
University of Ljubljana

Institute of Mathematics, Physics and Mechanics
Department of Mathematics

Jadranska 19, 1000 Ljubljana, Slovenia

Preprint series, Vol. 40 (2002), 802

ON CONSTANT-WEIGHT
TSP-TOURS

Scott Jones P. Mark Kayll
Bojan Mohar W.D. Wallis

ISSN 1318-4865

January 31, 2002

Ljubljana, January 31, 2002



On onstant-weight TSP-toursSott Jones�Department of Mathematial SienesUniversity of MontanaMissoula MT 59812-0864, USAjonesso�mso.umt.edu
P. Mark KayllyDepartment of Mathematial SienesUniversity of MontanaMissoula MT 59812-0864, USAkayll�harlo.math.umt.eduBojan MoharzDepartment of MathematisUniversity of Ljubljana1111 Ljubljana, Sloveniabojan.mohar�uni-lj.si

W.D. WallisxDepartment of MathematisSouthern Illinois UniversityCarbondale IL 62901-4408, USAwdwallis�math.siu.edu28 January 2002AbstratIs it possible to label the edges of Kn with distint integer weights so that everyHamilton yle has the same total weight? We give a loal ondition harater-izing the labellings that witness this question's perhaps surprising aÆrmative an-swer. More generally, we address the question that arises when \Hamilton yle"is replaed by \k-fator" for nonnegative integers k. Suh edge-labellings are inorrespondene with ertain vertex-labellings, and the link allows us to determinethe growth rate of the maximum edge-label in a \most eÆient" injetive metritrivial-TSP labelling.1 IntrodutionReall the Travelling Salesman Problem (TSP): given a labelling � : E(Kn) ! Z+ ofthe edges of Kn, determine a Hamilton yle H (a TSP-tour) minimizingPA2E(H) �(A).Of ourse, TSP is notoriously diÆult; its deision version is NP-omplete|see [6℄|andeven the restrited ase MTSP for metri � (de�nitions to follow) is intratable. In thispaper we fous on the other extreme, when all TSP-tours, or MTSP-tours, have equallength.Any onstant funtion on the edge set provides a simple example of a labelling withthis property; a more ompliated example appears in Fig. 1. We are primarily interestedAMS Subjet Classi�ation (2000): Primary 05C78; Seondary 05C70, 11B75, 90C27.yContat author; on leave at University of Ljubljana|the author thanks the Department of Mathe-matis and the Institute of Mathematis, Physis and Mehanis for their hospitality.zSupported in part by the Ministry of Siene and Tehnology of Slovenia, Researh Program P1{0507{0101. 1
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Figure 1: An injetive trivial-MTSP edge-labelling of K4.in labellings with distint edge-labels, i.e., ones for whih � is injetive, as in Fig. 1. Butmost of our results apply to non-injetive � as well.We all the funtion � : E(Kn)! Z trivial-TSP whenever the value ofPA2E(H) �(A)is independent of the Hamilton yle H. Being trivial-TSP is a global property of � in thesense that naive veri�ation requires inspetion of every Hamilton yle, eah of whihspans Kn. A main ontribution of this paper is the identi�ation of a loal property,alled C4-mathing, that haraterizes the trivial-TSP edge-labellings.Using the C4-mathing property allows us to establish a onnetion between those� whih are trivial-TSP and ertain vertex-labellings �; namely, there is a funtion Fsuh that eah edge ij of Kn satis�es �(ij) = F (�i; �j). That suh a onnetion existsbrings our study into the (overwhelming) realm of graph labellings; the extensive survey[5℄ ontains over 400 referenes. Our graph labellings are related to, but di�erent from,several other labelling methods studied previously. We explore a few of these onnetionsafter introduing the basi de�nitions.Notation and terminologySetsWe write Z, Z+, N and R+ , respetively, for the sets of integers, positive integers,nonnegative integers and positive real numbers. For n 2 Z+, we use [n℄ to denote the setf1; : : : ; ng, and Zn to denote the ring of integers modulo n.GraphsMost of our graph-theoreti notation and terminology is relatively standard; see, e.g.,[2℄ or [24℄ for any omitted de�nitions. For graphs G, H, we write H �= G when H isisomorphi to G and H � G when H is a subgraph of G. If G and H have identialvertex sets and disjoint edge sets, then G�H denotes the graph on the ommon vertexset with edge set E(G) [ E(H). If A is an edge with ends x, y, then we write A = xy.The vertex set of Kn is usually [n℄. We use Æ = Æ(G) for the minimum degree of a graphG. A yle visiting the verties x1; x2; : : : ; xr in this order and then returning to x1 is2



