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Abstract

Partial cubes are, by definition, isometric subgraphs of hypercubes. Cubic inflation is an operation
that transforms a 2-cell embedded graphG into a cubic graph embedded in the same surface; its
result can be described as the dual of the barycentric subdivision ofG. New concepts of mirror and
pre-mirror graphs are also introduced. They give rise to a characterization of Platonic graphs (i) as
pre-mirror graphs and (ii) as planar graphs of minimum degree at least three whose cubic inflation is
a mirror graph. Using cubic inflation we find five new prime cubic partial cubes.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Graphs that can be isometrically embedded into hypercubes are calledpartial cubes.
They were introduced by Graham and Pollak [14] and intensively studied afterwards.
Djoković [10] gave the first characterization of partial cubes, several more followed in
[2, 4, 26, 31], cf. the book [8] for more information on these characterizations. Partial cubes
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were applied in different situations, see, for instance, [5, 6, 11, 21]. Distance regular partial
cubes are characterized in [29], in [20] this result is extended to a certain broader metrical
hierarchy. For the complexity issues on partial cubes we refer to [1, 16, 17] and for yet
more information on these graphs see also the books [8, 17], recent studies in [19], and
references therein.

One of the most challenging open problems in the area is to classify regular partial
cubes, in particular the cubic ones. For one of the most important subclasses of
partial cubes—median graphs—Mulder [24] proved that hypercubes are the only regular
examples. Besides hypercubes, the even cycles are also regular partial cubes. Observe that
the Cartesian product of two (regular) partial cubes is a (regular) partial cube. We say
that a regularpartial cube isprime if it cannot be written as a Cartesian product of two
(necessarily regular) partial cubes, eachcontaining at least two vertices.

Restricting to the cubic case, it was verified in [3] by a computer search that up
to 30 vertices, there are only three prime cubic partial cubes: the generalized Petersen
graph P(10, 3) on 20 vertices, the permutahedronΠ3 from Fig. 2 on 24 vertices, and a
sporadic example on 30 vertices. Some primecubic partial cubes on more vertices are
also known, for instance the truncated cuboctahedron on 48 vertices and the truncated
icosidodecahedron on 120 vertices [7].

Motivated by the search for regular/cubic partial cubes, mirror graphs are introduced
in the next section. It is then proved that they are partial cubes. InSection 3the concept
of cubic inflation is described. It is observed that the cubic inflation of an arbitrary graph
embedded in some surface contains a Hamilton cycle, which leads us to conjecture that
every cubic partial cube is Hamilton.In the following section the concept of pre-mirror
graphs is introduced in order to characterize Platonic graphs as pre-mirror graphs and as
planar graphs of minimum degree at least three whose cubic inflation is a mirror graph. In
the final section our efforts give us five new prime cubic partial cubes.

The Cartesian product G � H of graphs G and H is the graph with vertex set
V (G)×V (H ) where the vertex(a, x) is adjacent to the vertex(b, y) wheneverab ∈ E(G)

and x = y, or a = b and xy ∈ E(H ). The Cartesian product ofk copies ofK2 is a
(k-dimensional) hypercube or k-cube Qk . The 3-cube is also known as thecube. A
subgraphH of G is calledisometric if dH (u, v) = dG(u, v) for all u, v ∈ V (H ), where
dG(u, v) denotes the usual shortest path distance.

2. Mirror graphs

Let G = (V , E) bea connected graph. Call a partitionP = {E1, E2, . . . , Ek} of E a
mirror partition if for every i ∈ {1, . . . , k}, there isan automorphismαi of G suchthat

(M1) for every edgeuv ∈ Ei , αi (u) = v andαi (v) = u, and
(M2) G − Ei consists of two connected componentsGi

1 and Gi
2, and αi mapsGi

1
isomorphically ontoGi

2.

Sinceαi is an automorphism ofG, Ei is a matching inG joining Gi
1 andGi

2.
A connected graph is amirror graph if it admits a mirror partition. Note that hypercubes

and even cycles are mirror graphs. Also, ifG1 and G2 are mirror graphs, then their



B. Brešar et al. / European Journal of Combinatorics 25 (2004) 55–64 57

Cartesian productG1 � G2 is also a mirror graph. Furthermore, as the mirror partition
condition is quite strong, mirror graphs that cannot be written as Cartesian products of
other graphs are rather specific.

