right|, i=1, \ldots, p$. Then we write

$$
w(Q)=\prod_{i=1}^{p}\binom{n}{q_{i}}
$$

and

$$
w(G)=\min \{w(Q) \mid Q \text { is a clique partition of } G\}
$$

Theorem 2 For every graph G, we have $f(G) \leq w(G)$.
Proof. Write $n=|V|$. Consider a clique partition $Q=\left\{Q_{1}, \ldots, Q_{p}\right\}$ of G, and make a list assignment L as follows: to each vertex of Q_{i} assign a list L_{i} of n colors, so that $L_{i} \cap L_{j}=\emptyset$ whenever $1 \leq i<j \leq p$. Clearly, $L \in \mathcal{L}(G)$. Moreover, any L-coloring of G consists in assigning $\left|Q_{1}\right|$ colors from L_{1} to the vertices of $Q_{1},\left|Q_{2}\right|$ colors from L_{2} to the vertices of Q_{2}, etc. It follows that $|\mathcal{C}(L)|=w(Q)$. Therefore, $f^{\prime}(G) \leq w(Q)$. Since Q is an arbitrary clique partition, Lemma 1 implies that $f(G)=f^{\prime}(G) \leq w(G)$.

Claim 2 If G is a disjoint union of cliques, then $f(G)=w(G)$.
Proof. By the preceding theorem, we need only prove $f(G) \geq w(G)$. Assume G is the union of cliques Q_{1}, \ldots, Q_{p}. Consider any list assignment $L \in \mathcal{L}(G)$. Let us denote by L^{i} the restriction of L to the subgraph of G induced by $Q_{i}(i=1, \ldots, p)$. Note that the colors assigned by L^{i} to any vertex in Q_{i} are different from the colors assigned by L^{j} to any vertex in Q_{j} whenever $i \neq j$, by (ii). Thus $|\mathcal{C}(L)|=\left|\mathcal{C}\left(L^{1}\right)\right| \cdots\left|\mathcal{C}\left(L^{p}\right)\right|$. Every L^{i}-coloring of Q_{i} can be obtained by choosing among at least n colors for the first vertex of Q_{i}, then among at least $n-1$ available colors for the second vertex, etc. This way, a given set of $\left|Q_{i}\right|$ colors used in such a coloring occurs at most $\left|Q_{i}\right|$! times. Thus,

$$
\left|\mathcal{C}\left(L^{i}\right)\right| \geq \frac{n(n-1) \cdots\left(n-\left|Q_{i}\right|+1\right)}{\left|Q_{i}\right|!}=\binom{n}{\left|Q_{i}\right|}
$$

Consequently, $|\mathcal{C}(L)| \geq w(Q) \geq w(G)$. Since L was an arbitrary element of $\mathcal{L}(G)$, the result follows.

The preceding fact shows that the inequality in Theorem 2 is best possible and motivates the following conjecture.

Conjecture 1 For every graph G, we have $f(G)=w(G)$.
We note that if G is a triangle-free graph on n vertices, a clique partition Q consists of some cliques of size two (which form a matching) and some cliques of size one. If p_{2} is the number of cliques of size two, we see that $w(Q)=\binom{n}{2}^{p_{2}} n^{n-2 p_{2}}$; this number is minimized when p_{2} is maximized, i.e., when the cliques of size two in Q form a matching of G of maximum size. We denote by $\mu(G)$ the size of a maximum matching. This leads us to:

Conjecture 2 For every triangle-free graph $G, f(G)=\binom{n}{2}^{\mu(G)} n^{n-2 \mu(G)}$.
This conjecture suggests that the computation of $f(G)$ should be tractable for triangle-free graphs. We have not been able to prove this second conjecture, not even in the case of trees. The following lemma will help us settle a special case.

For a graph $G=(V, E)$ and two adjacent vertices u, v of G, define $\mathcal{L}_{u v}(G)=\{L \in \mathcal{L}(G) \mid L(u)=L(v)\}$.

Lemma 2 Let G be a graph and uv an edge of G such that u is of degree 1 and v is of degree at most 2 in G. Then, for each $L \in \mathcal{L}(G)$, there exists $L^{\prime} \in \mathcal{L}_{u v}(G)$ such that $L^{\prime}(x)=L(x)$, for every $x \in V \backslash\{u, v\}$ and $\left|\mathcal{C}\left(L^{\prime}\right)\right| \leq|\mathcal{C}(L)|$.

Proof. Write $U=\bigcup\{L(x) \mid x \in V \backslash\{u, v\}\}$ and observe that $L(u)$ is disjoint from U. If $L(v)$ too is disjoint from U, we set $L^{\prime}(u)=L^{\prime}(v)=L(u)$, and we set $L^{\prime}(x)=L(x)$ for $x \in V \backslash\{u, v\}$. Then it is easy to check that $\left|\mathcal{C}\left(L^{\prime}\right)\right| \leq|\mathcal{C}(L)|$.

Now assume that $L(v)$ is not disjoint from U. Since L satisfies (ii), this means that v has another neighbour w, and that $L(v) \cap U=L(v) \cap L(w)$. Write $B=L(u) \cap L(v)$ and $C=L(v) \cap L(w)$, and then $A=L(u) \backslash B$, $P=L(v) \backslash(B \cup C)$, and $D=L(w) \backslash C$. Thus we have $L(u)=A \cup B$, $L(v)=B \cup C \cup P, L(w)=C \cup D$, with $A \cap B=B \cap C=B \cap P=C \cap P=$ $C \cap D=\emptyset$, and $C \neq \emptyset$.

