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Abstract

Let γ(G) be the domination number of a graph G, and let αk(G) be the maximum
number of vertices in G, no two of which are at distance ≤ k in G. It is easy to
see that γ(G) ≥ α2(G). In this note it is proved that γ(G) is bounded from above
by a linear function in α2(G) if G has no large complete bipartite graph minors.
Extensions to other parameters αk(G) are also derived.

1 Introduction and main results

Let G be a finite undirected graph. A graph H is a minor of G if it can be obtained
from a subgraph of G by contracting edges. The distance distG(x, y) in G of two vertices
x, y ∈ V (G) is the length of a shortest (x, y)-path in G. The distance of a vertex x from
a set A ⊆ V (G) is min{distG(x, a) | a ∈ A}.

For a set A ⊆ V (G), G(A) denotes the subgraph of G induced by A. If k is a
nonnegative integer, we denote by Nk(A) the set of all vertices of G which are at distance
≤ k from A. The set A is a k-dominating set in G if Nk(A) = V (G). The cardinality
of a smallest k-dominating set of G is denoted by γk(G). A vertex set X0 ⊆ V (G) is an
αk-set if no two vertices in X0 are at distance ≤ k in G. Let αk(G) denote the cardinality
of a largest αk-set of G. Observe that γ(G) = γ1(G) and α(G) = α1(G) are the usual
domination number and the independence (or stability) number of G. We refer to [3] for
further details on domination in graphs.
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It is clear that γk(G) ≥ α2k(G). On the other hand, for any r there is a graph such
that αk+1(G) = 1 and γk(G) ≥ r. In order to see this, let Hn be the Cartesian product
of k + 1 copies of the complete graph Kn. Then any two vertices of Hn have distance
at most k + 1 in Hn. Therefore, αk+1(Hn) = 1. Since degHn

(x) = (k + 1)(n − 1) and
|V (Hn)| = nk+1, it follows that γk(Hn) ≥ n/(k + 1)k. So, γk(Hn) ≥ r if n ≥ r(k + 1)k.

The main result of the present note is the following theorem which gives a linear upper
bound on γk(G) in terms of αm(G), k ≤ m < 5

4
(k + 1), in any set of graphs with a fixed

excluded minor.

Theorem 1.1 Let k ≥ 0 and m ≥ 1 be integers such that k ≤ m < 5
4
(k + 1). If

γk(G) ≥ (2mr + (q − 1)(mr − r + 1))αm(G) − 2mr + r + 1, then G has a Kq,r-minor.

Our original motivation was the case when k = 1 and m = 2.

Corollary 1.2 If γ(G) ≥ (4r + (q − 1)(r + 1))α2(G)− 3r + 1, then G has a Kq,r-minor.

By excluding K3,3-minors, we get:

Corollary 1.3 If G is a planar graph, then γ(G) ≤ 20α2(G) − 9.

The existence of a linear bound γ(G) ≤ c1α2(G)+c2 for planar graphs was conjectured
by F. Göring (private communication) who proved such a bound for plane triangulations.

An improvement of a very special case of Corollary 1.3 was obtained by MacGillivray
and Seyffarth [4] who proved that a planar graph of diameter at most 2 has domination
number at most three. Observe that a graph G has diameter at most 2 if and only if
α2(G) = 1. They extend this result to planar graphs of diameter 3 by using an observation
that in every planar graph of diameter 3, α2(G) ≤ 4. See also [2] for further results in
this direction.

Corollary 1.3 can be generalized to graphs on any surface. Since the graph K3,k cannot
be embedded in a surface of Euler genus g ≤ (k − 3)/2 the following bound holds:

Corollary 1.4 Suppose that G is a graph embedded in a surface of Euler genus g. Then
γ(G) ≤ 4(2g + 5)α2(G) − 9.

The special case of Theorem 1.1 when k = 0 and m = 1 is also interesting. The
proof of Theorem 1.1 in this special case yields an even stronger statement since the
sets A1, . . . , Ar in that proof are mutually at distance 1 and hence, in the constructed
minor Kq,r, any two of the r vertices in the second bipartition class are adjacent. Since
γ0(G) = |V (G)|, the following result is obtained:

Corollary 1.5 Let K+
q,r be the graph obtained from Kq,r by adding the r-clique on the

vertex set of the bipartition class of cardinality r. Suppose that K+
q,r is not a minor of G.

Then

α(G) ≥ |V (G)| + r

2r + q − 1
.
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Duchet and Meyniel [1] obtained a special case of Corollary 1.5 when q ≤ 1. (Note
that K+

1,r−1 = K+
0,r = Kr.) They proved that in a graph G without Kr minor

α(G) ≥ |V (G)| + r − 1

2r − 2
. (1)

As it turns out, our proof of Theorem 1.1 restricted to this special case is quite similar to
Duchet and Meyniel’s proof.

