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Abstract

We study the function f(G) defined for a graph G as the smallest
integer k such that the join of G with a stable set of size k is not |V (G)|-
choosable. This function was introduced recently in order to describe
extremal graphs for a list-coloring version of a famous inequality due
to Nordhaus and Gaddum [1]. Some bounds and some exact values for
f(G) are determined.

1 Introduction

We consider undirected, finite, simple graphs. A coloring of a graph G =
(V,E) is a mapping c : V → {1, 2, . . .} such that c(u) 6= c(v) for every edge
uv ∈ E. If |c(V )| ≤ k, then c is also said to be a k-coloring . The chromatic
number χ(G) is the smallest integer k such that G admits a k-coloring. A
graph is k-colorable if it admits a k-coloring.

Vizing [4], as well as Erdős, Rubin and Taylor [2] introduced a variant of
the coloring problem as follows. Suppose that each vertex v is assigned a list
L(v) ⊆ {1, 2, . . .} of allowed colors; we then want to find a coloring c such
that c(v) ∈ L(v) for all v ∈ V . If such a coloring exists, we say that G is
L-colorable and that c is an L-coloring of G. The graph is k-choosable if G
is L-colorable for every assignment L that satisfies |L(v)| ≥ k for all v ∈ V .
The choice number or list-chromatic number Ch(G) of G is the smallest k
such that G is k-choosable. Clearly, every graph satisfies Ch(G) ≥ χ(G).

Let G1, G2 be two vertex-disjoint graphs. The graph G1∗G2 = (V (G1)∪
V (G2), E(G1) ∪ E(G2) ∪ {xy | x ∈ V (G1), y ∈ V (G2)}) is called the join
of G1 and G2. It is easy to see that χ(G1 ∗ G2) = χ(G1) + χ(G2) for
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any two vertex-disjoint graphs G1, G2. So, the chromatic number has a
straightforward behavior with respect to the join operation. On the other
hand, the choice number does not behave so simply. For instance, if G1 and
G2 are edgeless graphs on n and nn vertices, respectively, then obviously
Ch(G1) = Ch(G2) = 1, but it is known (see [3]) that Ch(G1 ∗G2) = n + 1,
i.e., the complete bipartite graph Kn,nn is not n-choosable (indeed, to see
this, assign to the i-th vertex on the “left” side (the stable set of size n) of
Kn,nn the list Li = {(i− 1)n + 1, . . . , (i− 1)n + n} (i = 1, . . . , n). Assign to
the vertices on the “right” side, one-to-one, all the lists of size n obtained
by picking one element from each Li, i = 1, . . . , n; clearly there are nn such
possibilities; this produces a list assignment L where all lists have size n and
for which there is no L-coloring).

Let us denote by Sk the edgeless graph on k vertices. Since the complete
bipartite graph Kn,nn is not n-choosable, if H is any graph on n vertices
then Ch(H ∗Snn) > n. We can therefore define f(H) as the smallest integer
k such that Ch(H ∗ Sk) > |V (H)|. The fact from [3] that Kn,nn is not
n-choosable and is minimal with that property means that f(Sn) = nn. It
is easy to see that f(K) = 1 for every complete graph K. Obviously, if
e ∈ E(G), then f(G− e) ≥ f(G). This implies:

If G is any graph on n vertices, then 1 ≤ f(G) ≤ nn. (1)

The definition of f(G) was motivated by the determination of extremal
graphs for the inequality Ch(G) + Ch(G) ≤ |V (G)| + 1 (see [1]). Here
we would like to examine in more detail the problem of evaluating and
computing f(G).

An alternative definition for f(G) can be given as follows. Let G =
(V,E) be a graph on n vertices, and let L(G) be the set of assignments
L : V → P({1, 2, . . .}) that satisfy:

(i) |L(v)| ≥ n, ∀v ∈ V , and

(ii) L(u) ∩ L(v) = ∅ if u, v ∈ V , uv 6∈ E.

Clearly, for every L ∈ L(G), there exists at least one L-coloring of G, because
of (i). Moreover, by (ii) every L-coloring c of G uses exactly n colors; we
denote by c(V ) the set of n colors used by c. We now write:

C(L) = {c(V ) | c is an L-coloring of G}. (2)

Now define f ′(G) = min{|C(L)| : L ∈ L(G)}.
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Lemma 1 For every graph G, we have f(G) = f ′(G).