To show that mirror graphs are partial cubes, we need the following notion. Two edges
e = xy and f = uv of a graphG are in the Djokovi´c–Winkler [10, 31] relation � if
dG(x, u) + dG(y, v) �= dG(x, v) + dG(y, u). Winkler [31] proved that aconnected graph
is a partial cube if and only if it is bipartite and� is transitive (and hence an equivalence
relation).

Proposition 1. Every mirror graph is a partial cube. Moreover, its mirror partition
coincides with its �-equivalence classes.

Proof. Let G be a mirror graph with a mirror partitionP . We first show that a mirror graph
G is bipartite. If not, letC = u1u2 . . . u2s+1u1 be a shortest odd cycle, and letu1u2 ∈ Ei ,
whereEi is a part of a mirror partition ofG. Let u1 ∈ Gi

1 andu2 ∈ Gi
2. By (M2), there is

another edgeur ur+1 of C that belongs toEi . Let usassume that vertices ofC have been
enumerated so thatr is the minimum possible. Then, clearly,r ≤ s+1. SinceC is a shortest
odd cycle, it isisometric inG. Therefore,dG(u1, ur+1) ≥ r − 1 anddG(u2, ur ) = r − 2.
But this contradicts the fact thatαi (u1) = u2 andαi (ur+1) = ur .

Let uv be an edge ofEi ∈ P , whereu ∈ Gi
1 andv ∈ Gi

2. Let z ∈ Gi
1. We claim

that d(v, z) = d(u, z) + 1. Let P be a (v, z)-geodesic path and letww′ be the first
edge ofP with w ∈ Gi

2 andw′ ∈ Gi
1. ThendG(u, w′) = dG(v,w) which implies that

d(v, z) > d(u, z). Clearly,d(v, z) ≤ d(u, z) + 1.
Let uv, xy ∈ Ei . We may assume thatu, x ∈ Gi

1, v, y ∈ Gi
2. By the above,

d(u, y) = d(u, x) + 1 andd(v, x) = d(v, y) + 1. Thusuv � xy.
Assume thatuv � xy whereuv is an edge of Ei andu ∈ Gi

1, v ∈ Gi
2. We need to

show thatxy ∈ Ei as well. Suppose not, and assume without loss of generality that
x, y ∈ Gi

1. Thend(v, x) = d(u, x)+1 andd(v, y) = d(u, y)+1 thusd(v, x)+d(u, y) =
d(v, y) + d(u, x), a contradiction. �

We next wish to find examples of mirror graphs. For this sake, the concept of the cubic
inflation is introduced first.

3. Cubic inflation

An embedded graph or amap is a connected graph together with a 2-cell embedding in
some closed surface. LetG be a map without vertices of degree one. Then we define the
mapCI(G) as follows. First, we replace each vertexv ∈ V (G) by a cycleQv of length
2 degG(v), and thenreplace every edgeuv of G by two edges joiningQu andQv in such
a way that a cubic map on the same surface is obtained in which all cyclesQv are facial
and all edges ofG give rise to 4-faces in that map. The result of such a change is shown
locally in Fig. 1. The resulting mapCI(G) is called thecubic inflation of G. The map
CI(K4) is illustrated onFig. 2; it is interesting to note thatCI(K4) is isomorphic to the
permutahedronΠ3, cf. [32, p.16].

There is an alternative way to describe the cubic inflation. LetG be an embedded
graph. Recall that thebarycentric subdivision B(G) of G is a triangulation obtained as
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Fig. 1. Cubic inflation locally.

Fig. 2. Inflated tetrahedron.

follows [23]. Subdivide each edge ofG by one vertex, and in the interior of each face
add a vertex which is joined to all vertices (including the new subdivision vertices) on the
corresponding face boundary. Denote byG∗ the dual map of the mapG. The following
result follows easily from the fact thatB(G) = B(G∗) for every embedded graphG.

Proposition 2. For every embedded graph G without vertices of degree one, we have

CI(G) = B(G)∗ = CI(G∗).

