
Subdivisions of Large Complete Bipartite Graphs

and Long Induced Paths in k-Connected Graphs

Thomas Böhme∗
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Abstract

It is proved that for every positive integers k, r and s there exists
an integer n = n(k, r, s) such that every k-connected graph of order at
least n contains either an induced path of length s or a subdivision of
the complete bipartite graph Kk,r.

1 Introduction

According to Ramsey’s theorem, for every positive integer r there is an
integer n = n(r) such that every graph of order at least n contains either
a complete graph Kr or an edgeless graph K̄r as an induced subgraph.
For connected graphs this implies the following slightly stronger result, see
Proposition 9.4.1 in [2].
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Proposition 1.1 For every r ∈ N there is an n ∈ N such that every con-
nected graph of order at least n contains Kr, K1,r or a path of length r as
an induced subgraph. 2

A similar result holds for 2-connected graphs, see Proposition 9.4.2 in
[2].

Proposition 1.2 For every r ∈ N there is an n ∈ N such that every 2-
connected graph of order at least n contains a subdivision of K2,r or a cycle
of length at least r as a subgraph. 2

In 1993, Oporowski, Oxley and Thomas [5] proved the following two
results for 3- and 4-connected graphs, respectively.

Theorem 1.3 (Oporowski, Oxley and Thomas [5]) For every r ∈ N
there is an n ∈ N such that every 3-connected graph of order at least n
contains a minor of order at least r that is either a wheel or a K3,r. 2

Theorem 1.4 (Oporowski, Oxley and Thomas [5]) For every r ∈ N
there is an n ∈ N such that every 4-connected graph of order at least n
contains a minor of order at least r that is either a double wheel, a crown,
a Möbius crown or a K4,r. 2

In the light of the above results it seems sensible to conjecture the fol-
lowing.

Conjecture 1.5 For every k, r ∈ N there is a finite set Gk,r of k-connected
graphs each of order at least r and an n ∈ N such that every k-connected
graph of order at least n contains a minor that is either a member of Gk,r
or a Kk,r. 2

The main result of the present note (Theorem 1.6 below) supports this
conjecture.

Theorem 1.6 For every k, r, s ∈ N there is an n ∈ N such that every k-
connected graph of order at least n contains either an induced path of length
s or a subdivision of Kk,r.

In 1981, Bondy and Locke [1] proved that if a 3-connected graph contains
a path of length r, then it contains a cycle of length at least 2

3r + 2. This
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together with Theorem 1.6 implies that, for every r ∈ N, every large enough
k-connected graph that does not contain a subdivision of Kk,r contains a
cycle of length at least 2

3r + 2. Since every 3-connected non-planar graph
which is not isomorphic to K5 contains a subdivision of K3,3, the above
observation relates Theorem 1.6 to the following result, due to Jackson and
Wormald [4].

Theorem 1.7 (Jackson and Wormald [4]) There are real numbers α, β
> 0 such that every 3-connected planar graph of order at least n contains a
cycle of length at least βnα. 2

This result leads to our second conjecture.

Conjecture 1.8 For every k ∈ N there are real numbers αk, βk > 0 such
that every k-connected graph of order at least n not containing Kk,k as a
minor contains a cycle of length at least βknαk . 2

2 Proof of Theorem 1.6

First, we introduce some notation. Let X = {x1, . . . , xk} be a set of k ≥ 1
vertices and let y be a vertex not contained in X. By a (y,X)-fan we mean a
graph F that is the union of k paths P1, . . . , Pk such that Pi is a (y, xi)-path,
that is a path between y and xi, where i = 1, . . . , k, and V (Pi)∩V (Pj) = {y}
where 1 ≤ i < j ≤ k.

For the proof of Theorem 1.6 we need the following well known conse-
quence of Menger’s theorem.

Lemma 2.1 Let G be a k-connected graph where k ≥ 1, let X be a set of
k vertices of G and let y be a vertex of G not contained in X. Then G
contains a (y,X)-fan. 2

By a (k, `, t)-system we mean a triple (X,Y, (Fy)y∈Y ) such that the fol-
lowing conditions hold.

(a) X and Y are disjoint vertex sets with |X| = k and |Y | ≥ `.

(b) For every y ∈ Y , Fy is a (y,X)-fan with |E(Fy)| ≤ t.

Clearly, a (k, `, t)-system only exists for t ≥ k. The proof of Theorem
1.6 is mainly based on the following result.
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Lemma 2.2 Let k, r be positive integers. Then for every integer t ≥ k there
is an integer ` = `(k, r, t) such that for every (k, `, t)-system (X,Y, (Fy)y∈Y )
the graph H =

⋃
y∈Y Fy contains a subdivision of Kk,r.

Proof. We prove the existence of `(k, r, t) by induction on t ≥ k. For
t = k, we claim that `(k, r, k) = r has the desired property. To see this, let
(X,Y, (Fy)y∈Y ) be a (k, r, k)-system. Then |E(Fy)| = k and, therefore, Fy
is a star. Consequently, H =

⋃
y∈Y Fy is a Kk,r. This proves the claim.