denoted by (x1; x2; : : : ; xr). For a nonnegative integer k, a k-fator of G is a k-regularspanning subgraph of G. A 1-fator is often alled a perfet mathing. See [14, 22℄ formore spei�s on the theory of mathings and fatorizations.LabellingsAn edge-labelling (resp. vertex-labelling) of a graph G = (V;E) is a funtion � : E ! S(resp. � : V ! S) into some set S of labels. For edges, we use the label sets S = Z and Z+;for verties, we use variously S = Z, N , 12Z and 12N. If � is an edge-labelling and A 2 E,then �(A) is alled the label of A. We use analogous terminology for vertex-labellings �,but the label of a vertex i is always denoted by �i. In disussing edge-labellings, it is oftenonvenient to view the edge labels as \weights". The (total) weight of a subgraph H ofG means simply the sum �(H) := PA2E(H) �(A).We say that an edge-labelling � of G has onstant-weight on k-fators if eah k-fatorof G has the same total weight. For G = Kn, we all � metri if it satis�es the triangle-inequality: �(xy) � �(xz) + �(zy) for every triple x; y; z 2 V (Kn). For trivial-TSP �,we all the ommon weight of all Hamilton yles the Hamilton-weight of �. If � is bothmetri and trivial-TSP, then � is trivial-MTSP.As suggested above, we enter the realm of graph labelling when some funtion Fonnets a pair �, � of edge- and vertex-labellings of G via�(ij) = F (�i; �j) for eah ij 2 E:In this ase we say that � is indued from � (via F ). The two examples of suh funtionsunder study in this paper are F (x; y) = x + y and F (x; y) = (x + y)=2. Starting from avertex-labelling � : V ! R+ , the �rst of these was onsidered by Deuber and Zhu [4℄ intheir study of irular olourings of weighted graphs. The following subsetion omparestrivial-TSP labelling with three other ommon labelling notions.SequenesA (�nite or in�nite) sequene (xi) of integers has onstant-parity if xi � xj (mod 2)for all i, j. Following Kotzig [11℄, we all (xi) well-spread if all the pairwise sums xi + xj,for i < j, are di�erent; see also [16℄. Finally, (xi) is a Sidon sequene if all the sums xi+xj,for i � j, are distint. In onnetion with his studies in Fourier theory, Sidon [18, 19℄onsidered these sequenes under the name B2-sequene. Every Sidon sequene is well-spread, but not onversely: (1; 2; 3) is well-spread but not Sidon. See [10℄ for a basireferene on Sidon sequenes.Other graph labelling notionsTo put the present paper into ontext, we ompare trivial-MTSP labelling with threeother labelling shemes that have reeived onsiderable attention: graeful, harmonious,and magi labellings. See [5℄ for details. A graeful labelling of G = (V;E) is an injetive3