Yet another way to describe the cubic inflationCI(G) of G is thatCI(G) is just the
truncation of themedial graph ofG: CI(G) = Tr(Med(G)). Let G be an embedded graph.
Then the vertices of themedial Med(G) of G are the edges ofG. Each faceF = e1e2 . . . ek

determines the edgese1e2, . . . , ek−1ek, eke1 of Med(G). See [13, Section 17.2] for a more
detailed explanation of this concept. Thetruncation Tr(G) of G is a graphobtained from
G by replacing each vertexu of degreek with k new vertices that form a cycle and are each
adjacent to the corresponding vertices of the neighbors ofu. SinceG is a graphembedded
in a surface, there is a natural order for the new adjacencies. For a more exact definition
we again refer to [13, p. 126].

The notion of cubic inflation is also related to Delaney symbols used in tiling theory
(see, for example, [15]).

Cubic inflations on moregeneral surfaces may also yield partial cubes. Such examples
are shown by an example inFig. 3. Here we start with ann-cycle embedded as a horizontal
“meridian” in the torus, and then addk ≥ 1 loops embedded as shown in the figure.
Each vertex becomes incident with zero or more loops. The graph of the cubic inflation is
isomorphic toC2n+2k � K2, hence it is a (nonprime) partial cube and also a mirror graph.
By Proposition 2, thedual map has the same cubic inflation. Let us observe that the dual
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Fig. 3. Toroidal examples.

map admits the same structure as exhibited inFig. 3. It would be of certain interest to find
other examples of this kind.

The following simple result shows that cubic inflations of arbitrary maps are Hamilton.

Proposition 3. Let H be the cubic inflation of a graph G embedded in some surface. Then
H contains a Hamilton cycle.

Proof. Let C1 be the collection of all cycles ofH that correspond to vertices ofG, and let
T be a spanning tree ofG. Let C2 be the set of all 4-cycles ofH that correspond to the
edges ofT . Then the symmetric differenceC1 + C2 is a Hamilton cycle ofH . �

In the last section, further examples of (cubic) partial cubes obtained by cubic inflation
are presented. Since this is a rare phenomenon,Proposition 3led us to the following

Conjecture 4. Every cubic partial cube is Hamilton.

It is possible that every regular partial cube is Hamilton. We do not dare to conjecture
this since a much weaker well-known conjecture is far from being understood. Namely,
the middle level graphs (which are regular partial cubes) are conjectured to be Hamilton,
and no real progress has been made towards a proof of this conjecture. See [27] for more
details.

4. Inflated graphs with mirror partitions

In this section we characterize mirror graphs that can be obtained by the cubic inflation
from some plane map.

Let B be a Eulerian graph embedded in some surface. Astraight-ahead walk in B is
a closed walk such that every pair of consecutive edges (including the transition from the
last edge back to the initial edge of the walk) passes through the corresponding vertex
straight-ahead with respect to the local rotation at that vertex. Two straight-ahead walks
are considered the same if one is a cyclic shift or the inverse of a cyclic shift of the other.
Then every edge ofB determines precisely one straight-ahead walk containing that edge.

Let B = B(G) be the barycentric subdivision of a mapG, and letW = ν1ν2 . . . νrν1 be
a straight-ahead walk inB. The verticesνi ∈ V (B) appearing inW correspond to vertices,
edges, and faces ofG. We saythatνi appears essentially in W if νi is either a vertex of
G, or νi is an edge of G andνi−1 andνi+1 (indices considered modulor ) are faces of
G. ThenW determines a cyclic sequence of vertices and edges ofG that is obtained by
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taking all essential appearances inW . Every suchsequence of vertices and edges ofG is
said to be anSA-walk in G. Note that the collection of those SA-walks inG that contain at
least oneedge ofG induces a partition ofE(G). Thenotion of SA-walks appears in other
contexts as traverse [12], straight ahead [25], straight Eulerian [13], cut-through [18], and
central-circuit [9].

We are interested in graphs with special SA-walks that are somehow similar to the
mirror partition condition. IfS is an SA-walk inG (so, S is a sequence of consecutively
incident vertices, edges, and faces ofG), let G − S be the subgraph ofG obtained by
removing all edges and vertices that occur inS. Let uscall a plane graphG a pre-mirror
graph if for every SA-walk S of G:

(PM1) G − S consists of two connected componentsGS
1, GS

2, and
(PM2) there is an automorphismαS of G that mapsGS

1 isomorphically ontoGS
2, where

any element ofS is invariant underαS .

The main question in our investigations is which mirror graphs are cubic inflations.
Recall that the Platonic graphs are tetrahedron, cube, octahedron, icosahedron, and
dodecahedron.