Although Theorem 1.1 does not work for the case k = 1 and m = 3, the following
result can be used to get such an extension:

Corollary 1.6 Let k ≥ 0 be an integer and let G be a graph. Let r be the largest integer
such that Kr is a minor of G. Then

α2k(G) ≤ r(2α2k+1(G) − 1).

Proof. Let S be a maximum α2k-set in G. Define a graph H with V (H) = S in which
two vertices x, y are adjacent if and only if distG(x, y) = 2k + 1. Suppose that K is a
subgraph of H . Let K ′ be a subgraph of G obtained by taking vertices in V (K) and, for
each edge xy of K, adding a path of length 2k + 1 in G joining x and y. Since all such
paths are geodesics of odd length 2k + 1, they cannot intersect each other. This implies
that K ′ is a subdivision of K. In particular, if H has a Kr minor, so does G.

Clearly, α(H) ≤ α2k+1(G). Since |V (H)| = α2k(G), (1) implies that H contains Kr

minor, where r ≥ α2k(G)/(2α2k+1(G) − 1). Then also G contains a Kr minor, and this
completes the proof.

The relation between α2k and α2k+1 in Corollary 1.6 cannot be extended to α2k+1 and
α2k+2 as shown by the following examples (which are all planar and hence K3,3 minor
free). Let Tk be the tree obtained from the star K1,p (p ≥ 1) by replacing each edge by
a path of length k + 1. Then γk(Tk) = p (if k ≥ 1), α2k+1(Tk) = p, and α2k+2(Tk) = 1.
This example also shows that Theorem 1.1 cannot be extended to the value m = 2k + 2
if k ≥ 1.

2 Proof of Theorem 1.1

In this section, k and m will denote fixed nonnegative integers such that k ≤ m ≤ 2k +1.
Let G be a graph, and A ⊆ V (G). Let Q = Qm

k (A) be the subgraph of G which is obtained
from the vertex set U = Uk(A) := V (G) \Nk(A) by adding vertices and edges of all paths
of length ≤ m in G which connect two vertices in U . Since m ≤ 2k + 1, V (Q) ∩ A = ∅.
Observe that U = ∅ if and only if A is a k-dominating set of G.

An extended αm-pair with respect to A and k is a pair (X, X0) where X0 ⊆ X ⊆ V (G)
such that:

(a) X0 ⊆ Uk(A) is an αm-set in G and every vertex in Uk(A) is at distance ≤ m from
X0.
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(b) Every vertex of X \ X0 lies on an (X0, X0)-path in Q = Qm
k (A) which is of length

≤ 2m.

(c) Every component of Q contains precisely one connected component of Q(X).

Observe that by (a), X0 6= ∅ if A is not k-dominating.

Lemma 2.1 If k ≤ m ≤ 2k + 1 and A ⊆ V (G), then there exists an extended αm-pair
(X, X0) with respect to A and k. If m ≥ 1 and A is not k-dominating, then |X| ≤
2m|X0| − 2m + 1.

Proof. If A is k-dominating, then X0 = X = ∅ will do. If m = 0, then X0 = X = Uk(A).
Suppose now that A is not k-dominating and that m ≥ 1. Let B be a component of Q.
Let B0 = B∩G(U) and V0 = V (B0). Let us build a set X ⊆ V (B) and the corresponding
αm-set X0 ⊆ V0 as follows. Start with X = X0 = {v}, where v ∈ V0. If there exists a
vertex of V0 at distance in B at least m + 1 from the current set X0, let u ∈ V0 be one of
such vertices chosen such that its distance in B from X0 is minimum possible. Observe
that distG(u, X0) ≥ m + 1 although the distance in G may be smaller than the distance
in B.

Let u0u1 . . . ur be a shortest path in B from X0 (so u0 ∈ X0) to u = ur ∈ V0. Then
distB(ui, X0) = i for i = 0, . . . , r. Suppose that r > 2m. The vertices um+1, . . . , ur−1 do
not belong to V0 since their distance from X0 is ≥ m + 1 but smaller than the distance
between u and X0. Let p = r − bm

2
c − 1. By the definition of B, the edge upup+1

lies on a path of length ≤ m joining two vertices of V0. In particular, an end u′ of
this edge is at distance ≤ dm

2
e − 1 from a vertex u′′ ∈ V0. If distB(u′′, X0) ≤ m, then

distB(u, X0) ≤ distB(u, u′) + distB(u′, u′′) + distB(u′′, X0) ≤ (bm
2
c+ 1) + (dm

2
e − 1) + m <

r. This contradiction shows that distB(u′′, X0) ≥ m + 1. However, distB(u′′, X0) ≤
distB(u′′, u′)+distB(u′, X0). If m is even, this implies that distB(u′′, X0) < r. If m is odd,
then we may assume that u′ = up, and then the same conclusion holds. This contradiction
to the choice of u implies that distB(u, X0) = r ≤ 2m.

