Subdivisions of Large Complete Bipartite Graphs and Long Induced Paths in k-Connected Graphs

Thomas Böhme*
Institut für Mathematik
Technische Universität Ilmenau Ilmenau, Germany

Riste Škrekovski ${ }^{\ddagger}$
Department of Mathematics
University of Ljubljana
Ljubljana, Slovenia

Bojan Mohar ${ }^{\dagger}$
Department of Mathematics
University of Ljubljana
Ljubljana, Slovenia
Michael Stiebitz ${ }^{\S}$
Institut für Mathematik
Technische Universität Ilmenau
Ilmenau, Germany

October 29, 2001

Abstract

It is proved that for every positive integers k, r and s there exists an integer $n=n(k, r, s)$ such that every k-connected graph of order at least n contains either an induced path of length s or a subdivision of the complete bipartite graph $K_{k, r}$.

1 Introduction

According to Ramsey's theorem, for every positive integer r there is an integer $n=n(r)$ such that every graph of order at least n contains either a complete graph K_{r} or an edgeless graph \bar{K}_{r} as an induced subgraph. For connected graphs this implies the following slightly stronger result, see Proposition 9.4.1 in [2].

[^0]Proposition 1.1 For every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that every connected graph of order at least n contains $K_{r}, K_{1, r}$ or a path of length r as an induced subgraph.

A similar result holds for 2-connected graphs, see Proposition 9.4.2 in [2].

Proposition 1.2 For every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that every 2connected graph of order at least n contains a subdivision of $K_{2, r}$ or a cycle of length at least r as a subgraph.

In 1993, Oporowski, Oxley and Thomas [5] proved the following two results for 3 - and 4 -connected graphs, respectively.

Theorem 1.3 (Oporowski, Oxley and Thomas [5]) For every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that every 3 -connected graph of order at least n contains a minor of order at least r that is either a wheel or a $K_{3, r}$.

Theorem 1.4 (Oporowski, Oxley and Thomas [5]) For every $r \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that every 4 -connected graph of order at least n contains a minor of order at least r that is either a double wheel, a crown, a Möbius crown or a $K_{4, r}$.

In the light of the above results it seems sensible to conjecture the following.

Conjecture 1.5 For every $k, r \in \mathbb{N}$ there is a finite set $\mathcal{G}_{k, r}$ of k-connected graphs each of order at least r and an $n \in \mathbb{N}$ such that every k-connected graph of order at least n contains a minor that is either a member of $\mathcal{G}_{k, r}$ or a $K_{k, r}$.

The main result of the present note (Theorem 1.6 below) supports this conjecture.

Theorem 1.6 For every $k, r, s \in \mathbb{N}$ there is an $n \in \mathbb{N}$ such that every k connected graph of order at least n contains either an induced path of length s or a subdivision of $K_{k, r}$.

In 1981, Bondy and Locke [1] proved that if a 3 -connected graph contains a path of length r, then it contains a cycle of length at least $\frac{2}{3} r+2$. This
together with Theorem 1.6 implies that, for every $r \in \mathbb{N}$, every large enough k-connected graph that does not contain a subdivision of $K_{k, r}$ contains a cycle of length at least $\frac{2}{3} r+2$. Since every 3 -connected non-planar graph which is not isomorphic to K_{5} contains a subdivision of $K_{3,3}$, the above observation relates Theorem 1.6 to the following result, due to Jackson and Wormald [4].

Theorem 1.7 (Jackson and Wormald [4]) There are real numbers α, β >0 such that every 3-connected planar graph of order at least n contains a cycle of length at least βn^{α}.

This result leads to our second conjecture.
Conjecture 1.8 For every $k \in \mathbb{N}$ there are real numbers $\alpha_{k}, \beta_{k}>0$ such that every k-connected graph of order at least n not containing $K_{k, k}$ as a minor contains a cycle of length at least $\beta_{k} n^{\alpha_{k}}$.

2 Proof of Theorem 1.6

First, we introduce some notation. Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ be a set of $k \geq 1$ vertices and let y be a vertex not contained in X. By a (y, X)-fan we mean a graph F that is the union of k paths P_{1}, \ldots, P_{k} such that P_{i} is a $\left(y, x_{i}\right)$-path, that is a path between y and x_{i}, where $i=1, \ldots, k$, and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{y\}$ where $1 \leq i<j \leq k$.

For the proof of Theorem 1.6 we need the following well known consequence of Menger's theorem.