A map G is regular (or flag-transitive) if its automorphism group acts transitively on
the triples(v, e, F) ∈ V (G) × E(G) × F(G) (alsocalledflags) whose vertexv is incident
with the edgee, ande is incident with the faceF . It is known that regular maps in the
sphere are precisely the Platonic maps and all cycles.

Theorem 5. Let G be a map in the plane with minimum vertex degree at least three. Then
the following assertions are equivalent.

(i) CI(G) is a mirror graph.
(ii) G is a pre-mirror graph.
(iii) G is a Platonic graph.

Proof. (i) ⇒ (iii). Let G be a map inthe plane with minimum vertex degree at least three
suchthatCI(G) is a mirror graph.

We firstobserve that mirror graphs are vertex-transitive. First of all, it is clear by (M2)
that every mirror graphH is connected. Letx andy be vertices ofH , and letP be a path
of lengthr from x to y. Let i1, . . . , ir be integers in{1, . . . , k} such that the j th edge on
P belongs to the partEi j of the mirror partition,j = 1, . . . , r . Thenαi1αi2 . . . αir is an
automorphism ofH that mapsx to y.

Next we show that every automorphism of the mirror graphCI(G), which appears in
the mirror partition condition, fixes the set of faces ofCI(G) that correspond to vertices
of G (hence it also fixes the set of faces that correspond to faces ofG). Recall first that
Mader [22] and Watkins [28] (cf. also [13]) proved that vertex connectivity of a vertex-
transitive graph of degreek is at least 2(k + 1)/3. SinceCI(G) is a mirror graph, it is
vertex-transitive. Moreover, it is cubic and hence 3-connected. By a theorem of Whitney
[30] (cf. also [23]), every automorphism of a 3-connected planar graph maps facial cycles
onto facial cycles.

Now, let α be an automorphism ofCI(G) which appears in the mirror partition
condition. It is obvious thatα fixes any facial cycleC which contains an edge whose
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ends are interchanged byα (applying also Whitney’s theorem). Since every edge is in
precisely two faces, we infer that faces incident toC are also mapped properly (that is,
faces corresponding to vertices ofG are mapped to faces corresponding to vertices ofG,
and likewise for the faces corresponding to faces ofG). By connectivity ofCI(G) (we
apply successively the former observation for incident faces) we infer thatα fixes the set
of faces which correspond to vertices ofG. Obviously, since compositum preserves this
property, we infer that for each pair of verticesu, v ∈ CI(G) there exists an automorphism
that mapsu to v and fixes the set of faces that correspond to vertices ofG.

Note that every vertex ofCI(G) is incident with precisely three faces which correspond
to a vertex ofG, its incident edge inG, and one of the faces in which this edge lies in
G, respectively. In other words, there isa bijection between vertices ofCI(G) and flags
(v, e, F) of G. Moreover, byobservations of the previous paragraph, for every given pair
u, v ∈ CI(G), there exists an automorphism ofCI(G) which mapsu to v, and at the same
time fixes the set of faces which correspond to vertices ofG. From this we infer that for
each given pair of flags inG, there isan automorphism ofG, which maps one flag to the
other. HenceG is a regular map, and since it is of degree at least 3, we derive that it is a
Platonic graph.

(iii) ⇒ (ii). It is a straightforward check that all five Platonic graphs are pre-mirror.
(ii) ⇒ (i). It follows directly from definitions of both classes and cubic inflation that if

G is pre-mirror thenCI(G) is mirror. �

Theorem 5characterizes plane graphs of minimum degree≥3 whose cubic inflations are
mirror graphs. They are precisely the Platonic graphs. IfG is a plane graph with minimum
degree 2 and its cubic inflation is a mirror graph, then it is easy to see thatG is a cycle
Cn , n ≥ 3. Conversely,CI(Cn) is isomorphic to the Cartesian product ofC2n andK2, and
hence it is a mirror graph. However,Cn is not pre-mirror (since for one of its SA-walksS,
Cn − S is the empty graph).

If we allow graphs with multiple edges and loops, then the set of all regular spherical
maps extends with cycles of length 1 and 2 and withbonds—dual maps of the cycles.

Corollary 6. The cubic inflation of a spherical map G with minimum degree at least 2 is
a mirror graph if and only if G is a regular spherical map.