vertex-labelling � : V ! f0; 1; : : : ; jEjg suh that the edge-labelling indued from � viaF (x; y) = jx � yj is also injetive. This term was suggested by Golomb [7℄, though theidea was introdued by Rosa a few years earlier. Sine jx � yj 6= jz � wj implies thatx + w 6= y + z, every graeful labelling of Kn is a well-spread, N-sequene.Graham and Sloane [8℄ alled a graph G harmonious if it admits a vertex-labelling� : V ! ZjEj suh that both � and the edge-labelling indued from � via F (x; y) =x+ y (mod jEj) are injetive. For example, in Fig. 1, if we label the verties u, v, x andy respetively with 0, 1, 2 and 4 (and redue the edge labels modulo 6), then we obtain aharmonious labelling of K4. Note that the vertex labels of harmonious omplete graphsare also well-spread, N-sequenes.Kotzig and Rosa [12℄ introdued the notion of a magi labelling of G, i.e., a bijetion� : V [E ! [jV [Ej℄ suh that for eah ij 2 E, the value �(i)+�(ij)+�(j) is the same,say �. (These are now alled edge-magi total labellings; see [23℄ for a short survey andsome reent results.) It is illusory if this labelling sheme appears ill-�tted for the presentframework. As observed in [23℄, sinePij2E �(ij)+Pi2V �(i) = (jV j+jEj)(jV j+jEj+1)=2and �(ij) = � � �(i) � �(j), we see that � is determined by the vertex labels, so that�jV indues �jE. Again, it is easy to see that the vertex labels of a magi labelling of Knomprise a well-spread, N-sequene.As we shall see (Corollary 4.2), the injetive trivial-MTSP edge-labellings � are in-dued via F (x; y) = (x + y)=2 from onstant-parity, well-spread, N-sequenes of vertexlabels. Comparing these properties with those observed for the vertex labels of graeful,harmonious, and magi labellings of omplete graphs, one might expet a strong onne-tion between these labellings and injetive trivial-MTSP �. Indeed, eah sheme labels theverties of Kn with a well-spread, N-sequene, say �1; : : : ; �n. So the sequene 2�1; : : : ; 2�nsatis�es the requirements of a vertex-labelling induing our desired �. If we now replaethe graeful, harmonious, or magi edge-labels by �(ij) = �i + �j, then � is injetive andtrivial-MTSP. The simplest ase of the transformation just desribed was illustrated inreverse when we indiated how to onvert the labelling in Fig. 1 to a harmonious labelling.Unfortunately, the onnetion disussed in the preeding paragraph is rather limitedbeause the de�nitions of graeful, harmonious, and magi labellings are too restritive toallow many omplete graphs to enjoy these properties. The results are easily summarized:Kn is graeful if and only if n � 4 ([7℄, [20℄); Kn is harmonious if and only if n � 4 ([8℄);Kn is magi if and only if n 2 f1; 2; 3; 5; 6g ([13℄; see also [23℄ for a listing of all magilabellings of Kn). On the other hand, sine the onstant-parity, well-spread, N-sequenesmay be extended inde�nitely, we easily obtain injetive trivial-MTSP edge-labellings ofKn for all n � 1.
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Figure 2: An edge-labelled graph satisfying the K4-MP but not the C4-MP.OutlineThe rest of the paper is organized as follows. The next setion haraterizes the trivial-TSP edge-labellings by the C4-mathing property. There, we also prove that suh la-bellings have onstant-weight on 2-fators. Setion 3 re-proves the latter result and ex-tends it to 1-fators (provided n is even) without referene to the C4-mathing property.In Setion 4, we establish our fundamental onnetion between these edge-labellings andvertex-labellings. The main result (Theorem 4.1) and its orollaries tie together someof the earlier results and|as suggested above|provide an essential link between edge-labellings and well-spread sequenes. This link eventually allows us (in Setion 5) todetermine the growth-rate of the maximum label in the \most eÆient" injetive trivial-MTSP edge-labelling sheme.2 Loal onditionsAn edge-labelling � : E(G)! Z of a graph G has the C4-mathing property if, for eah 4-yle inG, say with onseutive edges A, B, C, D, the relation �(A)+�(C) = �(B)+�(D)holds. We shall abbreviate this property by C4-MP.Another way to formulate the C4-MP for � is to require that in eah 4-yle H of G,the total �-weight of every perfet mathing of H is the same. With this view in mind, weintrodue a related loal property. An edge-labelling � : E(G)! Z has the K4-mathingproperty (K4-MP) if, for eah 4-lique H of G, the total weight assigned by � to eahperfet mathing of H is idential.If an edge-labelling � of a general graph G satis�es the C4-MP, then it neessarilysatis�es the K4-MP, but the onverse is not true. Fig. 2 depits a graph with edge labelsf1; 2; : : : ; 9g satisfying the K4-MP but not the C4-MP. We are mainly interested in edge-labellings of omplete graphs, for whih the two loal properties are easily seen to beequivalent: 5