Now, let t > k and suppose that `(k, r, t−1) exists. Define `(k, r, t) = Lr,
where

L = (`(k, r, t− 1) · k + 1)(t− k + 1)k.

To show that ` = `(k, r, t) has the desired property, consider a (k, `, t)-system
(X,Y, (Fy)y∈Y ) and the coresponding graph H =

⋃
y∈Y Fy. We have to show

that H contains a subdivision of Kk,r. Let G be the auxiliary graph with
vertex set Y where two distinct vertices y and y′ of G are adjacent if and
only if

(V (Fy) ∩ V (Fy′)) \X 6= ∅.

If G contains an independent set Z ⊆ Y with r vertices, then, clearly, the
graph H ′ =

⋃
y∈Z Fy is a subdivision of Kk,r that is contained in H. If the

indpendence number of G is smaller than r, then, because of |V (G)| ≥ Lr,
the graph G contains a vertex y0 of degree at least L and we argue as
follows. For x ∈ X, let Px denote the (y0, x)-path of the (y0,X)-fan Fy0 and
let P̃x = Px − x. Since Fy0 has at most t edges and |X| = k, we infer that
|V (P̃x)| ≤ t − k + 1 for every x ∈ X. Furthermore, since y0 has degree at
least L in G, we conclude that there is a vertex x0 ∈ X such that

V (Fy) ∩ V (P̃x0) 6= ∅

holds for at least L/k vertices y ∈ Y \{y0}. Let N denote the set of all these
vertices and let Ñ = N \ V (P̃x0). Then

|Ñ | ≥ L

k
− (t− k + 1) = `(k, r, t− 1) · k · (t− k + 1).

Consequently, there exists a vertex u ∈ V (P̃x0) and a subset N ′ of Ñ with

|N ′| ≥ |Ñ |/(t− k + 1) ≥ `(k, r, t− 1) · k

such that u ∈ V (Fy) for every y ∈ N ′. Finally, we conclude that there is a
a vertex x′ of X and a subset Y ′ of N ′ with |Y ′| ≥ |N ′|/k ≥ `(k, r, t − 1)
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such that, for every y ∈ Y ′, the vertex u belongs to the (y, x′)-path of the
(y,X)-fan Fy. Now, let X ′ = X − {x′} ∪ {u} and, for y ∈ Y ′, let F ′y denote
the (y,X ′)-fan obtained from Fy by deleting all vertices of the (u, x′)-path
of Fy beside the vertex u. Then, since u is not contained in X ∪ Y ′, we
have |E(F ′y)| ≤ |E(Fy)| − 1 ≤ t − 1 and, therefore, (X ′, Y ′, (F ′y)y∈Y ′) is a
(k, `(k, r, t− 1), t− 1)-system. Hence the induction hypothesis implies that
H ′ =

⋃
y∈Y ′ F

′
y contains a subdivision of Kk,r. Clearly, H ′ is a subgraph of

H. This completes the proof of Lemma 2.2. 2

Proof of Theorem 1.6. Let k, r, s ∈ N. We have to show that there is
an integer n = n(k, r, s) such that every k-conected graph of order at least
n contains either an induced path of length s or a subdivision of Kk,r.

Since every k-connected graph of order at least k+1 contains an induced
path of legth 1, we have n(k, r, 1) = k + 1. Now suppose s ≥ 2. Define
t = k(s− 1) and

n(k, r, s) = k + `(k, r, t)[k(s− 2) + 1]

where `(k, r, t) is the function from Lemma 2.2. Let G be a k-connected
graph with |V (G)| ≥ n(k, r, s). Suppose that G does not contain an induced
path of lenght s. Then we apply Lemma 2.2 to show that G contains a
subdivision of Kk,r. First, choose a set X of k vertices in G. Now, consider
an arbitrary vertex y ∈ V (G) \X. By Lemma 2.1, G contains a (y,X)-fan.
Consequently, there is a (y,X)-fan Fy in G such that, for every x ∈ X,
the (y, x)-path of Fy is an induced path in G. We call such a (y,X)-fan
strong. Clearly, if Fy is a strong (y,X)-fan, then |E(Fy)| ≤ k(s − 1) = t
and |V (Fy) \X| ≤ t+ 1− k = k(s− 2) + 1. Since |V (G) \X| ≥ n(k, r, s)−
k ≥ `(k, r, t)[k(s − 2) + 1], we then conclude that there exists a vertex
set Y ⊆ V (G) \ X with |Y | ≥ `(k, r, t) such that, for every y ∈ Y , the
graph G contains a strong (y,X)-fan Fy. Therefore, (X,Y, (Fy)y∈Y ) is a
(k, `(k, r, t), t)-system and, by Lemma 2.2, the subgraph H =

⋃
y∈Y Fy of G

contains a subdivision of Kk,r. This completes the proof of Theorem 1.6. 2
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