Planar pre-mirror graphs (and all cycles) correspond bijectively to mirror graphs which
are cubic inflations. The natural question is, are there any nontrivial prime mirror graphs
that are not cubic inflations of regular maps? Secondly, are there any prime mirror graphs
that are not planar? Is there a similar characterization of those maps on some other surface
whose cubic inflation is a mirror graph? Perhaps this could be done by using some kind of
SA-walksor their unions.

We haveonly partly solved the question for which plane graphs their cubic inflation is
a partial cube. Perhaps the following related question could be easier to attack: For which
plane graphs their SA-walks are not self-crossing? An SA-walk is called self-crossing if
there exist two elements (two vertices, twoedges, or a vertex and an edge) of this walk
that share a common face, but are notopposite on that face. Note that ifG is embedded
in the plane andCI(G) is a partial cube, then the SA-walks of G are not self-crossing.
On the other hand, even if no SA-walk inG is self-crossing,CI(G) is not necessarily
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(a) (c)

(d) (e)

(b)

Fig. 4. Planar maps yielding cubic partial cubes.

a partial cube. However, answering this question would considerably reduce the class of
graphs, for which the first question is relevant.

5. Hunting for cubic partial cubes

We now return to our starting point—searching for more cubic partial cubes. Besides
the cubic partial cubes mentioned in the introduction, three more sporadic examples on 36,
42, and 48 vertices are presented in [3]. In this section we obtain five new such examples
using the concept of the cubic inflation.

By Theorem 5, CI(G) is a mirror graph if G is a Platonic graph, henceProposition 1
implies:

Corollary 7. Let G be any of the five Platonic graphs. Then CI(G) is a prime cubic partial
cube.

As we already know,CI(K4) is the permutahedronΠ3. Since octahedron O is the
dual of the cube,Proposition 2implies thatCI(Q3) andCI(O) are isomorphic graphs
on 48 vertices—the truncated cuboctahedron. It embeds isometrically intoQ9 [7]. Note
that this graph is not isomorphic to the graphB2 on 48 vertices from [3] sinceboth are
3-connected butB2 has a facial cycle of length 12. As the icosahedron is the dual of the
dodecahedron, their cubic inflations are isomorphic graphs on120 vertices—the truncated
icosidodecahedron that embeds isometrically intoQ15 [7].

Proposition 8. Cubic inflations of plane maps shown in Fig. 4(a)–(e) are partial cubes.
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Fig. 5.�-classes of a cubic partial cube.

In order to proveProposition 8, one has to verify that the relation� is transitive. This
was checked by computer. As an example, the embedding of the cubic inflation of the graph
in Fig. 4(a) is shown inFig. 5. Different drawing styles and marks on the edges indicate
the�-equivalence classes of the graph.

To obtain graphs ofProposition 8, we have not used any particular method. Yet, the
intuitive reason for finding them lies in a fact that they are close to pre-mirror graphs in the
sense, that they possess some SA-walks withproperties (PM1) and (PM2). In the graphs
of Fig. 4(a)–(e), there are 3, 5, 4, 4 and 4 such SA-walks, respectively. Of course, since
these graphs arenot pre-mirror, they also have other SA-walks. Observe that we only need
to check for these other SA-walks, if the corresponding edges in the cubic inflation form
whole�-classes. If they do, then the graph is a partial cube.

The cubic inflation of the graph inFig. 4(a) has 48 vertices. It is neither isomorphic to
CI(Q3), that is, to the truncated cuboctahedron (since it has two adjacent 8-faces) nor to
the 48-vertex partial cube from [3] (which has adjacent 4-faces). The graphs (b) and (c)
inflate into cubic graphs on 80 vertices whilethe graphs (d) and (e) inflate to 96 vertices.
Since the face lengths of these pairs of graphs are pairwise different,Proposition 8gives
rise to five new examples of prime cubic partial cubes.

Note that the cubic inflation of every cycleCn (n ≥ 2) is also a cubic partial cube.
However,CI(Cn) = C2n � K2 is not prime.

All examples of cubic partial cubes that we have obtained so far, have the property that
by removing any edge, graphs are no longer partial cubes. Partial cubes with this property
are said to beedge-critical [3]. Therefore, we finish the paper with the following question:
Is every cubic partial cube edge-critical?
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