Proposition 2.1 An edge-labelling of Kn satis�es the C4-MP if and only if it satis�esthe K4-MP.It is perhaps surprising that the edge-labellings of Kn that are trivial-TSP an bereognized by verifying loal onditions only.Theorem 2.2 An edge-labelling of Kn is trivial-TSP if and only if it satis�es the C4-mathing property.Proof. The result is vauously true for n = 1; 2 and trivial for n = 3, so we will assumethat n � 4.For the neessity of the C4-MP, suppose that � is a trivial-TSP edge-labelling ofG = Kn, and onsider a 4-yle of G with onseutive edges A = xu, B = uv, C = vwand D = wx. Let H1 denote a Hamilton yle of G that visits the verties x, u, w, vonseutively in this order; thus A, C are edges of H1 while B, D are not. Let H2 beobtained from H1 by deleting the edges A, C and adding the edges B, D; learly H2 isalso a Hamilton yle of G. Sine H1 r fA;Cg = H2 r fB;Dg and � is trivial-TSP, wemust have �(A) + �(C) = �(B) + �(D), and sine the 4-yle was arbitrary, this showsthat � satis�es the C4-MP.In proving the onverse, it is onvenient to onsider more arefully the operation lead-ing from H1 to H2, whih we all a C4-exhange. Notie that the C4-exhange desribedabove transposes the adjaent verties u, w in the visiting order of the initial Hamilton y-le, while preserving the visiting order of the remaining verties. It is lear that any givenpair of adjaent verties on a Hamilton yle of G an be transposed by a C4-exhange.Now suppose that � satis�es the C4-MP. We will argue that �(H1) = �(H2) for anytwo Hamilton yles H1, H2 of G. If H1 visits the verties of G in the order v1; v2; : : : ; vn,then H2 visits them in the order �(v1); �(v2); : : : ; �(vn) for some permutation � of V .By a sequene of transpositions of adjaent verties, it is possible to shu�e the H1-orderof V into the H2-order. Sine this transposition sequene orresponds to a sequene ofC4-exhanges, eah preserving the total weight of the resulting Hamilton yle (by theC4-MP), it follows that �(H1) = �(H2).Theorem 2.2 redues the omplexity of the problem of reognizing the trivial-TSPedge-labellings of Kn from what on the surfae appears to be super-exponential in n(hek all TSP-tours) to polynomial in n (verifying the C4-MP requires only O(n4) time).In Setion 4, we outline an O(n2)|hene optimal|algorithm for this reognition problem.As we shall see (f. Theorems 3.2, 3.4, and all of Setion 4), besides being trivial-TSP, there are a number of other equivalent properties of edge-labellings of Kn whih antherefore be reognized via the C4-MP. As a �rst illustration, we o�er the next result.Although it is a speial ase of Corollary 4.3|whih itself has a short proof|we providea separate proof here beause of its ompletely di�erent avour.6



Theorem 2.3 An edge-labelling � of Kn has onstant-weight on 2-fators if and only ifit satis�es the C4-mathing property.Proof. The neessity of the C4-MP is immediate from Theorem 2.2 sine Hamilton ylesare 2-fators. For the suÆieny, suppose that � satis�es the C4-MP. Theorem 2.2 showsthat we need only establish that eah 2-fator F in Kn has the same weight as someHamilton yle. Write F as(x1; : : : ; xm1)(xm1+1; : : : ; xm2) � � � (xmk�1+1; : : : ; xn);with eah yle of length at least three.Given a yle C = (y1; y2; : : : ; ym), with m � 6 and 3 � i � m � 3, the split of C atyi yields the disjoint yles C1 = (y1; : : : ; yi) and C2 = (yi+1; : : : ; ym). The total weight ofthe new yles is �(C1)+�(C2) = �(C)+[�(yiy1)+�(ymyi+1)��(yiyi+1)��(ymy1)℄. Sinethe C4-MP implies that the braketed expression is zero, we see that a split preserves the�-weight of C.Starting with the Hamilton yle H := (x1; : : : ; xn)|the onatenation of the ylesof F|and suessively applying the split operation at xm1 ; xm2 ; : : : ; xmk�1 yields F , andwe have �(F ) = �(H).3 One-fators and two-fatorsTheorems 2.2 and 2.3 together establish the equivalene of an edge-labelling of Kn beingtrivial-TSP and having onstant-weight on 2-fators. Eventually we will extend the sopeof this equivalene to replae `2' by `k', for all|and indeed any|k 2 [n � 2℄; see Corol-lary 4.3 and Theorem 4.4. In this setion, we prove the speial ase k = 1 of the generalresult and take another look at the k = 2 ase. Though these results are subsumed inSetion 4, the proofs here may be of independent interest.Lemma 3.1 For any two 1-fators F , G of Kn, there exists a 1-fator H of Kn suh thatboth F [H and G [H are Hamilton yles in Kn.Proof. Suppose the omponents of F [ G are C1; C2; : : : ; Ct. Then the Ci are disjointsubgraphs whose union spans Kn, and eah is either an edge (ommon to F and G) or aneven yle (with edges alternately in F and G).If Ci is an edge, all one endpoint xi and the other yi.If Ci is a yle of length 2m, label its verties sequentially as ai;1; ai;2; : : : ; ai;2m, whereai;1ai;2; ai;3ai;4; : : : are in F and ai;2ai;3; ai;4ai;5; : : : are inG; then ai;1 is labelled xi and ai;m+1is labelled yi. For eah suh yle Ci, all the edges ai;2ai;2m; ai;3ai;2m�1; : : : ; ai;mai;m+2 ofKn are alloated to H. Adding the edges y1x2, y2x3,: : :, yt�1xt to H yields a suitable1-fator. 7