Lemma 2.1 Let G be a k-connected graph where $k \geq 1$, let X be a set of k vertices of G and let y be a vertex of G not contained in X. Then G contains a ($y, X)$-fan.

By a (k, ℓ, t)-system we mean a triple $\left(X, Y,\left(F_{y}\right)_{y \in Y}\right)$ such that the following conditions hold.
(a) X and Y are disjoint vertex sets with $|X|=k$ and $|Y| \geq \ell$.
(b) For every $y \in Y, F_{y}$ is a (y, X)-fan with $\left|E\left(F_{y}\right)\right| \leq t$.

Clearly, a (k, ℓ, t)-system only exists for $t \geq k$. The proof of Theorem 1.6 is mainly based on the following result.

Lemma 2.2 Let k, r be positive integers. Then for every integer $t \geq k$ there is an integer $\ell=\ell(k, r, t)$ such that for every (k, ℓ, t)-system $\left(X, Y,\left(F_{y}\right)_{y \in Y}\right)$ the graph $H=\bigcup_{y \in Y} F_{y}$ contains a subdivision of $K_{k, r}$.

Proof. We prove the existence of $\ell(k, r, t)$ by induction on $t \geq k$. For $t=k$, we claim that $\ell(k, r, k)=r$ has the desired property. To see this, let $\left(X, Y,\left(F_{y}\right)_{y \in Y}\right)$ be a (k, r, k)-system. Then $\left|E\left(F_{y}\right)\right|=k$ and, therefore, F_{y} is a star. Consequently, $H=\bigcup_{y \in Y} F_{y}$ is a $K_{k, r}$. This proves the claim.

Now, let $t>k$ and suppose that $\ell(k, r, t-1)$ exists. Define $\ell(k, r, t)=L r$, where

$$
L=(\ell(k, r, t-1) \cdot k+1)(t-k+1) k .
$$

To show that $\ell=\ell(k, r, t)$ has the desired property, consider a (k, ℓ, t)-system $\left(X, Y,\left(F_{y}\right)_{y \in Y}\right)$ and the coresponding graph $H=\bigcup_{y \in Y} F_{y}$. We have to show that H contains a subdivision of $K_{k, r}$. Let G be the auxiliary graph with vertex set Y where two distinct vertices y and y^{\prime} of G are adjacent if and only if

$$
\left(V\left(F_{y}\right) \cap V\left(F_{y^{\prime}}\right)\right) \backslash X \neq \emptyset
$$

If G contains an independent set $Z \subseteq Y$ with r vertices, then, clearly, the graph $H^{\prime}=\bigcup_{y \in Z} F_{y}$ is a subdivision of $K_{k, r}$ that is contained in H. If the indpendence number of G is smaller than r, then, because of $|V(G)| \geq L r$, the graph G contains a vertex y_{0} of degree at least L and we argue as follows. For $x \in X$, let P_{x} denote the $\left(y_{0}, x\right)$-path of the $\left(y_{0}, X\right)$-fan $F_{y_{0}}$ and let $\tilde{P}_{x}=P_{x}-x$. Since $F_{y_{0}}$ has at most t edges and $|X|=k$, we infer that $\left|V\left(\tilde{P}_{x}\right)\right| \leq t-k+1$ for every $x \in X$. Furthermore, since y_{0} has degree at least L in G, we conclude that there is a vertex $x_{0} \in X$ such that

$$
V\left(F_{y}\right) \cap V\left(\tilde{P}_{x_{0}}\right) \neq \emptyset
$$

holds for at least L / k vertices $y \in Y \backslash\left\{y_{0}\right\}$. Let N denote the set of all these vertices and let $\tilde{N}=N \backslash V\left(\tilde{P}_{x_{0}}\right)$. Then

$$
|\tilde{N}| \geq \frac{L}{k}-(t-k+1)=\ell(k, r, t-1) \cdot k \cdot(t-k+1)
$$

Consequently, there exists a vertex $u \in V\left(\tilde{P}_{x_{0}}\right)$ and a subset N^{\prime} of \tilde{N} with

$$
\left|N^{\prime}\right| \geq|\tilde{N}| /(t-k+1) \geq \ell(k, r, t-1) \cdot k
$$