Let us add u into X0 and add the vertices u0, u1, . . . , ur into the set X. This procedure
gives rise to an extended αm-pair inside B. Clearly, |X| ≤ 2m|X0| − 2m + 1.

By taking the union of such sets constructed in all components of Q, an appropriate
extended αm-pair is obtained.

Proof of Theorem 1.1. By Lemma 2.1, there are pairwise disjoint vertex sets A1, A2, . . . ,
Ar such that (A1, A

0
1) is an extended αm-pair with respect to k and A(1) = ∅, and

(Ai, A
0
i ) is an extended αm-pair with respect to k and the set A(i) := A1 ∪ · · · ∪ Ai−1,

for i = 2, . . . , r. Moreover, |Ai| ≤ 2mαm − 2m + 1, where αm = αm(G). Suppose that
γk(G) ≥ (2mr+(q−1)(mr−r+1))αm−2mr+r+1. Then γk(G) > (2mαm−2m+1)(r−1),
so A(r) is not a k-dominating set. Therefore, A1, . . . , Ar are all nonempty.

For i = 1, . . . , r, let Hi = Qm
k (A(i)). Let H1

r , . . . , H
t
r be the connected components of

Hr. If i ≥ 2, then Hi ⊆ Hi−1. This implies that each component of Hi is contained in
some component of Hi−1. For j = 1, . . . , t, let Hj

i be the component of Hi containing Hj
r .
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By (c), each Hj
i contains a component Cj

i of Hi(Ai). Each Cj
r contains at least one vertex

from the αm-set A0
r. Therefore, t ≤ αm.

Let B1 = A1 ∪ · · · ∪ Ar. Since γk(G) > r(2mαm − 2m + 1), B1 is not k-dominating.
Hence, there is a vertex v1 ∈ Uk(B1). By (a), v1 is at distance ≤ m from some component
Cj

r (1 ≤ j ≤ t) of Hr(Ar). Then Hj
r , H

j
r−1, . . . , H

j
1 are the components of Hr, Hr−1, . . . , H1

(respectively) containing Cj
r . For any of the components Hj

i (1 ≤ i ≤ r), there is a path
P 1

i in G of length ≤ m connecting v1 with Cj
i ⊆ Hj

i . Let B2 be the union of B1 with {v1}
and the internal vertices of the paths P 1

1 , P 1
2 , . . . , P 1

r . Let us repeat the process with B2

instead of B1 to obtain a vertex v2 ∈ Uk(B2) and linking paths P 2
1 , P 2

2 , . . . , P 2
r of length

≤ m joining v2 with A1, A2, . . . , Ar, respectively.
Now, repeat the process by constructing B3, obtaining v3 and paths P 3

1 , P 3
2 , . . . , P 3

r ,
and so on, as long as possible. This way we get a sequence of vertices v1, v2, . . . , vs

and paths of length ≤ m joining these vertices with A1, . . . , Ar. The only requirement
which guarantees the existence of v1, . . . , vs and the corresponding paths is that γk(G) >
r(2mαm − 2m + 1) + (s − 1)(1 + r(m − 1)). Since γk(G) > (2mr + (q − 1)(mr − r +
1))αm − 2mr + r, we may take s > (q − 1)αm ≥ (q − 1)t. Then q of the vertices among
v1, . . . , vs correspond to the same component Cj

r , say to C1
r . Suppose that these vertices

are v1, . . . , vq.
Let us now consider two vertices vi, vj (1 ≤ i < j ≤ q) and two of their paths P i

a and
P j

b where a 6= b. Suppose that they intersect in a vertex v. Denote by x = distG(vi, v),
y = distG(v, Aa), z = distG(vj , v), and w = distG(v, Ab). Then x+ y ≤ m and z +w ≤ m.
This implies that

x + y + z + w ≤ 2m. (2)

The choice of vi and vj was made in such a way that z ≥ k + 1, x + v ≥ k + 1, and
x + y ≥ k + 1. Moreover, y + w ≥ distG(Aa, Ab) ≥ k + 1.

Suppose that x ≥ 1
2
(k + 1). Then (2) and the inequalities after that imply that

2m ≥ x+2(k+1) ≥ 5
2
(k+1). Similarly, if x ≤ 1

2
(k+1), then 2m ≥ 3(k+1)−x ≥ 5

2
(k+1).

Consequently, P i
a and P j

b cannot intersect if 2m < 5
2
(k + 1). In such a case it is easy

to verify that vertices v1, . . . , vq, the connected subgraphs C1
1 , C

1
2 , . . . , C

1
r and the linking

paths P i
a (1 ≤ i ≤ q, 1 ≤ a ≤ r) give rise to a Kq,r-minor in G. This completes the proof

of Theorem 1.1.
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