Theorem 3.2 For every even positive integer n, an edge-labelling � of Kn is trivial-TSP(with Hamilton-weight �) if and only if it has onstant-weight on 1-fators (with weight�=2).Proof. First suppose that � is trivial-TSP, and let F be a 1-fator of Kn. Selet any1-fator G of Kn, and �nd a 1-fator H suh that both F [H and G [H are Hamiltonyles in Kn. Then �(F ) + �(H) = � = �(G) + �(H);so �(F ) = �(G); i.e., � has onstant-weight on 1-fators. In partiular, �(F ) = �(H), so2�(F ) = �.The onverse is trivial sine, with n even, eah Hamilton yle is a disjoint union oftwo 1-fators.Lemma 3.3 If G is a union of two disjoint yles of length m and m+t, with 0 � t < m,then there exists a Hamilton yle H in K2m+t r E(G) suh that G �H an be fatoredinto two Hamilton yles.Proof. Suppose G = (x1; x2; : : : ; xm) [ (y1; y2; : : : ; ym+t). If t = 0, letH := (x1; y2; x2; : : : ; xi�1; yi; xi; : : : ; xm; y1):If t = 1, let H := (x1; ym; y2; x2; : : : ; xi�1; yi; xi; : : : ; xm�1; ym+1; xm; y1):Finally, if t � 2, letH := (x1; y2; y2+t; x2; y3; y3+t; : : : ; xt; yt+1; y2t+1; xt+1; y2t+2; xt+2; : : : ; xm�1; ym+t; xm; y1):In eah ase, de�ne L := G [ x1y1 [ xmym+t r x1xm r y1ym+t;M := H [ x1xm [ y1ym+t r x1y1 r xmym+t: (1)Then L and M are Hamilton yles, and G�H = L�M .Now we are ready to give the promised seond proof of the equivalene established byTheorems 2.2 and 2.3.Theorem 3.4 An edge-labelling � of Kn is trivial-TSP (with Hamilton-weight �) if andonly if it has onstant-weight on 2-fators (with weight �).
8
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From a theorem of Ore [15℄, a graph satisfying (2) has a spanning path whose endpointsare any spei�ed pair of verties. Selet two verties, y1, yn�m, that are adjaent in G;say the path y1; y2; : : : ; yn�m is a Hamilton path in G0. Then onsider the Hamilton yle(in Kn) H := (y1; x1; y2; : : : ; ym�1; xm�1; ym; ym+1; ym+2; : : : ; yn�m; xm);notie that G and H are edge-disjoint.Now de�ne L, M from G, H by the onstrution (1), with n � m in the role ofm + t. Then L and M are edge-disjoint, and M is a Hamilton yle. Sine L has feweromponents than G, by hypothesis we have �(L) = �. Moreover G�H = L�M:Remark. Theorem 3.4 also follows from the fat that, given any 2-fator G of Kn, thereexist Hamilton yles H, L and M suh that G � H = L �M (with the obvious smallexeptions). However, a proof of that fat would be longer than the proof given.4 Edge labels from vertex labelsTheorem 4.1 and Corollary 4.2 below establish the onnetion between trivial-TSP edge-labellings and vertex-labellings mentioned in the introdution. This link provides the keyto generalizing Theorems 2.3, 3.2 and 3.4 to inlude k-fators for k � 0; see Corollary 4.3and Theorem 4.4. It also brings onstant-parity and well-spread sequenes into the fold,gives an easy algorithm for produing trivial-TSP edge-labellings of Kn, and �nally yieldsan optimal algorithm for reognizing these labellings.Theorem 4.1 For n � 3 and G �= Kn, an edge-labelling � : E(G) ! Z satis�es theC4-mathing property if and only if there is a vertex-labelling � : V (G)! 12Z suh that�(ij) = �i + �j for eah edge ij of G: (3)The sequene (�i)ni=1 is uniquely determined by �, is nonnegative if and only if � is metri,and is well-spread if and only if � is injetive.Proof. If suh a vertex-labelling exists, then eah Hamilton yle H of G satis�esXij2E(H)�(ij) = Xij2E(H)(�i + �j) = 2 nXi=1 �i;sine H is a 2-fator of G. Thus � is a trivial-TSP labelling, and Theorem 2.2 impliesthat � satis�es the C4-MP.We prove the onverse by indution on n.
10