We can assume that $|A| \leq|C \cup P|$. Indeed, if $|A|>|C \cup P|$, we replace L by the assignment L^{*} obtained by removing $|A|-|C \cup P|$ elements of A from $L(u)$ and by setting $L^{*}(x)=L(x)$ for $x \in V \backslash\{u\}$. Clearly, $\left|\mathcal{C}\left(L^{*}\right)\right| \leq|\mathcal{C}(L)|$. The corresponding sets A^{*}, C^{*}, P^{*} of L^{*} satisfy $\left|A^{*}\right|=\left|C^{*} \cup P^{*}\right|$ so we can work with L^{*} instead of L.

We fix a mapping $a \mapsto \bar{a}$ from A to $C \cup P$.
Define L^{\prime} by $L^{\prime}(u)=L^{\prime}(v)=L(u)=A \cup B$ and $L^{\prime}(x)=L(x)$ if $x \in$ $V \backslash\{u, v\}$. We claim that L^{\prime} satisfies the conclusion of the lemma. Clearly, $L^{\prime} \in \mathcal{L}_{u v}(G)$.

Let γ^{\prime} be an L^{\prime}-coloring of G. We denote elements of A and B by the corresponding lowercase letters, and we write, e.g., $\gamma^{\prime}(u, v)=(a, b)$ as a shorthand for $\gamma^{\prime}(u)=a \in A, \gamma^{\prime}(v)=b \in B$. Observe that for $\gamma^{\prime}(u, v)$, there are four possibilities: $\left(a_{1}, a_{2}\right),(a, b),(b, a)$, and $\left(b_{1}, b_{2}\right)$. Define a mapping γ by $\gamma(x)=\gamma^{\prime}(x)$ for all $x \in V \backslash\{u, v\}$. We extend γ to an L-coloring of G as follows:

$$
\text { If } \gamma^{\prime}(u, v) \text { is either }(a, b) \text { or }(b, a) \text {, set } \gamma(u, v)=(a, b)
$$

$$
\begin{aligned}
& \text { If } \gamma^{\prime}(u, v)=\left(b_{1}, b_{2}\right) \text {, set } \gamma(u, v)=\left(b_{1}, b_{2}\right) \text {. } \\
& \text { If } \gamma^{\prime}(u, v)=\left(a_{1}, a_{2}\right) \text {, set } \gamma(u, v)=\left(a_{1}, \bar{a}_{2}\right) \text { if } \bar{a}_{2} \neq \gamma^{\prime}(w) \text {; otherwise set } \\
& \gamma(u, v)=\left(a_{2}, \bar{a}_{1}\right) .
\end{aligned}
$$

Clearly, γ is an L-coloring. Moreover, it is a routine matter to check that whenever $\gamma^{\prime}, \delta^{\prime}$ are two L^{\prime}-colorings with $\gamma^{\prime}(V) \neq \delta^{\prime}(V)$ then the corresponding L-colorings γ, δ satisfy $\gamma(V) \neq \delta(V)$. This implies that $\left|\mathcal{C}\left(L^{\prime}\right)\right| \leq|\mathcal{C}(L)|$.

As an application, consider the class \mathcal{B} of trees obtained from the trees on one or two vertices by iterating the following operation: add a vertex v of degree one, and then add a vertex u adjacent only to v.

Corollary 1 If G is an n-vertex graph in \mathcal{B}, then $f(G)=\binom{n}{2}^{\mu(G)} n^{n-2 \mu(G)}$.

Proof. Let $v_{1}, u_{1}, \ldots, v_{k}, u_{k}$ be the vertices used in the recursive contruction of G. Note that u_{k} is pendant in G, hence $v_{k} u_{k}$ belongs to a maximum matching of G. Recursively this implies that $M=\left\{v_{1} u_{1}, \ldots, v_{k} u_{k}\right\}$ is a maximum matching of G, hence $k=\mu(G)$. Consider any $L \in \mathcal{L}(G)$. Applying the preceding lemma repeatedly, we obtain an assignment $L^{\prime} \in \mathcal{L}(G)$ which satisfies $\left|\mathcal{C}\left(L^{\prime}\right)\right|=\binom{n}{2}^{k} n^{n-2 k} \leq|\mathcal{C}(L)|$.

References

[1] S. Dantas, S. Gravier, F. Maffray, Extremal graphs for the list-coloring version of a theorem of Nordhaus and Gaddum, Research Report 18, Laboratoire Leibniz-IMAG, Grenoble, 2000.
[2] P. Erdős, A. L. Rubin, H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979), 125-157.
[3] N. V. R. Mahadev, F. S. Roberts, P. Santhanakrishnan, 3-choosable complete bipartite graphs, RUTCOR Research Report 49-91, Rutgers Univ., NJ, USA (1991).
[4] V. G. Vizing, Vertex colourings with given colors (in Russian), Metody Discret. Analiz. 29 (1976), 3-10.

[^0]: *This research was partially supported by the Proteus Project 00874RL
 ${ }^{\dagger}$ CNRS, Laboratoire Leibniz, 46 avenue Félix Viallet, 38031 Grenoble Cédex, France
 ${ }^{\ddagger}$ Dept. of Mathematics, University of Ljubljana, Slovenia

