Domination, packing and excluded minors

Thomas Böhme* ${ }^{*}$
Institut für Mathematik
Technische Universität Ilmenau
Ilmenau, Germany
Bojan Mohar ${ }^{\ddagger \S}$
Department of Mathematics
University of Ljubljana
Ljubljana, Slovenia

Submitted: Feb 6, 2003; Accepted: Aug 22, 2003; Published: Sep 8, 2003
MR Subject Classifications: 05C69, 05C83

Abstract

Let $\gamma(G)$ be the domination number of a graph G, and let $\alpha_{k}(G)$ be the maximum number of vertices in G, no two of which are at distance $\leq k$ in G. It is easy to see that $\gamma(G) \geq \alpha_{2}(G)$. In this note it is proved that $\gamma(G)$ is bounded from above by a linear function in $\alpha_{2}(G)$ if G has no large complete bipartite graph minors. Extensions to other parameters $\alpha_{k}(G)$ are also derived.

1 Introduction and main results

Let G be a finite undirected graph. A graph H is a minor of G if it can be obtained from a subgraph of G by contracting edges. The distance $\operatorname{dist}_{G}(x, y)$ in G of two vertices $x, y \in V(G)$ is the length of a shortest (x, y)-path in G. The distance of a vertex x from a set $A \subseteq V(G)$ is $\min \left\{\operatorname{dist}_{G}(x, a) \mid a \in A\right\}$.

For a set $A \subseteq V(G), G(A)$ denotes the subgraph of G induced by A. If k is a nonnegative integer, we denote by $N_{k}(A)$ the set of all vertices of G which are at distance $\leq k$ from A. The set A is a k-dominating set in G if $N_{k}(A)=V(G)$. The cardinality of a smallest k-dominating set of G is denoted by $\gamma_{k}(G)$. A vertex set $X_{0} \subseteq V(G)$ is an α_{k}-set if no two vertices in X_{0} are at distance $\leq k$ in G. Let $\alpha_{k}(G)$ denote the cardinality of a largest α_{k}-set of G. Observe that $\gamma(G)=\gamma_{1}(G)$ and $\alpha(G)=\alpha_{1}(G)$ are the usual domination number and the independence (or stability) number of G. We refer to [3] for further details on domination in graphs.

[^0]It is clear that $\gamma_{k}(G) \geq \alpha_{2 k}(G)$. On the other hand, for any r there is a graph such that $\alpha_{k+1}(G)=1$ and $\gamma_{k}(G) \geq r$. In order to see this, let H_{n} be the Cartesian product of $k+1$ copies of the complete graph K_{n}. Then any two vertices of H_{n} have distance at most $k+1$ in H_{n}. Therefore, $\alpha_{k+1}\left(H_{n}\right)=1$. Since $\operatorname{deg}_{H_{n}}(x)=(k+1)(n-1)$ and $\left|V\left(H_{n}\right)\right|=n^{k+1}$, it follows that $\gamma_{k}\left(H_{n}\right) \geq n /(k+1)^{k}$. So, $\gamma_{k}\left(H_{n}\right) \geq r$ if $n \geq r(k+1)^{k}$.

The main result of the present note is the following theorem which gives a linear upper bound on $\gamma_{k}(G)$ in terms of $\alpha_{m}(G), k \leq m<\frac{5}{4}(k+1)$, in any set of graphs with a fixed excluded minor.

Theorem 1.1 Let $k \geq 0$ and $m \geq 1$ be integers such that $k \leq m<\frac{5}{4}(k+1)$. If $\gamma_{k}(G) \geq(2 m r+(q-1)(m r-r+1)) \alpha_{m}(G)-2 m r+r+1$, then G has a $K_{q, r}$-minor.

Our original motivation was the case when $k=1$ and $m=2$.
Corollary 1.2 If $\gamma(G) \geq(4 r+(q-1)(r+1)) \alpha_{2}(G)-3 r+1$, then G has a $K_{q, r}$-minor.
By excluding $K_{3,3}$-minors, we get:
Corollary 1.3 If G is a planar graph, then $\gamma(G) \leq 20 \alpha_{2}(G)-9$.
The existence of a linear bound $\gamma(G) \leq c_{1} \alpha_{2}(G)+c_{2}$ for planar graphs was conjectured by F. Göring (private communication) who proved such a bound for plane triangulations.