Any edge-labelling � of K3 vauously satis�es the C4-MP, so we must establish theexistene of a unique half-integer vertex-labelling � satisfying (3). In this ase (n = 3),this system takes the form0� 1 1 01 0 10 1 1 1A0� �1�2�3 1A = 0� �(12)�(13)�(23) 1A ;and sine this oeÆient matrix is nonsingular with inverse 12 0� 1 1 �11 �1 1�1 1 1 1A, we seethat (�1; �2; �3) is indeed uniquely determined by (3) and has half-integer entries.Now �x n > 3, assume the result is true in ase G �= Kn�1, and suppose that � :E(Kn)! Z satis�es the C4-MP. Let G be the subgraph of Kn indued by the verties in[n�1℄. Then G �= Kn�1 and �jE(G) satis�es the C4-MP for G, so our indutive hypothesisimplies that there is a unique vertex-labelling � : V (G)! 12Z suh that�(ij) = �i + �j for eah edge ij of G: (4)We omplete the proof by arguing that � extends uniquely and unambiguously to [n℄,subjet to (3). For an appropriate hoie of �n, the equations in (3) still to be satis�edare �(in) = �i + �n for 1 � i � n� 1: (5)The only way to satisfy the �rst of these is to set �n := �(1n) � �1. To show that thisvalue satis�es the remaining equations, we �x i, 1 < i < n, and derive the ith equation in(5). Sine n > 3, there is an index j 2 [n℄r f1; i; ng, so that (1; j; i; n) is a 4-yle. Sine� satis�es the C4-MP, we have�(1j) + �(in) = �(ij) + �(1n);whih by (4) yields (�1 + �j) + �(in) = (�i + �j) + �(1n);or �(in) = �i + (�(1n)� �1) = �i + �n:Therefore, our hoie of �n indeed satis�es (5).Finally, notie that nonnegative vertex-labels orrespond exatly to trivial-MTSPedge-labellings, sine, for any three verties x, y, z, we have�(xy) � �(xz) + �(zy) , �z � 0.
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Corollary 4.2 For n � 3, an edge-labelling � : E(Kn) ! Z satis�es the C4-mathingproperty if and only if there is a vertex-labelling � : V (Kn)! Z suh that�(ij) = �i + �j2 for eah edge ij of Kn: (6)The sequene (�i)ni=1 is uniquely determined by �, has onstant-parity, is nonnegative ifand only if � is metri, and is well-spread if and only if � is injetive.Proof. Double the vertex labels in Theorem 4.1.Remarks. Corollary 4.2 (or Theorem 4.1) suggests an algorithm for produing trivial-TSP edge-labellings: start with a onstant-parity integral sequene (�i)ni=1 for whih themean of any two terms is positive, and de�ne � : E(Kn)! Z by (6). We an arrange for� to be injetive (or metri) by starting with a well-spread (or nonnegative) �.With one further observation, we an use these results to obtain the algorithm alludedto following the proof of Theorem 2.2, namely, an optimal algorithm to hek if a givenedge-labelling � of Kn is trivial-TSP. Notie that any �xed spanning tree T of Kn allowsus to obtain, in O(n) time, solutions (�i)ni=1 to (6)|with T in plae of Kn|with onedegree of freedom. For any edge A 2 KnrT , the value of �(A) then uniquely determinesall the �i. By Corollary 4.2 (and Theorem 2.2), to deide whether � is trivial-TSP, itremains only to verify (6) for all remaining edges. Sine this an be done in O(n2) time,and this deision problem obviously requires examining every edge of Kn, this algorithmis indeed optimal.The next result generalizes Theorems 2.3, 3.2 and 3.4.Corollary 4.3 For n � 3, an edge-labelling � of Kn satis�es the C4-mathing propertyif and only if it has onstant-weight on k-fators, for all k � 0.Proof. For the suÆieny of the k-fator ondition, take k = 2 and apply Theorem 2.3 (orTheorem 2.2). For the neessity, suppose that � satis�es the C4-MP, and �x an integerk � 0. By Theorem 4.1, there is a vertex-labelling � satisfying (3). Now any k-fator Fof Kn, provided it exists, satis�esXij2E(F )�(ij) = Xij2E(F )(�i + �j) = k nXi=1 �i.We an weaken the ondition in Corollary 4.3 onsiderably, provided n and k arerestrited to avoid trivially satisfying the weakened ondition. This statement is madepreise in part (e) of the following result, whih also summarizes our various harateri-zations of trivial-TSP edge-labellings.Theorem 4.4 If n � 4 and � is an edge-labelling of Kn, then the following statementsare equivalent: 12