Proof. Assume G has n vertices, and write f(G) = k. By the definition
of f(G), we have Ch(G ∗ Sk) ≥ n + 1. Thus there exists a list assignment
L on V (G ∗ Sk) with |L(v)| ≥ n (∀v ∈ V (G ∗ Sk)) and such that G ∗ Sk is
not L-colorable. Suppose there were non-adjacent vertices u, v ∈ V (G) such
that L(u) ∩ L(v) 6= ∅. We could then do the following: assign a color from
L(u) ∩ L(v) to u and v; for all vertices x of G − {u, v} taken successively,
assign to x a color from L(x) different from the colors already assigned to the
preceding vertices (this is possible because L(x) is large enough); likewise
for every vertex y of Sk assign to y a color from L(y) different from the
colors assigned to the vertices of G. Thus we would obtain an L-coloring of
G ∗ Sk, a contradiction. It follows that the restriction of L to G satisfies (i)
and (ii). Furthermore, whenever c is an L-coloring of G, the set c(V (G))
must appear as L(s) for at least one s ∈ Sk, for otherwise this L-coloring c
of G could obviously be extended to an L-coloring of G∗Sk, a contradiction.
Hence |C(L)| ≤ k. The definition of f ′ implies f ′(G) ≤ k, i.e., f ′(G) ≤ f(G).

Conversely, assume that L is a list assignment on G such that L ∈
L(G) and |C(L)| = f ′(G) = j. Write C(L) = {C1, . . . , Cj} and let Sj =
{s1, . . . , sj} be a stable set of size j. Let L′ be the list assignment defined by
L′(v) = L(v) for all v ∈ V (G) and L′(si) = Ci (i = 1, . . . , j). Observe that,
by (ii), |L′(u)| ≥ n for all u ∈ V (G ∗ Sj). Clearly G ∗ Sj is not L′-colorable,
so f(G) ≤ j, i.e., f(G) ≤ f ′(G).

Using Lemma 1, it is possible to compute f(G) for some small graphs,
but in general the computation is difficult even for graphs with a simple
structure. For example, one can establish that f(C4) = 36, but we need a
tedious case analysis to show that f(C5) = 500.

Theorem 1 If G has n vertices and is not a complete graph, then f(G) ≥
n2.

Proof. We will prove, by induction on n, that if u, v are non-adjacent
vertices of G and L ∈ L(G), then f ′(G) ≥ |L(u)||L(v)|. This statement
clearly implies the theorem. For n = 2, the statement is obvious. Now,
assume that n ≥ 3, and write n1 = |L(u)| and n2 = |L(v)|. Pick any
z ∈ V \ {u, v} and pick any color, say 1, in L(z). We may assume by (ii)
that 1 6∈ L(v). Define:

C1(L) = {c(V ) | c is an L-coloring of G with c(z) = 1},
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C1(L) = {c(V ) | c is an L-coloring of G with 1 6∈ c(V )}.

Clearly, C(L) ⊇ C1(L) ∪ C1(L) and C1(L) ∩ C1(L) = ∅. Thus |C(L)| ≥
|C1(L)|+ |C1(L)|. Let us now evaluate these numbers.

On one hand, we have |C1(L)| ≥ (n1 − 1)n2 by the induction hypothesis
applied to the graph G−z with the list assignment L1 ∈ L(G−z) determined
by L1(w) = L(w) \ {1} for each w ∈ V (G− z).

On the other hand, we claim that |C1(L)| ≥ n2. Indeed, fix an L-coloring
γ of the subgraph G\{u, v} that does not use color 1. Such a coloring exists
because that subgraph has n−2 vertices while L1 assigns lists of size at least
n−1 by (i). Write t1 = |L(u)∩γ(V \{u, v})| and t2 = |L(v)∩γ(V \{u, v})|.
Write λ1 = n1 − (t1 + 1) and λ2 = n2 − t2. Since color 1 is not in L(v) (but
possibly is in L(u)), γ can be extended to an L-coloring of G in at least λ1λ2

ways, and each of these uses a different set of colors γ(V ) ∈ C1(L). Since
λ1 > 0, λ2 > 0, and λ1 + λ2 ≥ n2 + 1, we have |C1(L)| ≥ λ1λ2 ≥ n2.