An improvement of a very special case of Corollary 1.3 was obtained by MacGillivray and Seyffarth [4] who proved that a planar graph of diameter at most 2 has domination number at most three. Observe that a graph G has diameter at most 2 if and only if $\alpha_{2}(G)=1$. They extend this result to planar graphs of diameter 3 by using an observation that in every planar graph of diameter $3, \alpha_{2}(G) \leq 4$. See also [2] for further results in this direction.

Corollary 1.3 can be generalized to graphs on any surface. Since the graph $K_{3, k}$ cannot be embedded in a surface of Euler genus $g \leq(k-3) / 2$ the following bound holds:

Corollary 1.4 Suppose that G is a graph embedded in a surface of Euler genus g. Then $\gamma(G) \leq 4(2 g+5) \alpha_{2}(G)-9$.

The special case of Theorem 1.1 when $k=0$ and $m=1$ is also interesting. The proof of Theorem 1.1 in this special case yields an even stronger statement since the sets A_{1}, \ldots, A_{r} in that proof are mutually at distance 1 and hence, in the constructed minor $K_{q, r}$, any two of the r vertices in the second bipartition class are adjacent. Since $\gamma_{0}(G)=|V(G)|$, the following result is obtained:

Corollary 1.5 Let $K_{q, r}^{+}$be the graph obtained from $K_{q, r}$ by adding the r-clique on the vertex set of the bipartition class of cardinality r. Suppose that $K_{q, r}^{+}$is not a minor of G. Then

$$
\alpha(G) \geq \frac{|V(G)|+r}{2 r+q-1}
$$

Duchet and Meyniel [1] obtained a special case of Corollary 1.5 when $q \leq 1$. (Note that $K_{1, r-1}^{+}=K_{0, r}^{+}=K_{r}$.) They proved that in a graph G without K_{r} minor

$$
\begin{equation*}
\alpha(G) \geq \frac{|V(G)|+r-1}{2 r-2} . \tag{1}
\end{equation*}
$$

As it turns out, our proof of Theorem 1.1 restricted to this special case is quite similar to Duchet and Meyniel's proof.

Although Theorem 1.1 does not work for the case $k=1$ and $m=3$, the following result can be used to get such an extension:

Corollary 1.6 Let $k \geq 0$ be an integer and let G be a graph. Let r be the largest integer such that K_{r} is a minor of G. Then

$$
\alpha_{2 k}(G) \leq r\left(2 \alpha_{2 k+1}(G)-1\right)
$$

Proof. Let S be a maximum $\alpha_{2 k}$-set in G. Define a graph H with $V(H)=S$ in which two vertices x, y are adjacent if and only if $\operatorname{dist}_{G}(x, y)=2 k+1$. Suppose that K is a subgraph of H. Let K^{\prime} be a subgraph of G obtained by taking vertices in $V(K)$ and, for each edge $x y$ of K, adding a path of length $2 k+1$ in G joining x and y. Since all such paths are geodesics of odd length $2 k+1$, they cannot intersect each other. This implies that K^{\prime} is a subdivision of K. In particular, if H has a K_{r} minor, so does G.

Clearly, $\alpha(H) \leq \alpha_{2 k+1}(G)$. Since $|V(H)|=\alpha_{2 k}(G),(1)$ implies that H contains K_{r} minor, where $r \geq \alpha_{2 k}(G) /\left(2 \alpha_{2 k+1}(G)-1\right)$. Then also G contains a K_{r} minor, and this completes the proof.

The relation between $\alpha_{2 k}$ and $\alpha_{2 k+1}$ in Corollary 1.6 cannot be extended to $\alpha_{2 k+1}$ and $\alpha_{2 k+2}$ as shown by the following examples (which are all planar and hence $K_{3,3}$ minor free). Let T_{k} be the tree obtained from the star $K_{1, p}(p \geq 1)$ by replacing each edge by a path of length $k+1$. Then $\gamma_{k}\left(T_{k}\right)=p$ (if $k \geq 1$), $\alpha_{2 k+1}\left(T_{k}\right)=p$, and $\alpha_{2 k+2}\left(T_{k}\right)=1$. This example also shows that Theorem 1.1 cannot be extended to the value $m=2 k+2$ if $k \geq 1$.