(a) � is trivial-TSP;(b) � satis�es the C4-mathing property;() � satis�es the K4-mathing property;(d) for every k, 0 � k � n� 1, the labelling � has onstant-weight on k-fators;(e) there exists an integer k, 1 � k � n� 2, suh that � has onstant-weight onk-fators, and k is even if n is odd.Proof. We know (f. Proposition 2.1, Theorem 2.2 and Corollary 4.3) that (a){(d) areequivalent. Moreover, Theorem 2.3 shows that (b) implies (e), with k = 2.To see that (e) implies (b), �x k 2 [n � 2℄, and assume that � has onstant-weighton k-fators. Sine k is even if n is odd, there exists a k-fator F of Kn. Sine theomplement F of F is an (n� k� 1)-fator, and �(F ) = �(Kn)��(F ), we see that � hasonstant-weight on (n � k � 1)-fators. Therefore, after possibly interhanging the rolesof k and n� k � 1, we may assume that k � (n� 1)=2.Sine k � (n � 1)=2 � n � 2, there exist verties x, y that are nonadjaent in F .Let x1 be a neighbour of x in F . Sine y and x1 both have degree k in F , and sinex1 is adjaent to x while y is not, there exists a neighbour y1 of y in F that is di�erentfrom, and nonadjaent with x1. Now, a C4-exhange (see the proof of Theorem 2.2)on the 4-yle (x; x1; y1; y) produes another k-fator F 0. Sine �(F ) = �(F 0), we have�(xx1) + �(yy1) = �(xy) + �(x1y1).Now let C = (u; u1; v1; v) be any 4-yle of Kn, and let � be a permutation of [n℄with �(x) = u, �(y) = v, �(x1) = u1 and �(y1) = v1. Then �(F ) and �(F 0)|de�ned inthe natural way|are k-fators whih di�er by a C4-exhange on C. As in the preedingparagraph, this implies that C does not violate the C4-MP, and sine C was arbitrary, weonlude that (b) holds.5 Edge label growth-rateReall from Theorem 4.1 that an injetive, metri edge-labelling orresponds to a well-spread, nonnegative, half-integer sequene of vertex labels. With its �rst term deleted,the Fibonai sequene furnishes one example of suh a sequene; see, e.g., [3℄ for relatedbakground.Now we onsider the rate of growth of the maximum label of the most eÆient injetivetrivial-MTSP edge-labelling sheme. We shall prove that the funtion	(n) := min� maxA2E(Kn)�(A)(the minimum being taken over all injetive trivial-MTSP edge-labellings �) exhibitsquadrati growth. This should be ompared with the growth rate of the edge labels13