such that $u \in V\left(F_{y}\right)$ for every $y \in N^{\prime}$. Finally, we conclude that there is a a vertex x^{\prime} of X and a subset Y^{\prime} of N^{\prime} with $\left|Y^{\prime}\right| \geq\left|N^{\prime}\right| / k \geq \ell(k, r, t-1)$
such that, for every $y \in Y^{\prime}$, the vertex u belongs to the $\left(y, x^{\prime}\right)$-path of the (y, X)-fan F_{y}. Now, let $X^{\prime}=X-\left\{x^{\prime}\right\} \cup\{u\}$ and, for $y \in Y^{\prime}$, let F_{y}^{\prime} denote the (y, X^{\prime})-fan obtained from F_{y} by deleting all vertices of the (u, x^{\prime})-path of F_{y} beside the vertex u. Then, since u is not contained in $X \cup Y^{\prime}$, we have $\left|E\left(F_{y}^{\prime}\right)\right| \leq\left|E\left(F_{y}\right)\right|-1 \leq t-1$ and, therefore, $\left(X^{\prime}, Y^{\prime},\left(F_{y}^{\prime}\right)_{y \in Y^{\prime}}\right)$ is a ($k, \ell(k, r, t-1), t-1)$-system. Hence the induction hypothesis implies that $H^{\prime}=\bigcup_{y \in Y^{\prime}} F_{y}^{\prime}$ contains a subdivision of $K_{k, r}$. Clearly, H^{\prime} is a subgraph of H. This completes the proof of Lemma 2.2.

Proof of Theorem 1.6. Let $k, r, s \in \mathbb{N}$. We have to show that there is an integer $n=n(k, r, s)$ such that every k-conected graph of order at least n contains either an induced path of length s or a subdivision of $K_{k, r}$.

Since every k-connected graph of order at least $k+1$ contains an induced path of legth 1 , we have $n(k, r, 1)=k+1$. Now suppose $s \geq 2$. Define $t=k(s-1)$ and

$$
n(k, r, s)=k+\ell(k, r, t)[k(s-2)+1]
$$

where $\ell(k, r, t)$ is the function from Lemma 2.2. Let G be a k-connected graph with $|V(G)| \geq n(k, r, s)$. Suppose that G does not contain an induced path of lenght s. Then we apply Lemma 2.2 to show that G contains a subdivision of $K_{k, r}$. First, choose a set X of k vertices in G. Now, consider an arbitrary vertex $y \in V(G) \backslash X$. By Lemma 2.1, G contains a (y, X)-fan. Consequently, there is a (y, X)-fan F_{y} in G such that, for every $x \in X$, the (y, x)-path of F_{y} is an induced path in G. We call such a (y, X)-fan strong. Clearly, if F_{y} is a strong (y, X)-fan, then $\left|E\left(F_{y}\right)\right| \leq k(s-1)=t$ and $\left|V\left(F_{y}\right) \backslash X\right| \leq t+1-k=k(s-2)+1$. Since $|V(G) \backslash X| \geq n(k, r, s)-$ $k \geq \ell(k, r, t)[k(s-2)+1]$, we then conclude that there exists a vertex set $Y \subseteq V(G) \backslash X$ with $|Y| \geq \ell(k, r, t)$ such that, for every $y \in Y$, the graph G contains a strong (y, X)-fan F_{y}. Therefore, $\left(X, Y,\left(F_{y}\right)_{y \in Y}\right)$ is a ($k, \ell(k, r, t), t)$-system and, by Lemma 2.2, the subgraph $H=\bigcup_{y \in Y} F_{y}$ of G contains a subdivision of $K_{k, r}$. This completes the proof of Theorem 1.6.

References

[1] J.A. Bondy, S.C. Locke, Relative length of paths and cycles in 3connected graphs, Discrete Math. 33 (1981) 111-122.
[2] R. Diestel, Graph Theory, Springer, 1997.
[3] Z. Gao, X. Yu, Convex programming and circumference of 3-connected graphs of low genus, J. Combin. Theory Ser. B 69 (1997) 39-51.
[4] B. Jackson, N. Wormald, Longest cycles in 3-connected planar graphs, J. Combin. Theory Ser. B 54 (1992) 291-321.
[5] B. Oporowski, J. Oxley, R. Thomas, Typical subgraphs of 3- and 4connected graphs, J. Combin. Theory Ser. B 57 (1993) 239-257.

[^0]: *E-mail address: tboehme@theoinf.tu-ilmenau.de
 ${ }^{\dagger}$ E-mail address: bojan.mohar@uni-lj.si
 ${ }^{\ddagger}$ E-mail address: riste.skrekovski@uni-lj.si
 ${ }^{\S}$ E-mail address: stieb@mathematik.tu-ilmenau.de
 ${ }^{0}$ Research supported in part by a bilateral SLO-DE grant