2 Proof of Theorem 1.1

In this section, k and m will denote fixed nonnegative integers such that $k \leq m \leq 2 k+1$. Let G be a graph, and $A \subseteq V(G)$. Let $Q=Q_{k}^{m}(A)$ be the subgraph of G which is obtained from the vertex set $U=U_{k}(A):=V(G) \backslash N_{k}(A)$ by adding vertices and edges of all paths of length $\leq m$ in G which connect two vertices in U. Since $m \leq 2 k+1, V(Q) \cap A=\emptyset$. Observe that $U=\emptyset$ if and only if A is a k-dominating set of G.

An extended α_{m}-pair with respect to A and k is a pair (X, X_{0}) where $X_{0} \subseteq X \subseteq V(G)$ such that:
(a) $X_{0} \subseteq U_{k}(A)$ is an α_{m}-set in G and every vertex in $U_{k}(A)$ is at distance $\leq m$ from X_{0}.
(b) Every vertex of $X \backslash X_{0}$ lies on an $\left(X_{0}, X_{0}\right)$-path in $Q=Q_{k}^{m}(A)$ which is of length $\leq 2 m$.
(c) Every component of Q contains precisely one connected component of $Q(X)$.

Observe that by (a), $X_{0} \neq \emptyset$ if A is not k-dominating.
Lemma 2.1 If $k \leq m \leq 2 k+1$ and $A \subseteq V(G)$, then there exists an extended α_{m}-pair $\left(X, X_{0}\right)$ with respect to A and k. If $m \geq 1$ and A is not k-dominating, then $|X| \leq$ $2 m\left|X_{0}\right|-2 m+1$.

Proof. If A is k-dominating, then $X_{0}=X=\emptyset$ will do. If $m=0$, then $X_{0}=X=U_{k}(A)$. Suppose now that A is not k-dominating and that $m \geq 1$. Let B be a component of Q. Let $B_{0}=B \cap G(U)$ and $V_{0}=V\left(B_{0}\right)$. Let us build a set $X \subseteq V(B)$ and the corresponding α_{m}-set $X_{0} \subseteq V_{0}$ as follows. Start with $X=X_{0}=\{v\}$, where $v \in V_{0}$. If there exists a vertex of V_{0} at distance in B at least $m+1$ from the current set X_{0}, let $u \in V_{0}$ be one of such vertices chosen such that its distance in B from X_{0} is minimum possible. Observe that $\operatorname{dist}_{G}\left(u, X_{0}\right) \geq m+1$ although the distance in G may be smaller than the distance in B.

Let $u_{0} u_{1} \ldots u_{r}$ be a shortest path in B from X_{0} (so $u_{0} \in X_{0}$) to $u=u_{r} \in V_{0}$. Then $\operatorname{dist}_{B}\left(u_{i}, X_{0}\right)=i$ for $i=0, \ldots, r$. Suppose that $r>2 m$. The vertices u_{m+1}, \ldots, u_{r-1} do not belong to V_{0} since their distance from X_{0} is $\geq m+1$ but smaller than the distance between u and X_{0}. Let $p=r-\left\lfloor\frac{m}{2}\right\rfloor-1$. By the definition of B, the edge $u_{p} u_{p+1}$ lies on a path of length $\leq m$ joining two vertices of V_{0}. In particular, an end u^{\prime} of this edge is at distance $\leq\left\lceil\frac{m}{2}\right\rceil-1$ from a vertex $u^{\prime \prime} \in V_{0}$. If $\operatorname{dist}_{B}\left(u^{\prime \prime}, X_{0}\right) \leq m$, then $\operatorname{dist}_{B}\left(u, X_{0}\right) \leq \operatorname{dist}_{B}\left(u, u^{\prime}\right)+\operatorname{dist}_{B}\left(u^{\prime}, u^{\prime \prime}\right)+\operatorname{dist}_{B}\left(u^{\prime \prime}, X_{0}\right) \leq\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)+\left(\left\lceil\frac{m}{2}\right\rceil-1\right)+m<$ r. This contradiction shows that $\operatorname{dist}_{B}\left(u^{\prime \prime}, X_{0}\right) \geq m+1$. However, $\operatorname{dist}_{B}\left(u^{\prime \prime}, X_{0}\right) \leq$ $\operatorname{dist}_{B}\left(u^{\prime \prime}, u^{\prime}\right)+\operatorname{dist}_{B}\left(u^{\prime}, X_{0}\right)$. If m is even, this implies that $\operatorname{dist}_{B}\left(u^{\prime \prime}, X_{0}\right)<r$. If m is odd, then we may assume that $u^{\prime}=u_{p}$, and then the same conclusion holds. This contradiction to the choice of u implies that $\operatorname{dist}_{B}\left(u, X_{0}\right)=r \leq 2 m$.