indued by the Fibonai numbers as vertex labels. Here, if ' is the golden ratio, thenmaxA2E(Kn) �(A) 2 �('n), so these labels grow exponentially.De�ne S, W , Wp : N ! Z+ and  p , �p : Z+ ! N byS(N) := maxfn : 9 Sidon sequene 0 � x1 < � � � < xn � Ng;W (N) := maxfn : 9 well-spread sequene 0 � x1 < � � � < xn � Ng;Wp(N) := maxfn : 9 onstant-parity well-spread sequene 0 � x1 < � � � < xn � Ng; p(n) := minfxn�1 + xn : 9 onstant-parity well-spread N-sequene x1 < � � � < xng;�p(n) := minfxn : 9 onstant-parity well-spread N-sequene x1 < � � � < xng:A elebrated result of Erd}os and others is that S(N) � pN ; i.e.,�1� o(1)�pN � S(N) � �1 + o(1)�pN as N !1: (7)Remarks. The upper bound in (7) was proved by Erd}os and Tur�an, who also establishedthe lower bound (1=p2� o(1))pN ; later Erd}os and Chowla applied a theorem of Singerto improve the lower bound to that in (7). See [1, 21℄ for further disussion and referenes.It remains open|and was given a prie tag by Erd}os|to deide whether, for every " > 0,the inequality S(N) � pN + o(N ") holds; see [9℄ for related material.Reall (Corollary 4.2) that the set of edge labels of an injetive trivial-TSP labellingtakes the form f(�i+�j)=2 j i 6= jg for some onstant-parity, well-spread, integer sequene(�i)ni=1. For Sidon sequenes (xi) with xi 2 [N ℄, similar \sum-sets" fxi + xj j i � jg havebeen studied onsiderably; see [17℄ for reent results and further referenes.Notie that Wp is surjetive and nondereasing, while �p is inreasing; thus ��1p :range(�p)! Z+ exists, as does the following approximate inverse for Wp:W�p(n) := minfN : Wp(N) = ng; for n 2 Z+:Then W�p is a right inverse for Wp, but when omposed on the left yields the weakerW�p ÆWp(N) � N:Sine every Sidon sequene is well-spread, we haveW (N) � S(N) for eah N 2 N : (8)Of the myriad onnetions between the seven funtions just de�ned, we shall need only afew more, enumerated as Lemmas 5.1{5.5.Lemma 5.1 Every n 2 Z+ satis�es  p(n) � 2W�p(n).14



Proof. Sine  p(1) = W�p(1) = 0, the assertion holds for n = 1. For n � 2, letN = W�p(n). Sine Wp(N) = n, we an hoose a onstant-parity well-spread sequene0 � x1 < � � � < xn � N . By de�nition,  p satis�es p(n) � xn�1 + xn � 2N � 2 = 2W�p(n)� 2:Lemma 5.2 Eah N 2 range(�p) satis�es Wp(N) � ��1p (N).Proof. Let n = ��1p (N). Sine �p(n) = N , there exists a onstant-parity well-spreadsequene 0 � x1 < � � � < xn = N . Hene, Wp(N) � n = ��1p (N).Lemma 5.3 For every N 2 N, if k = Wp(N), then �k2� � N .Proof. If 0 � x1 < � � � < xk � N is a onstant-parity well-spread sequene, then the �k2�sums xi + xj, i < j, are distint and belong to the set f0; 2; : : : ; 2(N � 1)g.Lemma 5.4 Eah n � 2 satis�es  p(n) � �p(n) + �p(n� 1).Proof. Choose a onstant-parity well-spread sequene x1 < � � � < xn so that  p(n) =xn�1 + xn. Sine �p(n) � xn and �p(n� 1) � xn�1, the assertion follows.Lemma 5.5 Every N 2 N satis�es Wp(N) � W (bN=2).Proof. If n = W (N) and 0 � x1 < � � � < xn � N is well-spread, then yi := 2xi de�nesa onstant-parity well-spread sequene of length n ontained in f0; 1; : : : ; 2Ng. Thus,Wp(2N + 1) � Wp(2N) � n =W (N).Theorem 5.6 	(n) 2 �(n2); in partiular, we have	(n) � (n� 1)22 for n � 2; (9)and 	(n) � 2n2�1 + o(1)� as n!1: (10)Proof. For the lower bound, let n 2 N , N = �p(n), and k = Wp(N). Lemma 5.2 showsthat n = ��1p (N) � k, while Lemma 5.3 gives �k2� � N , so that�p(n) � n(n� 1)2 :If n � 2, then Lemma 5.4 gives  p(n) � �p(n)+�p(n�1) � (n�1)2. Now Corollary 4.2shows that 	(n) =  p(n)2 ; (11)15
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