Now, |C1(L)| ≥ (n1 − 1)n2 and |C1(L)| ≥ n2 imply |C(L)| ≥ n1n2.

We observe that the bound given in the preceding theorem is tight, i.e.,
for any n ≥ 2, there exists a graph G on n vertices with f(G) = n2. Indeed,
consider the graph Kn − E(K1,i) obtained from a complete graph on n
vertices by removing i edges incident to one given vertex u (1 ≤ i ≤ n− 1):

Claim 1 f(Kn − E(K1,i)) = n2.

Proof. By Theorem 1, we have f(Kn −E(K1,i)) ≥ n2, so we need only to
prove that f(Kn−E(K1,i)) ≤ n2. For this purpose, assign to the vertex u the
list {1, 2, . . . , n} and to all other vertices of the graph the list {n+1, . . . , 2n}.
This yields a list assignment L ∈ L(G). It is easy to check that |C(L)| = n2,
hence f(G) ≤ n2.

We do not know of any graph G other than Kn − E(K1,i) that satisfies
f(G) = |V (G)|2.

2 The significance of clique partitions

Given a graph G = (V,E), a clique partition of G is a set Q = {Q1, . . . , Qp}
of pairwise disjoint, non-empty cliques such that V = Q1 ∪ · · · ∪ Qp. Let
n = |V | and qi = |Qi|, i = 1, . . . , p. Then we write

w(Q) =
p∏

i=1

(
n

qi

)
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and
w(G) = min{w(Q) | Q is a clique partition of G}.

Theorem 2 For every graph G, we have f(G) ≤ w(G).

Proof. Write n = |V |. Consider a clique partition Q = {Q1, . . . , Qp} of
G, and make a list assignment L as follows: to each vertex of Qi assign a
list Li of n colors, so that Li ∩ Lj = ∅ whenever 1 ≤ i < j ≤ p. Clearly,
L ∈ L(G). Moreover, any L-coloring of G consists in assigning |Q1| colors
from L1 to the vertices of Q1, |Q2| colors from L2 to the vertices of Q2, etc.
It follows that |C(L)| = w(Q). Therefore, f ′(G) ≤ w(Q). Since Q is an
arbitrary clique partition, Lemma 1 implies that f(G) = f ′(G) ≤ w(G).

Claim 2 If G is a disjoint union of cliques, then f(G) = w(G).

Proof. By the preceding theorem, we need only prove f(G) ≥ w(G). As-
sume G is the union of cliques Q1, . . . , Qp. Consider any list assignment
L ∈ L(G). Let us denote by Li the restriction of L to the subgraph of G
induced by Qi (i = 1, . . . , p). Note that the colors assigned by Li to any
vertex in Qi are different from the colors assigned by Lj to any vertex in Qj

whenever i 6= j, by (ii). Thus |C(L)| = |C(L1)| · · · |C(Lp)|. Every Li-coloring
of Qi can be obtained by choosing among at least n colors for the first vertex
of Qi, then among at least n− 1 available colors for the second vertex, etc.
This way, a given set of |Qi| colors used in such a coloring occurs at most
|Qi|! times. Thus,

|C(Li)| ≥ n(n− 1) · · · (n− |Qi|+ 1)
|Qi|!

=

(
n

|Qi|

)
.

Consequently, |C(L)| ≥ w(Q) ≥ w(G). Since L was an arbitrary element of
L(G), the result follows.

The preceding fact shows that the inequality in Theorem 2 is best pos-
sible and motivates the following conjecture.

Conjecture 1 For every graph G, we have f(G) = w(G).

We note that if G is a triangle-free graph on n vertices, a clique partition
Q consists of some cliques of size two (which form a matching) and some
cliques of size one. If p2 is the number of cliques of size two, we see that
w(Q) =

(n
2

)p2nn−2p2 ; this number is minimized when p2 is maximized, i.e.,
when the cliques of size two in Q form a matching of G of maximum size.
We denote by µ(G) the size of a maximum matching. This leads us to:
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Conjecture 2 For every triangle-free graph G, f(G) =
(n
2

)µ(G)
nn−2µ(G).

This conjecture suggests that the computation of f(G) should be tractable
for triangle-free graphs. We have not been able to prove this second conjec-
ture, not even in the case of trees. The following lemma will help us settle
a special case.