Let us add u into X_{0} and add the vertices $u_{0}, u_{1}, \ldots, u_{r}$ into the set X. This procedure gives rise to an extended α_{m}-pair inside B. Clearly, $|X| \leq 2 m\left|X_{0}\right|-2 m+1$.

By taking the union of such sets constructed in all components of Q, an appropriate extended α_{m}-pair is obtained.

Proof of Theorem 1.1. By Lemma 2.1, there are pairwise disjoint vertex sets A_{1}, A_{2}, \ldots, A_{r} such that $\left(A_{1}, A_{1}^{0}\right)$ is an extended α_{m}-pair with respect to k and $A^{(1)}=\emptyset$, and $\left(A_{i}, A_{i}^{0}\right)$ is an extended α_{m}-pair with respect to k and the set $A^{(i)}:=A_{1} \cup \cdots \cup A_{i-1}$, for $i=2, \ldots, r$. Moreover, $\left|A_{i}\right| \leq 2 m \alpha_{m}-2 m+1$, where $\alpha_{m}=\alpha_{m}(G)$. Suppose that $\gamma_{k}(G) \geq(2 m r+(q-1)(m r-r+1)) \alpha_{m}-2 m r+r+1$. Then $\gamma_{k}(G)>\left(2 m \alpha_{m}-2 m+1\right)(r-1)$, so $A^{(r)}$ is not a k-dominating set. Therefore, A_{1}, \ldots, A_{r} are all nonempty.

For $i=1, \ldots, r$, let $H_{i}=Q_{k}^{m}\left(A^{(i)}\right)$. Let $H_{r}^{1}, \ldots, H_{r}^{t}$ be the connected components of H_{r}. If $i \geq 2$, then $H_{i} \subseteq H_{i-1}$. This implies that each component of H_{i} is contained in some component of H_{i-1}. For $j=1, \ldots, t$, let H_{i}^{j} be the component of H_{i} containing H_{r}^{j}.

By (c), each H_{i}^{j} contains a component C_{i}^{j} of $H_{i}\left(A_{i}\right)$. Each C_{r}^{j} contains at least one vertex from the α_{m}-set A_{r}^{0}. Therefore, $t \leq \alpha_{m}$.

Let $B_{1}=A_{1} \cup \cdots \cup A_{r}$. Since $\gamma_{k}(G)>r\left(2 m \alpha_{m}-2 m+1\right), B_{1}$ is not k-dominating. Hence, there is a vertex $v_{1} \in U_{k}\left(B_{1}\right)$. By (a), v_{1} is at distance $\leq m$ from some component $C_{r}^{j}(1 \leq j \leq t)$ of $H_{r}\left(A_{r}\right)$. Then $H_{r}^{j}, H_{r-1}^{j}, \ldots, H_{1}^{j}$ are the components of $H_{r}, H_{r-1}, \ldots, H_{1}$ (respectively) containing C_{r}^{j}. For any of the components $H_{i}^{j}(1 \leq i \leq r)$, there is a path P_{i}^{1} in G of length $\leq m$ connecting v_{1} with $C_{i}^{j} \subseteq H_{i}^{j}$. Let B_{2} be the union of B_{1} with $\left\{v_{1}\right\}$ and the internal vertices of the paths $P_{1}^{1}, P_{2}^{1}, \ldots, P_{r}^{1}$. Let us repeat the process with B_{2} instead of B_{1} to obtain a vertex $v_{2} \in U_{k}\left(B_{2}\right)$ and linking paths $P_{1}^{2}, P_{2}^{2}, \ldots, P_{r}^{2}$ of length $\leq m$ joining v_{2} with $A_{1}, A_{2}, \ldots, A_{r}$, respectively.