For a graph G = (V,E) and two adjacent vertices u, v of G, define
Luv(G) = {L ∈ L(G) | L(u) = L(v)}.

Lemma 2 Let G be a graph and uv an edge of G such that u is of degree
1 and v is of degree at most 2 in G. Then, for each L ∈ L(G), there
exists L′ ∈ Luv(G) such that L′(x) = L(x), for every x ∈ V \ {u, v} and
|C(L′)| ≤ |C(L)|.

Proof. Write U =
⋃
{L(x) | x ∈ V \ {u, v}} and observe that L(u) is

disjoint from U . If L(v) too is disjoint from U , we set L′(u) = L′(v) = L(u),
and we set L′(x) = L(x) for x ∈ V \ {u, v}. Then it is easy to check that
|C(L′)| ≤ |C(L)|.

Now assume that L(v) is not disjoint from U . Since L satisfies (ii), this
means that v has another neighbour w, and that L(v) ∩ U = L(v) ∩ L(w).
Write B = L(u) ∩ L(v) and C = L(v) ∩ L(w), and then A = L(u) \ B,
P = L(v) \ (B ∪ C), and D = L(w) \ C. Thus we have L(u) = A ∪ B,
L(v) = B ∪C ∪P , L(w) = C ∪D, with A∩B = B ∩C = B ∩P = C ∩P =
C ∩D = ∅, and C 6= ∅.

We can assume that |A| ≤ |C∪P |. Indeed, if |A| > |C∪P |, we replace L
by the assignment L∗ obtained by removing |A|−|C∪P | elements of A from
L(u) and by setting L∗(x) = L(x) for x ∈ V \{u}. Clearly, |C(L∗)| ≤ |C(L)|.
The corresponding sets A∗, C∗, P ∗ of L∗ satisfy |A∗| = |C∗ ∪ P ∗| so we can
work with L∗ instead of L.

We fix a mapping a 7→ ā from A to C ∪ P .
Define L′ by L′(u) = L′(v) = L(u) = A ∪ B and L′(x) = L(x) if x ∈

V \ {u, v}. We claim that L′ satisfies the conclusion of the lemma. Clearly,
L′ ∈ Luv(G).

Let γ′ be an L′-coloring of G. We denote elements of A and B by the
corresponding lowercase letters, and we write, e.g., γ′(u, v) = (a, b) as a
shorthand for γ′(u) = a ∈ A, γ′(v) = b ∈ B. Observe that for γ′(u, v), there
are four possibilities: (a1, a2), (a, b), (b, a), and (b1, b2). Define a mapping γ
by γ(x) = γ′(x) for all x ∈ V \ {u, v}. We extend γ to an L-coloring of G as
follows:

If γ′(u, v) is either (a, b) or (b, a), set γ(u, v) = (a, b).
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If γ′(u, v) = (b1, b2), set γ(u, v) = (b1, b2).

If γ′(u, v) = (a1, a2), set γ(u, v) = (a1, ā2) if ā2 6= γ′(w); otherwise set
γ(u, v) = (a2, ā1).

Clearly, γ is an L-coloring. Moreover, it is a routine matter to check that
whenever γ′, δ′ are two L′-colorings with γ′(V ) 6= δ′(V ) then the correspond-
ing L-colorings γ, δ satisfy γ(V ) 6= δ(V ). This implies that |C(L′)| ≤ |C(L)|.

As an application, consider the class B of trees obtained from the trees
on one or two vertices by iterating the following operation: add a vertex v
of degree one, and then add a vertex u adjacent only to v.

Corollary 1 If G is an n-vertex graph in B, then f(G) =
(n
2

)µ(G)
nn−2µ(G).

Proof. Let v1, u1, . . . , vk, uk be the vertices used in the recursive contruc-
tion of G. Note that uk is pendant in G, hence vkuk belongs to a maximum
matching of G. Recursively this implies that M = {v1u1, . . . , vkuk} is a
maximum matching of G, hence k = µ(G). Consider any L ∈ L(G). Ap-
plying the preceding lemma repeatedly, we obtain an assignment L′ ∈ L(G)
which satisfies |C(L′)| =

(n
2

)k
nn−2k ≤ |C(L)|.
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