Now, repeat the process by constructing B_{3}, obtaining v_{3} and paths $P_{1}^{3}, P_{2}^{3}, \ldots, P_{r}^{3}$, and so on, as long as possible. This way we get a sequence of vertices $v_{1}, v_{2}, \ldots, v_{s}$ and paths of length $\leq m$ joining these vertices with A_{1}, \ldots, A_{r}. The only requirement which guarantees the existence of v_{1}, \ldots, v_{s} and the corresponding paths is that $\gamma_{k}(G)>$ $r\left(2 m \alpha_{m}-2 m+1\right)+(s-1)(1+r(m-1))$. Since $\gamma_{k}(G)>(2 m r+(q-1)(m r-r+$ 1)) $\alpha_{m}-2 m r+r$, we may take $s>(q-1) \alpha_{m} \geq(q-1) t$. Then q of the vertices among v_{1}, \ldots, v_{s} correspond to the same component C_{r}^{j}, say to C_{r}^{1}. Suppose that these vertices are v_{1}, \ldots, v_{q}.

Let us now consider two vertices $v_{i}, v_{j}(1 \leq i<j \leq q)$ and two of their paths P_{a}^{i} and P_{b}^{j} where $a \neq b$. Suppose that they intersect in a vertex v. Denote by $x=\operatorname{dist}_{G}\left(v_{i}, v\right)$, $y=\operatorname{dist}_{G}\left(v, A_{a}\right), z=\operatorname{dist}_{G}\left(v_{j}, v\right)$, and $w=\operatorname{dist}_{G}\left(v, A_{b}\right)$. Then $x+y \leq m$ and $z+w \leq m$. This implies that

$$
\begin{equation*}
x+y+z+w \leq 2 m . \tag{2}
\end{equation*}
$$

The choice of v_{i} and v_{j} was made in such a way that $z \geq k+1, x+v \geq k+1$, and $x+y \geq k+1$. Moreover, $y+w \geq \operatorname{dist}_{G}\left(A_{a}, A_{b}\right) \geq k+1$.

Suppose that $x \geq \frac{1}{2}(k+1)$. Then (2) and the inequalities after that imply that $2 m \geq x+2(k+1) \geq \frac{5}{2}(k+1)$. Similarly, if $x \leq \frac{1}{2}(k+1)$, then $2 m \geq 3(k+1)-x \geq \frac{5}{2}(k+1)$.

Consequently, P_{a}^{i} and P_{b}^{j} cannot intersect if $2 m<\frac{5}{2}(k+1)$. In such a case it is easy to verify that vertices v_{1}, \ldots, v_{q}, the connected subgraphs $C_{1}^{1}, C_{2}^{1}, \ldots, C_{r}^{1}$ and the linking paths $P_{a}^{i}(1 \leq i \leq q, 1 \leq a \leq r)$ give rise to a $K_{q, r}$-minor in G. This completes the proof of Theorem 1.1.

References

[1] P. Duchet, H. Meyniel, On Hadwiger's number and the stability number, in "Graph theory (Cambridge, 1981)," pp. 71-73, North-Holland Math. Stud. 62, NorthHolland, 1982.
[2] W. Goddard, M. A. Henning, Domination in planar graphs with small diameter, J. Graph Theory 40 (2002) 1-25.
[3] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[4] G. MacGillivray, K. Seyffarth, Domination numbers of planar graphs, J. Graph Theory 22 (1996) 213-229.

[^0]: *Supported by SLO-German grant SVN 99/003.
 ${ }^{\dagger}$ E-mail address: tboehme@theoinf.tu-ilmenau.de
 ${ }^{\ddagger}$ Supported in part by the Ministry of Education, Science and Sport of Slovenia, Research Project J1-0502-0101-00, and by SLO-German grant SVN 99/003.
 ${ }^{\text {§ }}$ E-mail address: bojan.mohar@uni-lj.si

